Manufacturing of a Magnetic Composite Flexible Filament and Optimization of a 3D Printed Wideband Electromagnetic Multilayer Absorber in X-Ku Frequency Bands - Université de Bretagne Occidentale
Journal Articles Materials Year : 2022

Manufacturing of a Magnetic Composite Flexible Filament and Optimization of a 3D Printed Wideband Electromagnetic Multilayer Absorber in X-Ku Frequency Bands

Abstract

With the multiplication of electronic devices in our daily life, there is a need for tailored wideband electromagnetic (EM) absorbers that could be conformed on any type of surface-like antennas for interference attenuation or military vehicles for stealth applications. In this study, a wideband flexible flat electromagnetic absorber compatible with additive manufacturing has been studied in the X-Ku frequency bands. A multilayer structure has been optimized using a genetic algorithm (GA), adapting the restrictions of additive manufacturing and exploiting the EM properties of loaded and non-loaded filaments, of which the elaboration is described. After optimization, a bi-material multilayer absorber with a thickness of 4.1 mm has been designed to provide a reflectivity below −12 dB between 8 and 18 GHz. Finally, the designed multilayer structure was 3D-printed and measured in an anechoic chamber, achieving −11.8 dB between 7 and 18 GHz. Thus, the development of dedicated materials has demonstrated the strong potential of additive technologies for the manufacturing of thin wideband flexible EM absorbers.
Fichier principal
Vignette du fichier
materials-15-03320.pdf (5.38 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03706515 , version 1 (04-10-2024)

Identifiers

Cite

Christophe Vong, Alexis Chevalier, Azar Maalouf, Julien Ville, Jean-François Rosnarho, et al.. Manufacturing of a Magnetic Composite Flexible Filament and Optimization of a 3D Printed Wideband Electromagnetic Multilayer Absorber in X-Ku Frequency Bands. Materials, 2022, 15 (9), pp.3320. ⟨10.3390/ma15093320⟩. ⟨hal-03706515⟩
74 View
3 Download

Altmetric

Share

More