Spectroscopic Properties and Laser Induced Fluorescence Determination of Some Endocrine Disrupting Compounds
Abstract
This work presents spectroscopic properties of some Endocrine Disrupting Compounds (EDCs), frequently found in food and in natural water. Studied molecules belong to the groups of phenolic and phthalate EDCs. In a first part, we have examined their absorption and fluorescence properties. Fluorescence emission wavelengths are about 300 nm for phenolic compounds and 360 nm for phtalate compounds; main excitation wavelengths being comprised between 210 nm and 230 nm. Fluorescence lifetimes measured are short (about 4 ns) and the fluorescence quantum yield has been determined. In a second part, to avoid the time consuming solvent extraction step, an analytical application to evaluate the performance of a direct analysis by laser induced fluorescence spectroscopy of ECDs traces in tap water and in raw water is presented. Good detection limits have been obtained, i.e.: 0.35 µg.L−1 of chlorophenol in tap water, which are always lower than the reported Predictive Non Efficient Concentration (PNEC).