Parameter optimization of orthonormal basis functions for efficient rational approximations - Université de Bretagne Occidentale
Article Dans Une Revue Applied Mathematical Modelling Année : 2015

Parameter optimization of orthonormal basis functions for efficient rational approximations

Résumé

In this paper, the authors present an efficient procedure for optimal placement of poles in rational approximations by Müntz-Laguerre functions. The technique is formulated as the minimization of a quadratic criterion and the linear equations involved are efficiently expressed using the orthonormal basis functions. The presented technique has direct application in rational approximation and model order reduction of large-degree or infinite-dimensional systems. An efficient choice of parameters in orthogonal Müntz-Laguerre approximation Model order reduction of large-degree or infinite-dimensional systems The choice of Müntz-Laguerre parameters is based on a least squares optimization Abstract: In this paper, the authors present an efficient procedure for optimal placement of poles in rational approximations by Müntz-Laguerre functions. The technique is formulated as the minimization of a quadratic criterion and the linear equations involved are efficiently expressed using the orthonormal basis functions. The presented technique has direct application in rational approximation and model order reduction of large-degree or infinite-dimensional systems.
Fichier principal
Vignette du fichier
NKautz_MOR_vfinale.pdf (307.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01160320 , version 1 (05-06-2015)

Identifiants

Citer

Noël Tanguy, Nadia Iassamen, Mihai Telescu, Pascale Cloastre. Parameter optimization of orthonormal basis functions for efficient rational approximations. Applied Mathematical Modelling, 2015, 39, pp.4963-4970. ⟨10.1016/j.apm.2015.04.017⟩. ⟨hal-01160320⟩
205 Consultations
943 Téléchargements

Altmetric

Partager

More