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ABSTRACT

In this paper, we propose a neural network approach for automatic classification of underwater objects on sonar images. A
major problem with sonar imagery applications is the difficulty to obtain large databases for training. Real sonar devices are
costly and staged experiments where objects are well known and manually placed are rare because of cost. We show that the
simultaneous use of parameters extraction and neural network pruning can significantly help to obtain good generalization
rates (despite the lack of large training databases) and to reduce the complexity of the classifier.

1. INTRODUCTION

The technological improvement of high frequency sonars
allows to prospect widely sea-bottom areas with more ac-
curacy. In counterpart, information stream scrutinized by
an operator whose job is to detect and classify objects on
sonar images has noticeably increased. Therefore, the ex-
ploitation of the collected data has to be achieved with
an automatic processing chain.

The classification of an object lying on the seafloor is
based on the analysis of its cast shadow shape. To achieve
this task, the system detect each shadow contained in the
image by a two class segmentation process (shadow class
and reverberation class). Then, different algorithms al-
low to simplify the representation of a shadow and make
measurements of parameters giving maximal geometri-
cal information (as Fourier Descriptors, elongation, or
compacity). Thus, we obtain for each shadow a vector
of parameters directly usable by the discriminators. In
a previous work [1], we investigated an efficient classifi-
cation method. Thus, this task was performed with four
classifiers in parallel (Bayesian classifier, K-nearest neigh-
bours, Restricted Coulomb Energy method, Multi-Layer
Perceptron). Results exhibited the best performances for
MLP especially for poorly segmented images. In this
study, we propose to reduce the complexity of the MILP
while keeping a good generalization rate. Therefore, we
develop a new pruning technique based on the Optimal
Brain Damage (OBD) algorithm proposed by Le Cun et
al. [2]

2. DATA BASES

The aim of the developed processes is the automatic clas-
sification of objects lying on the seafloor such as the cylin-
der on the image (a) of the table 1. To achieve this task we
have to detect and extract the object cast shadow by per-

a) Grey level 1ma (b) Segmentation result

Table 1: Sonar image of a cylinder lying on the seafloor.

forming the segmentation of the image. The image (b) of
the table 1 shows the segmentation result. This segmen-
tation is good enough to allow the extraction of relevant
geometrical parameters. Thus, each shadow is associated
to a parameter vector. So the classifier is able to locate
the sample in the representation space and gives it a la-
bel. With the collected images, we composed a training
set and a test set. Four classes of man-made objects are
represented corresponding to objects with the most com-
mon occurrence on the seafloor. The training set contains
976 images and the test set 600 images divided up as fol-
lows :

326 rock
.. 200  sphere
training set 250 cylinder
200 cone
200 rock
100  sphere
fest set 125 cylinder
175 cone

The MLP used in these tests contains 14 input neurons
and 10 hidden neurons.
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3. PRINCIPLE OF NEURAL NETWORK
PRUNING

A basic problem in machine learning is to minimize the
system complexity. This is important for two reasons:
first, a low complexity system is faster and easier to imple-
ment on limited resources devices, and, second, it is now
well-known that good generalization performances are as-
sociated with a minimal representation.

Various strategies have been proposed to simplify neural
networks [5]. There are basically two groups of methods.
With the first group, training and pruning are performed
simultaneously: for example, an extra term that penalizes
large weights can be added to the error function. When
this term is the sum of the squares of the weights, the al-
gorithm is known as weight decay. With the second group
of methods, training is performed first, with an oversized
neural network, and then pruning is done on the trained
network by eliminating unnecessary weights. A measure
of the importance of each weight has to be defined: it is
generally based on a second order approximation of the
error function. The algorithm used in this paper is based
on this kind of strategy.

One of the most widely used algorithms is known as OBD
(Optimal Brain Damage), and was proposed by Le Cun
et al. [2]

Let us introduce the following notations:

E, the error for pattern p
Er =73 Ep total error (training base)
w; the weight number j

If the weights are changed by dw;, a second order approx-
imation of the variation of the error is given by:

B = Z,B—E%wﬁ >, 5 "’E L (Sw;)?

j Ow
+ Zz;é] Bw; Ow; Bw 6’[1)15’[1)1

When weight j is suppressed, the resulting variation of
error is:

dEr 10%Er o

B = ———w; + = ——w3 1
’ ow; Wity ow? Wi 1)

It is usually claimed that, since the network has been

trained, is has reached a minimum, hence - = = 0. Thus,
the variation of error reduces to:
sip = LB o @)
=3 6w]2 J

This value is called the saliency of the weight: it is a
measure of the importance of the weight. It is estimated
for each weight, and the weights with smallest saliencies
are eliminated first. The method based on equation 2
is known as Optimal Brain Damage (OBD) [2] [3]. An
improvement of OBD is Optimal Brain Surgeon (OBS)
[4]: it automatically rescales the remaining weights, hence
avoiding further training after the pruning phase.

