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Cryogenian evolution of stigmasteroid biosynthesis
Yosuke Hoshino,1* Aleksandra Poshibaeva,2 William Meredith,3 Colin Snape,3

Vladimir Poshibaev,2 Gerard J. M. Versteegh,4,5 Nikolay Kuznetsov,2,6 Arne Leider,1

Lennart van Maldegem,1,4 Mareike Neumann,1 Sebastian Naeher,1,4† Małgorzata Moczydłowska,7
Jochen J. Brocks,8 Amber J. M. Jarrett,8 Qing Tang,9 Shuhai Xiao,9 David McKirdy,10

Supriyo Kumar Das,11 José Javier Alvaro,12 Pierre Sansjofre,13 Christian Hallmann1,4‡

Sedimentary hydrocarbon remnants of eukaryotic C26–C30 sterols can be used to reconstruct early algal evo-
lution. Enhanced C29 sterol abundances provide algal cell membranes a density advantage in large temperature
fluctuations. Here, we combined a literature review with new analyses to generate a comprehensive inventory
of unambiguously syngenetic steranes in Neoproterozoic rocks. Our results show that the capacity for C29 24-
ethyl-sterol biosynthesis emerged in the Cryogenian, that is, between 720 and 635million years ago during the
Neoproterozoic Snowball Earth glaciations, which were an evolutionary stimulant, not a bottleneck. This bio-
chemical innovation heralded the rise of green algae to global dominance of marine ecosystems and highlights
the environmental drivers for the evolution of sterol biosynthesis. The Cryogenian emergence of C29 sterol
biosynthesis places a benchmark for verifying older sterane signatures and sets a new framework for our
understanding of early algal evolution.
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INTRODUCTION
All modern eukaryotes biosynthesize sterols or acquire them through
dietary uptake. Incorporated into the cellmembrane, they are essential
for homeostasis and cell signaling within this domain (1), and their
concentration in lipid rafts plays a significant role for budding and
endocytosis through affectingmembrane curvature (2). Given the rar-
ity of extended sterol biosynthesis in bacteria (3), steranes preserved
in sediments and ancient rocks have been frequently used as fossil
biomarkers diagnostic of ancient eukaryotes. The large diversity of
sterols in living cells is principally defined by double bonds and func-
tional moieties that show limited survival after cell death (4). Diage-
netic processes during sedimentary burial largely reduce the structural
diversity of residual steroids to variations in their (C-24) side-chain
alkylation, leaving mostly threemajor saturated sterane hydrocarbons
containing 27, 28, or 29 carbon atoms: cholestane, ergostane, and
stigmastane. Hence, it is predominantly this tripartite diversity that
allows for paleobiogeochemical reconstructions of past eukaryotic
diversity.
The geological record of steranes
Systematic changes in the relative abundance of these three steranes have
been observed over the course of the past ~550 million years of Earth
history. A continuously increasing relative abundance of ergostanes
(5), for example, has been attributed to the global rise and radiation of
chlorophyll c–containing phytoplankton (6). Significantly less is known
about the initial rise and early evolution of the eukaryote lineage. Molec-
ular clocks place the last eukaryotic common ancestor at ~1.8 billion
years ago (7), whereas theoldest unambiguously eukaryotic acritarchmi-
crofossils date to ca. 1.6 billion years ago (8). However, this consensus
date had been distorted for more than one decade by false biomarker
positives: Sedimentary steranes in Proterozoic rocks [for example, (9)]
and up to 2.7 billion years in age (10) steered discussions of a much ear-
lier eukaryotic dawning. Only the advent of enhanced contamination
awareness (11, 12) and an unprecedented clean drilling operation (13)
persuasively unmasked Archean steranes asmodern contaminants. As a
positive corollary, the burden of proof for the detection of indigenous
and syngenetic sterane biomarkers throughout the Precambrian was
significantly raised and led us to systematically (re-)analyze both previ-
ously studied and new Proterozoic sedimentary sequences with an un-
expected outcome. We here report on the heterogeneous diversity and
palaeogeographic distribution of unambiguously indigenous (Supple-
mentary Materials) steranes throughout the Neoproterozoic, a finding
that changes our understanding of early eukaryotic steroid biosynthesis
and evolution.

