Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example.
Abstract
Over the last several years, various gene delivery systems have been developed for gene therapy applications. Although viral vector-based gene therapy has led to the greatest achievements in animal and human studies, synthetic non-viral vectors have also been developed as they offer several advantages over viral systems, including lower immunogenicity and greater nucleic acid packaging capacity. Nevertheless, the transfection efficiency of the current non-viral gene carriers still needs to be improved, especially as regards direct in vivo transfection. In particular, cationic lipid/nucleic acid complexes (termed lipoplexes) have been the subject of intensive investigation with a view to optimize their performance and to better understand their mechanisms of action, and consequently to design new approaches to overcome the critical barriers of cationic liposome-mediated gene delivery. A possible strategy may rely on considering the membrane constituents and properties of the vast variety of living organisms as a source of inspiration for the design of biocompatible, non-toxic and effective novel artificial liposomal systems. Thus, the present forward-looking review provides an overview of the progress already made during the last years in the field of cationic lipid-mediated gene transfection and also focuses on a series of novel bio-inspired lipids for both in vitro and in vivo gene transfection.