4. NEW RESULTS ABOUT THE FIRST
ORDER TERM

Influence of the first order on the estimated error

In [2][3], the first order term which appears in equation
1 is neglected: the justification is that the network has
been trained, hence is has reached a minimum of the error
and the gradient is null. However, we have observed that
usually this is not true.

The method that we propose in the next section is based
on the observation that the first order term in equation 1
is usually not negligible. Even if the network is supposed
to have reached a minimum, it is never exactly on the
minimum (this is due to the discrete nature of the back-
propagation algorithm: there are always small oscillations
around the minimum at the end of learning).

Figure 1 shows the true error (i.e. SSE obtained on the
training set) and the estimated error with respect to the
number of removed weights in the case where only the 2™?
order is taken into account (using eq. 2). Notice that the
saliency of each weight is computed after each removal and
the weight with smallest saliency is removed. The network
is not retrained during the pruning procedure. Figure 2
is the same as figure 1, but now the first order term is
not neglected when the saliency is computed: equation
1 is used instead of equation 2. This figure shows that
including the first order term in the saliency expression
allows to improve the results i.e. the error curve lies in
a lower level during almost all the pruning process. This
improvement appears more clearly on the figure 3 where
the true error curves obtained with equation 2 and equa-
tion 1 are drawn simultaneously. This result is confirmed
with the figure 4 which shows the generalization rate with
respect to the number of removed weights in the cases of
the two previous equations.

However, figure 2 exhibits a quite large difference between
the true and estimated errors. More precisely, in the case
of equation 1 the error is under-estimated. Moreover, we
notice that an unfortunate phenomenon occurs for the
9274 removed weight : the estimated error seems stable
whereas the real error increases in a large range. This
phenomenon becomes a real problem if we want to de-
fine a stop criterion. Indeed, a simple criterion would be
expressed as follows : stop pruning when the estimated
error has reached a minimum (usually, there is one). In
the case of figure 2, the minimum would be obtain for the
95th removed weight but for this weight we can see on
the figure 3 that the real error obtained with equation 2
would have been smaller.

After these observations, it appears that including the
first order term should not be systematically required.
To try to explain this result, which seems strange at a
first glance (on an intuitive point of view, since there are
less approximations in equation 1 than in equation 2, the
estimation of the error should be better), we propose to
draw the error with respect to modified values of a weight
which has been selected with equation 1 to be removed.
Two different examples will allow us to visualize the case
where the first order term is relevant and the case where
only the second order terms is interesting.

On the figure 5 we can see the real error curve and two
parabolic approximation curves. The parameters of these
approximation curves are obtained with the first and the
second order derivatives which are computed at the point
corresponding to the initial weight. If we observe the
intersection points between these curves and the verti-
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Figure 1: True and estimated errors obtained with the
2"? order term.
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Figure 2: True and estimated errors obtained with the 1°*
and 2"? order terms.
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Figure 3: Real errors obtained with and without order 1.
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Figure 4: Generalisation rates obtained with and without
order 1.
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Figure 5: True error and two parabolic approximations
with respect to the value of the weight in the case where
the first order is relevant. The value of the initial weight
is w; = —0.439.

cal axis, it is clear that neglecting the first order term
can hardly be justified. Here, the first order estimation
saliency allows to remove an unnecessary weight leading
to a decrease of the error. On the other hand, on the
figure 6 the saliency computed with equation 1 has a low
value (the weight would be removed first) whereas the true
saliency is very high. In this particular case, the saliency
computed only with the second order term is better (i.e.
closer of the real curve) because the local minimum of the
error curve (m;) is situated between zero and the initial
weight (w;). The left curvature of the real error yields an
important increase of the error. This explains the diver-
gence between the estimated error and the true error on
the figure 2. In the next section we will propose a method
that takes profit of the interest of the first order term in
order to improve the performance of a pruned network.