The composite molecular inventory of Phanerozoic rocks, petro-
leum, or modern environmental samples virtually always contains the
C27–29 steroid troika in varying relative abundances (1, 4, 5). In broad
terms, cholesterol biosynthesis is dominant in metazoa and rhodophy-
ceae, whereas elevated abundances of C29 phytosterols are biosynthe-
sized by green algae and higher plants. However, it is noteworthy that
even pure cultures of eukaryotic algae only rarely display an exclusive
steroidal end-memberdominance (4,5,14). It is only the early rock record
that deviates significantly from this balanced pattern: A C27-only steroi-
dal distribution in the Tonian Chuar Group (15) was recently recon-
firmed and supplemented by two other similarly aged deposits, which
appear devoid of any conventionalC28 orC29 steranes (16).On the other
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end of the C27–29 steroidal spectrum, it has long been known that certain
Ediacaran to Early Cambrian oils in Oman, Siberia, and India are
strongly dominated by C29 steranes (6). However, because of the mi-
grated nature of these petroleum fluids and the large temporal data
gap spanning the Ediacaran, virtually nothing has been known on the
timing and distribution of rising C29 steroid abundances or what this
peculiar signal could mean.
RESULTS AND DISCUSSION
With additional analyses and a literature survey, we now convincingly
show that the Late Ediacaran dominance of C29 steranes does not repre-
sent rare or isolated depositional environments. This signature is not
restrictedmerely to particular lithologies, latitudes, or facies zones (table
S1), but instead seems representative of a highly uniform global steroid
metabolismduring theLateEdiacaran (Fig. 1), as confirmedby67 samples
from14 localities (SupplementaryMaterials).Despite the rarityof thermally
well-preserved andorganic rich sedimentary strata of pre-Cryogenian age,
we find that also in this time slice [ca. 900 to 720million years ago (Ma)],
the predominance of C27 steranes is not dependent on environmental
factors (table S1) but appears inherent to global steroid metabolism
before the Cryogenian, whereas commonC29 steranes are systematically
absent in all 35 samples from five localities spanning the globe (Fig. 1).
Hoshino et al., Sci. Adv. 2017;3 : e1700887 20 September 2017
Steroid biosynthesis and physiology
Across all clades—including some bacteria—steroid biosynthesis starts
with the epoxidation of squalene (17), followed by enzymatic cyclization
to one of two possible C30 protosterols: lanosterol or cycloartenol (1, 4).
Although the evolutionary relationship between the lanosterol and cy-
cloartenol cyclases has recently been found to bemore complex thanpre-
viously assumed (3), downstreammodifications of lanosterol to bothC27

and C28 sterols conserve the same reaction order of demethylations (C-4
andC-14) performed by the same enzymes aftermethylation atC-24 (4),
but do not lead to 24-ethyl (C29) steroids. Cycloartenol, on the contrary,
can be a precursor to C27–C29 sterols (18) following a different reaction
order, thus pointing to a separate evolutionary origin of this pathway and
implying that cycloartenol biosynthesis likely preceded the emergence of
C29 steroids. This provides a plausible explanation for the sporadic co-
occurrence of C28 ergostane traces alongside the pre-CryogenianC27 sig-
nal (table S1), whereas C29 steranes are systematically absent. A high
compositional diversity of lipids is thought to ensure a stable and im-
permeable membrane even when cellular composition, osmolarity, or
pH is changed because of physiological or pathological events (2, 4).
The presence of C29 sterols in “raft-like”model membranes significantly
lessens temperature dependence ofmembrane dynamics, as compared to
systemswithC27andC28 sterols, suggesting thatC2924-ethylsterols arepro-
duced to extend the temperature range in which membrane-associated
560

