Hypercube quantum search: exact computation of the probability of success in polynomial time - Université de Bretagne Occidentale
Article Dans Une Revue Quantum Information Processing Année : 2023

Hypercube quantum search: exact computation of the probability of success in polynomial time

Résumé

In the emerging domain of quantum algorithms, Grover’s quantum search is certainly one of the most significant. It is relatively simple, performs a useful task and more importantly, does it in an optimal way. However, due to the success of quantum walks in the field, it is logical to study quantum search variants over several kinds of walks. In this paper, we propose an in-depth study of the quantum search over a hypercube layout. First, through the analysis of elementary walk operators restricted to suitable eigenspaces, we show that the acting component of the search algorithm takes place in a small subspace of the Hilbert workspace that grows linearly with the problem size. Subsequently, we exploit this property to predict the exact evolution of the probability of success of the quantum search in polynomial time.
Fichier principal
Vignette du fichier
s11128-023-03883-9.pdf (1.82 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-04031275 , version 1 (16-03-2023)

Licence

Identifiants

Citer

Hugo Pillin, Gilles Burel, Paul Baird, El Houssaïn Baghious, Roland Gautier. Hypercube quantum search: exact computation of the probability of success in polynomial time. Quantum Information Processing, 2023, 22 (3), pp.149. ⟨10.1007/s11128-023-03883-9⟩. ⟨hal-04031275⟩
97 Consultations
62 Téléchargements

Altmetric

Partager

More