Proposed pruning method
The true justification of the removal of the first order



IEEE-CESA, April 1-4, 1998, Hammamet, Tunisia

790~

—— real curve
orders 1 and 2
--—-- orders 2
785-
780-
L
0
%] N
N
775- AN
N
N weight=0.763
770~
765 \ \ \ \ \ \ \ \ )
04 02 0 02 04 06 O 12 14 16

8
value of the weight

Figure 6: True error and two parabolic approximations
with respect to the value of the weight in the case where
the first order can be neglected. The value of the initial
weight is w; = —0.767.

term in [2] [3][4] is not the fact that it is negligible (in
fact, usually it is not negligible at all), but the fact that
it can degrade the estimation of the saliency for some
weights. As we see in the previous section, using equation
1 leads to globally under-estimate the error. The analysis
of figures such as figure 6 drawn at different steps dur-
ing the pruning process shows that this phenomenon is
maximum when the local minimum is between zero and
the initial weight. In this configuration, it would be in-
teresting to not systematically take into account the first
order term. Therefore, the method we propose to deter-
mine the location of the initial weight with respect to the
local minimum and, in the case where the local minimum
is between zero and the initial weight, is based on the
following observations:

e If the initial weight moves off the local minimum the
value of the saliency given by equation 2 increases
and becomes larger than the true saliency. In this
case, it would be useful to include the first order
term.

e If the initial weight moves forward the local mini-
mum the employment of equation 2 avoids to under-
estimate too much the error.

Now we have to determine the boundary value above
which we take into account the first order term. Intu-
itively, we can consider that this value depends on the
value of m;. Indeed, if m; decreases, we lead towards a
situation where m; is close to zero. In this case we have to
take into account the first order term whatever the value
of the initial weight. On the contrary, if the value of m;
increases the boundary has to increase too. Moreover, we
choose to have a soft ponderation of the first order term
in equation 1. So, the saliency can be express as follows:

_ OEr 19%Er
Sbr = —P(wj, my) Bw; wj + B 8wj2- w; (3)

P(wj, m;) represents the ponderation applied to the first

W1 W2 m j W3 Wi

Figure 7: Possible location of the initial weight with re-
spect to the position of m;.

order. To define it, let us consider the figure 7. It exhibits
three possible types of locations for the initial weight with
respect to m;. If the weight is situated in w1 we have seen
that we wholly take into account the first order term.
To detect this configuration we determine the sign of the
product wjym;. If this sign is negative, w; is in the same
position as wj.

If the weight is situated in w2, we take into account the
first order term too. Here, w;m; is positive but |w;| is
smaller than |m;|.

As a matter of fact, the ponderation term should be 1 if
wim; < 0 or |w;| < |my|.

Finally, for a weight situated such as ws, the more w;

moves off m;, the more we take into account the first order
term. So, we use the following ponderation function :
7(wz'7m,,-)2
202
P'(wj,mj):l—e i
Where o; is determined in order to maintain a certain
value of P’ when w; = 2m.

To sum up, the ponderation function becomes :

1 if wym; <0

1 if  |w;i| < |m;y
P(wj7 m/]) = —(wj —m; )2 | ! ‘ ‘ ! |

1—e 293 elsewhere

(4)
The figure 8 shows that the equation 3 used with the
relation 4 leads to improve the estimation efficiency. Es-
pecially, the problem of divergence encountered for the
92" removed weight has disappeared. On the figure 9,
we can notice that this new result is better than the one
obtained with only the 2"¢ order, during all the pruning
process. The generalization rate presents on the figure 10
leads to the same conclusion.

5. CONCLUSIONS

We have taken an active interest in the pruning method
OBD developed by Le Cun. Especially, we have seeked to
determine the real influence of the first order term in the
estimation of the saliency. Tests performed in the scope of
an object classification problem on sonar images have led
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Figure 8: True and estimated errors obtained with the
ponderation of first order term.
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Figure 9: Comparison of the true error curves for the
three methods.

@
o

]
o

D
o

a1
o

generalisation rate

IN
<
\

—— Ponderation method
- - 1stand 2nd order terms
2nd order terms

w
<

2525 40 60 80 100 120 140 160 180
number of removed weights

Figure 10: Comparison of the generalisation rate curves
for the three methods.

to the conclusion that the first order term is generally not
negligible but that its systematical use leads to divergence
problems between the estimated and real errors. Using
these observations, we have developed a pruning method
based on the ponderation of the first order term which
allows to clearly improve the generalization rate and to
have a quite good estimation of the real error.
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