B  Early Ediacaran:  635–600 Ma

C  Mid-Ediacaran:  600–560 Ma

A  Pre-Cryogenian:  900–645 Ma

D  Late Ediacaran/early Cambrian:  560–520 Ma

780 Ma 635 Ma

580 Ma 540 Ma

720 541660

A C DB

635

Tonian Cryogenian Ediacaran C
600

E

F

C27: Cholestane

C29: Stigmastane

Fig. 1. Evolutionary radiation of stigmasteroid (24) biosynthesis. (A) Tonian rocks are nearly exclusively characterized by C27 steranes [cholestane; see (F): Green symbols
denote C27 dominance and complete absence of C29 steranes, with only sporadic traces of C28 4-desmethylsteranes]. (B) The oldest noncontaminated C29 24-ethylsteranes
[stigmastane; see (F): yellow symbols stand for C27 > C29, whereas red symbols indicate C27 < C29 and often C27 ≪ C29] only appear during the latest Cryogenian (Marinoan
deglaciation) and earliest Ediacaran in Oman, whereas contemporaneous rocks from three other localities are still strongly or exclusively dominated by C27 steranes, indicating
a 720- to 635-Ma Snowball Earth glacial origin of the stigmasteroid biosynthetic pathway—in agreement with the physiological membrane density advantage yielded by cellular
phytosterols (19, 20) and molecular clocks (30). (C and D) Global dominance of C29 steroid biosynthesis by 600 Ma (table S1) highlights the evolutionary advantage of the likely
chlorophyte host organism and a rapid rise to ecological dominance. (E) Schematic representation of Neoproterozoic time showing steroidal dominance (green, C27 versus red,
C29) and the time brackets from (A) to (D). (F) Relevantmolecular structures and schematic tandem-MS chromatograms of (bottom to top) C27 [green,mass/charge ratio (m/z) 372
to 217], C28 (yellow,m/z 386 to 217), and C29 (red, m/z 400 to 217) steranes, emphasizing the color code used in (A) to (D). Ages on the top right of the maps comply with the
palaeogeographic snapshots after (31).
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biological processes can take place (19). Hence, the use of C29 sterols
yields an important advantage to large temperature fluctuations, and
it has been hypothesized that this adaptive “membrane tuning” repre-
sents an evolutionary response to large temperature variations (20).

The Neoproterozoic Snowball Earth events—two severe glacial epi-
sodes within the time interval 717 to 632 Ma (21, 22), whose globally
distributed diamictite remnants reflect themagnitude and spatial extent
of these glaciations (23)—represent the most pervasive climatic pertur-
bation in all of Earth’s history. However, the biological consequences, in
particular whether Neoproterozoic life experienced an evolutionary
bottleneck or a catalyst, are unclear. C29 24-ethylsteranes (24) are sys-
tematically absent from sediments deposited before the onset of the
Snowball Earth events (Fig. 1A) but are present in rocks deposited dur-
ing and directly after the Marinoan deglaciation (Fig. 1B), implying an
origin of stigmasteroid (24) biosynthesis during the glaciation.Whereas
subglacial water temperatures during the Cryogenian glaciations were
relatively constant as a result of vigorous convective mixing (25), large
diurnal temperature variations would have existed in low-latitude cry-
oconite pans (26). Recent climate models imply ice-free tropical conti-
nents (27), whose wind-blown dust would have created ablated glacial
surfaces with meltwater above low-albedo accumulations of dust,
biomass, and degraded organic matter (28). The modern equivalents
of these cryoconite holes host diverse bacterial and eukaryotic commu-
nities and can be considered individual ecosystems (29). Hence, small
and isolated eukaryotic populations were exposed to strong environ-
mental forcing by frequent large temperature variations (27) in habitats
with limited or periodic population mixing—providing an ideal
scenario for beneficial mutation and localized evolutionary selection
toward more successful C29-sterol producing algae.

The ecological rise of green algae
The localized evolution of stigmasterol (24) biosynthesis is suggested
by a postglacial gradient: Around 635 Ma, that is, during and directly
after the Marinoan deglaciation, eukaryotes in the South Oman Salt
Basin (SOSB) were already dominated by C29 sterol–producing species,
whereas the algal community in three other coeval locations still largely
consisted of eukaryotes synthesizing C27 sterols (Fig. 1B). A C29 ster-
ane dominance in carbonates and shales that are embedded within the
Marinoan diamictite in the SOSB—thus possibly up to 645 Ma in age
(Supplementary Materials)—firmly places the rise of this biosynthetic
capacity within, and not directly after, the Cryogenian. Although C29

