A smallest singular value method for nonlinear eigenvalue problems - Université de Bretagne Occidentale
Article Dans Une Revue Linear and Multilinear Algebra Année : 2022

A smallest singular value method for nonlinear eigenvalue problems

Résumé

ANewton-type method for the eigenvalue problem of analytic matrix functions is described and analysed. The method finds the eigenvalue and eigenvector, respectively, as a point in the level set of the smallest singular value function and the corresponding right singular vector. The algorithmic aspects are discussed and illustrated by numerical examples.
Fichier non déposé

Dates et versions

hal-04306736 , version 1 (25-11-2023)

Identifiants

Citer

Miloud Sadkane. A smallest singular value method for nonlinear eigenvalue problems. Linear and Multilinear Algebra, 2022, 71 (1), pp.16-28. ⟨10.1080/03081087.2021.2017832⟩. ⟨hal-04306736⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

More