New Neural Network Pruning and its application to sonar imagery - Université de Bretagne Occidentale
Communication Dans Un Congrès Année : 1998

New Neural Network Pruning and its application to sonar imagery

Résumé

In this paper, we propose a neural network approach for automatic classification of underwater objects on sonar images. A major problem with sonar imagery applications is the difficulty to obtain large databases for training. Real sonar devices are costly and staged experiments where objects are well known and manually placed are rare because of cost. We show that the simultaneous use of parameters extraction and neural network pruning can significantly help to obtain good generalization rates (despite the lack of large training databases) and to reduce the complexity of the classifier. Furthermore, a method derived from neural network pruning is proposed to evaluate the significance of each parameter.
Fichier principal
Vignette du fichier
1998_04_cesa_elagage.pdf (452.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-03222606 , version 1 (18-03-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-03222606 , version 1

Citer

Pascal Galerne, Koffi Clément Yao, Gilles Burel. New Neural Network Pruning and its application to sonar imagery. Computational Engineering in Systems Applications (CESA), Apr 1998, Hammamet, Tunisia. ⟨hal-03222606⟩

Collections

UNIV-BREST CNRS
29 Consultations
10 Téléchargements

Partager

More