The mangrove pump: The tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets
Résumé
Intertidal mangrove forests contribute significantly to biogeochemical solute budgets of tropical and subtropical coastlines. A significant part of the biogeochemical cycling in mangrove ecosystems occurs within the subsurface of the forest floor. This subsurface source and the 'offshore' sink are linked by the tidally-driven movement of water through the mangrove forest floor. The tidal circulation through animal macro-burrows in the Coral Creek mangrove forest (area 3 km2) on Hinchinbrook Island (Australia) is documented by constructing mass balances of isotopes of radium and radon measured in the creek in 1997 and 2005 respectively. Isotope activities in burrows were found to be significantly greater than in the adjacent mangrove creek (e.g. for 222Rn, 680-1750 and 30-170 Bq m−3 in burrows and creek respectively). From isotope mass balances, a daily water circulation flux through burrows of 30.4 ± 4.7 L m−2 of forest floor is calculated. This study quantifies the underlying physical process, i.e. the tidal flushing of burrows, that supports significant and continuous exports of soluble organic and inorganic matter from mangrove forest floors to the coastal ocean. The potential significance of the circulation flux estimate is illustrated by up-scaling of the forest-scale estimates to the mangrove forests in the entire central Great Barrier Reef. This extrapolation indicates that the annual water flux circulated by this tidally-driven 'mangrove pump' is equivalent to as much as 20% (16-22%) of the total annual river discharge along the ca. 400 km long coastline of this region.
Domaines
Sciences de l'environnementOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...