Aerial and underwater metabolism of Patella vulgata L.: comparison of three intertidal levels
Résumé
Intertidal molluscs are known to possess specific respiratory organs that permit aerial breathing during emersion. Patella vulgata is a widely distributed intertidal species found from low-water spring tide to high-water neap tidal level. In order to determine metabolic adaptations to habitat, carbon fluxes associated with respiration and calcification of P. vulgata living at high-shore, middle-shore and low-shore levels were compared. Seasonal aerial respiration was measured using an infrared gas analyser; seasonal underwater respiration and calcification were calculated from dissolved inorganic carbon and total alkalinity. P. vulgata showed net CaCO3 deposition at all seasons, although the high-shore level limpet annual calcification rate was relatively low due to longer air exposure. Both aerial and underwater respiration rates were highly correlated with seasonal temperature variations and followed the vertical shore gradient, with stronger fluxes for low-shore tidal level limpets and lower fluxes for high-shore level limpets that must limit energy expenditure. P. vulgata appears to be well adapted to aerial exposure, with average hourly respiration fluxes stronger in air than in water. This study demonstrates that P. vulgata calcification and respiration are reduced in upper shore levels and are important factors determining the upper distribution limit of the species.