sterol–synthesizing algae are dominant in only one locality between
635 and 600 Ma, they had reached global dominance at the latest by
600 to 560 Ma (Fig. 1C). This rapid global radiation testifies to the ex-
ceptional ecological success of stigmasteroid-producing algae and, in
turn, suggests that this biosynthetic capacity must have emerged during
the Cryogenian glaciations and not earlier. Green algae predominantly
biosynthesize C29 sterols (1, 4–6, 14), dominate modern cryoconites
(29), and likely existed before the Cryogenian (7).Withmolecular clocks
indicating aLateCryogeniandivergenceof green algal SMTgenes (carbon-
24/28-sterol methyltransferase responsible for C-24 methylation of
sterols) from those of other Archaeplastida (fig. S1) (30), our data sug-
gest that stigmasteroid biosynthesis emerged in an ancestral green alga
and subsequently led to the rise of this group to ecological dominance.
CONCLUSIONS
Dating the evolving sterol biosynthetic pathway not only provides a
unique and precise calibration point for molecular clock studies of
Hoshino et al., Sci. Adv. 2017;3 : e1700887 20 September 2017
biochemical processes but also places a new benchmark for reliably
recognizing steroid contamination in pre-Cryogenian sediments.
Considering biochemical innovation and the physiological function
of membrane lipids within a well-dated geological framework brings
us closer to understanding the environmental drivers of evolving or-
ganismic complexity and sets a new framework for our understanding
of early eukaryotic evolution.
MATERIALS AND METHODS
For this study, we summarized selected biomarker data from the liter-
ature, where the indigeneity of components was evident or highly likely
(see the Supplementary Materials for approach and rationale), and
performed laboratory analyses on sedimentary rock samples. We
analyzed the molecular inventory of 158 Neoproterozoic rocks, of
which 61 yielded trustworthy and reliable steroidal signatures that
were deemed as unambiguously syngenetic (table S1, Supplementary
Materials). Five studied formations did not yield a single sample with
uncontaminated steroidal signatures (table S2). Furthermore, 68 se-
lectively chosen Neoproterozoic sterane values from the literature
were used (table S1).

Rock sample preparation and workup
Samples were analyzed using standard organic geochemical techni-
ques undermeasures of extreme precaution, similar to techniques that
we previously reported (13, 32). In brief, samples were first separated
into interior and exterior portions, either by sawing using a diamond-
rimmed blade–fitted stainless steel saw [Lortone; blade cleaned by
ultrasound-assisted solvent extraction in dichloromethane (DCM)
and by baking at 450°C for 8 hours] or by themicroablation technique
(33). Sample interiors and exteriors were separately crushed and
ground to a fine powder using a shatterbox (Siebtechnik, Scheibensch-
wingmühle) fitted with a custom-made stainless steel puck and mill,
which were cleaned by baking at 500°C for 8 hours. In between
samples, the puck and mill were cleaned by grinding and discarding
clean quartz sand five times and by solvent rinsing with DCM. The
resulting sample powders were solvent-extracted (DCM) by ultra-
sound agitation in Teflon vessels or by using a CEMMars 6microwave
extraction approach (up to 30 g of powder extracted with three times
30 ml of DCM under stirring at 120°C for 20 min each). The resulting
total lipid extracts were desulfurized using activated (withHClaq), neu-
tralized, and solvent-extracted copper pellets and fractionated on silica
gel columns into saturated hydrocarbons (SAT), aromatic hydrocar-
bons, and polar compounds, as described in more detail elsewhere
(32). SAT were spiked with internal standards (C30D62 triacontane
and d4-5a-cholestane) and analyzed using coupled gas chromatogra-
phy (GC) and mass spectrometry (MS).

