Branchial structure and hydromineral equilibrium in juvenile turbot (Scophthalmus maximus) exposed to heavy fuel oil.
Résumé
This study is an attempt to go further in the comprehension of the effects of heavy fuel oil in the context of an accidental oil spill at sea. It focuses on the link between morphological and functional impacts of realistic doses of the dissolved fraction of a heavy fuel oil on fish gills. Juvenile turbot, Scophthalmus maximus were exposed to the dissolved fraction of a heavy fuel oil for 5 days and then placed 30 days in clean sea water for recovery. During the contamination period, the concentration of the 16 US EPA priority poly-aromatic hydrocarbons showed small variations around a mean value of 321.0 ± 9.1 ng l⁻¹ (mean ± SEM). The contamination induced a 64% increase in hepatic cytochrome P 450 1A (Western blot analysis). Osmolality, [Na⁺] and [Cl⁻] rapidly and significantly increased (by 14, 23 and 28% respectively) and slowly decreased to normal levels during the recovery period. At the same time, branchial histology showed decreases in the number of mucocytes (by 30%) and of chloride cells (by 95%) in the interlamellar epithelium. Therefore, it is suggested that the osmotic imbalance observed after the 5 days of exposure to the dissolved fraction of the heavy fuel oil is the consequence of the structural alteration of the gills i.e, the strong reduction of ionocyte numbers.