Skip to Main content Skip to Navigation
New interface
Journal articles

Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases.

Abstract : Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this "ancestry signal", we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at
Document type :
Journal articles
Complete list of metadata
Contributor : Ghislaine Calvez Connect in order to contact the contributor
Submitted on : Thursday, July 13, 2017 - 3:01:33 PM
Last modification on : Tuesday, November 29, 2022 - 5:10:07 PM

Links full text




Thomas Charlon, Manuel Martín, Lara Bossini-Castillo, F David Carmona, Alessandro Di Cara, et al.. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases.. PLoS ONE, 2016, 11 (8), pp.e0160270. ⟨10.1371/journal.pone.0160270⟩. ⟨hal-01562028⟩



Record views