GC and MS
Full-scan analyses were performed on a Trace GCUltra (Thermo Sci-
entific) coupled to an ALMSCO BenchTOF-dx mass spectrometer.
The gas chromatograph was fitted with a VF-1 MS column [40 m; in-
ner diameter (i.d.), 0.15 mm; film thickness, 0.15 mm] and operated
with a constant flow (1.4ml/min) of helium (99.999% pure,Westfalen
AG) as a carrier gas. Samples (between 1 out of 50 and 1 out of 500 ml)
were injected in splitless mode using a programmed temperature va-
porizer injector (ramped from 60° to 315°C at 14.5°/s). The GC oven
was held at 60°C (2 min) before ramping at 4.5°/min to a final tem-
perature of 325°C, which was held for 10 min. Ionization was
3 of 7
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achieved at 70 eV (electron impact) and 250°C with a filament current
of ca. 4 A. Data were measured fromm/z 30 to 800 but only recorded
from m/z 50 to 550 at ca. 1000 mass resolution using 2469 scans per
scanset and a scanset period of 250 ms. Analytes were quantified by
comparison to internal standards without correcting for individual
response factors.

Target compound analysis for biomarkers (including steranes) was
performed on a Thermo Quantum XLS Ultra triple-quadrupole mass
spectrometer coupled to a Thermo Trace GC Ultra, fitted with a DB-
XLB capillary column (60 m; i.d., 0.25 mm; film thickness, 0.25 mm)
and a deactivated precolumn (10 m; i.d., 0.53 mm). A constant flow
(1.3 ml/min) of helium (99.999 % pure, Westfalen AG) was used as a
carrier gas. Volumes of typically 1 or 2 ml out of 50 to 200 ml were
injected on column at 70°C. The oven was held isothermal at 70°C
(5min), then heated to 335°C at 4°/min, and held at the final tempera-
ture for 9 min. Ionization was achieved by electron impact at 70 eV
and 250°C, with an emission current of 50 mA. Q1 and Q3 were each
operated in 0.7-Da resolution with a cycle time of 0.5 s. Q2 was oper-
ated withArgon 5.0 collision gas at a pressure of 1.1mtorr and varying
collision voltages depending on the target analyte. Compounds were
quantified on characteristic parent-to-daughter ion mass transitions
(for C27–C29 steranes: m/z 372, 386, and 400 fragmenting to m/z 217)
relative to d4-5a-cholestane (m/z 376 fragmenting tom/z 221) without
correcting for differential response factors.

Hydropyrolysis of kerogens
For hydropyrolysis (University ofNottingham), aliquots of 60 to 125mg
of purified kerogen were mixed with ammonium dioxydithiomo-
lybdate catalyst. First, a procedural blank was run and tested negative
(GC-MS at the University of Nottingham) for steranes. Subsequently,
each sample/catalyst mixture was interspersed with ~100 mg of pre-
extracted and calcined acid-washed quartz sand to “bulk out” the sam-
ple and prevent reactor blockage. A thermal desorption step was run
from ambient to 250°C at 300°/min and subsequently to 350°C at
8°/min and held for 2min, duringwhich released “free” hydrocarbons
were trapped on silica. After changing the trap silica, a pyrolysis
step was run from ambient to 350°C at 300°C/min, then to 520°C
at 8°/min, and held for 2 min, during which covalently bound hy-
drocarbons were “cracked” and trapped on silica. Between samples,
the system was cleaned thoroughly: Reactor tubes and fittings were
cleaned by ultrasound-assisted extraction in DCM, followed by
heating to 550°C (30 min) in the HyPy system.

Identification of SMT genes
Genes coding for two SMT enzymes in the green alga Ostreococcus
lucimarinus were identified from the literature (30) and via GenBank
(www.ncbi.nlm.nih.gov/). A homologous sequence search in green al-
gae was carried out in GenBank using BLASTpwith a cutoff threshold
of <1 × 10−5.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/9/e1700887/DC1
Supplementary Text
fig. S1. Molecular clock analysis of SMT genes (30) reveals a divergence of green algae during
the Late Cryogenian.
fig. S2. Studied sample locations on a modern continental configuration.
fig. S3. Studied sample locations in a palaeogeographic context after (31).
fig. S4. Estimated maximum time brackets of the studied samples.
Hoshino et al., Sci. Adv. 2017;3 : e1700887 20 September 2017
fig. S5. Hydropyrolysis of an earliest Ediacaran cap carbonate sample from the Mirassol d’Oeste
Fm verifies the C27 sterane–dominated signature found in other samples from this unit and
confirms their syngenicity to the host rock.
table S1. Steranes in Neoproterozoic rocks.
table S2. Unsuitable samples.
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