Cryogenian evolution of stigmasteroid biosynthesis
Résumé
Sedimentary hydrocarbon remnants of eukaryotic C 26-C 30 sterols can be used to reconstruct early algal evolution. Enhanced C 29 sterol abundances provide algal cell membranes a density advantage in large temperature fluctuations. Here, we combined a literature review with new analyses to generate a comprehensive inventory of unambiguously syngenetic steranes in Neoproterozoic rocks. Our results show that the capacity for C 29 24ethyl-sterol biosynthesis emerged in the Cryogenian, that is, between 720 and 635 million years ago during the Neoproterozoic Snowball Earth glaciations, which were an evolutionary stimulant, not a bottleneck. This biochemical innovation heralded the rise of green algae to global dominance of marine ecosystems and highlights the environmental drivers for the evolution of sterol biosynthesis. The Cryogenian emergence of C 29 sterol biosynthesis places a benchmark for verifying older sterane signatures and sets a new framework for our understanding of early algal evolution.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|