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Abstract 
 
The work, presented in this thesis, aims at performing 
automatically scheduling analysis of Time Division 
Multiple Access (TDMA) based communication systems. 
Products called software radio protocols, developed at 
Thales Communications & Security, are examples of 
such systems. 

TDMA is a channel access method based on the division 
of time into several time slots. TDMA-based software 
radio protocols are real-time embedded systems. They 
are implemented by tasks that are statically allocated on 
multiple processors. A task may have an execution time, 
a deadline, and a release time that depend on TDMA. 
The tasks also have dependencies through precedence 
and shared resources. 

TDMA-based software radio protocols have architecture 
characteristics that are not handled by scheduling 
analysis methods of the literature. A consequence is that 
existing methods give either optimistic or pessimistic 
analysis results. Furthermore, existing architecture 
models at Thales do not contain enough information to 
be used for scheduling analysis. The information is only 
available in specification documents. These issues 
impact the possibility to perform scheduling analysis, 
but also the possibility to perform it automatically. 

The propositions of this thesis solve these problems. An 
experimental architecture model is proposed in the UML 
MARTE modeling language. The architecture model is 
transformed to a task model called Dependent General 
Multiframe (DGMF). The DGMF task model describes, 
in particular, the different jobs of a task, and task 
dependencies. To analyze DGMF tasks, they are 
transformed to another model called tree-shaped 
transaction. Transactions are precedence dependent 
tasks. Transactions that result from the transformation 
have non-immediate tasks. These tasks are not 
necessarily released immediately by their predecessor 
task. To consider the effects of non-immediateness, this 
thesis proposes the WCDOPS+NIM schedulability test 
for tree-shaped transactions. The general analysis 
method is implemented as a toolchain that can be used 
by engineers at Thales. 

Experimental results show that the propositions give 
less pessimistic schedulability results, compared to 
fundamental methods. The results are less pessimistic 
for both randomly generated systems and real case-
studies from Thales. Furthermore, experiments show 
that scheduling analysis can be applied automatically to 
a TDMA-based software radio protocol. 

Less pessimistic results are important for engineering 
work, in order to limit the over-dimensioning of 
resources. The automatic analysis is a gain in 
productivity. These are advantages for engineers in the 
more and more competitive market of software radios. 

Résumé 
 
Le travail présenté dans cette thèse vise à analyser 
automatiquement l’ordonnancement de systèmes de 
communications basés sur TDMA. Des produits 
développés chez Thales Communications & Security, 
appelés protocoles radio logicielle, sont des exemples de 
tels systèmes. 

TDMA est une méthode d’accès au canal basée sur la 
division du temps en slot temporel. Les protocoles radio 
logicielle basés sur TDMA sont des systèmes temps-réel 
embarqués. Ils sont implémentés avec des tâches 
allouées statiquement sur des processeurs. Une tâche 
peut avoir un temps d’exécution, une échéance, et un 
temps d’activation qui dépendent de TDMA. Les tâches 
sont dépendantes par précédence et ressource partagée. 

Les protocoles radio logicielle basé sur TDMA ont des 
caractéristiques d’architecture qui ne sont pas supportés 
par les méthodes d’analyse de la littérature. Elles 
donnent donc des résultats d’analyse optimistes ou 
pessimistes. De plus, les modèles d’architecture à Thales 
ne contiennent pas assez d’informations pour être 
utilisés pour l’analyse. Ces informations ne sont 
disponibles que dans des documents de spécification. 
Ces problèmes impactent la possibilité d’appliquer 
l’analyse mais aussi de l’appliquer automatiquement. 

Les propositions de cette thèse règlent ces problèmes. 
Un modèle d’architecture expérimental est proposé en 
UML MARTE. Le modèle d’architecture est transformé 
au modèle de tâche Dependent General Multiframe 
(DGMF). DGMF décrit, en particulier, les activations 
d’une tâche et ses dépendances. Pour analyser les tâches 
DGMF, elles sont transformées en un autre modèle 
appelé transaction arborescente. Les transactions sont 
des tâches contraintes par précédence. Les transactions 
issues de la transformation ont des tâches non-
immédiates. Une telle tâche n’est pas nécessairement 
activée immédiatement par son prédécesseur. Pour 
prendre en compte l’effet de la non-immédiateté, cette 
thèse propose le test d’ordonnançabilité WCDOPS+NIM 
pour transaction arborescente. La méthode d’analyse 
générale est implémentée comme chaîne d’outils dédiée 
aux ingénieurs chez Thales. 

Des expériences montrent que les propositions donnent 
des résultats d’ordonnançabilité moins pessimistes, 
comparés aux méthodes fondamentales. Les résultats 
sont moins pessimistes pour des systèmes générés 
aléatoirement et des vrais cas d’étude chez Thales. 
L’analyse peut aussi être appliquée automatiquement à 
un protocole radio logicielle basé sur TDMA. 

Des résultats moins pessimistes permettent de limiter le 
surdimensionnement des ressources. L’analyse 
automatique est un gain de productivité. Ce sont des 
avantages pour les ingénieurs dans un marché de la 
radio logicielle de plus en plus compétitif. 
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I N T R O D U C T I O N

context

Real-Time Embedded Systems (RTES) [74] are part of our daily life today. Their usage ranges
from specific industrial equipment, like factory robots, to general civilian devices, like smartphones
and tablets. A RTES is both an embedded and a real-time system.

An embedded system is a computing system composed of hardware and software, with a specific
mission to accomplish, using limited resources. Examples of resources are energy and processors.
Embedded systems may interact with the environment in which they execute. The environment
may be the physical components of a vehicle to the electromagnetic waves that surround us. The
environment in which the embedded system executes, evolves within time. As such, an embedded
system is usually subject to real-time computing.

A real-time system is a computing system composed of hardware and software, where computing
is subject to time constraints. Therefore the correctness of a real-time system’s computing is not
only judged by the correctness of the produced data, i.e. functional correctness, but also the time
at which the data is produced, i.e. temporal correctness.

Nowadays the software of a RTES is usually multi-tasked. It is composed of several tasks that are
units of execution, sharing concurrently the limited processors. The system may be uniprocessor or
multiprocessor.

Since the tasks are part of a real-time system, they have time constraints, expressed as deadlines.
Once a task is released, we say a job of the task is released, and the job has to complete execution
before some deadline.

A task does not execute alone, and several tasks share processors. Scheduling [85] is the method
that decides which task has access to the processors during execution and we say that the tasks are
scheduled on the processors by a scheduling policy.

Scheduling decisions are taken by considering the priority of a task, which indicates its impor-
tance. Priorities may be static or dynamically updated during execution. For multiprocessor sys-
tems, scheduling also determines whether tasks may or may not execute on any processor. When
tasks can execute on any processor, the scheduling is global. When a task is allocated on a processor
and can only execute on that processor, the scheduling is partitioned.

Scheduling analysis [126] is the method used to verify that tasks will meet their deadline, when
they are scheduled on the processors. Scheduling analysis can potentially be complex due to the
interactions between the tasks. These interactions come in the form of synchronization through
software shared resources, which are software entities accessed mutual-exclusively by tasks. The
interactions may also come in the form of precedence dependency between tasks, which means the
release of a task depends on the completion of a preceding task. Precedence dependencies may be
due to communications between tasks.

Some methods, part of scheduling analysis, are schedulability tests. Such tests assesses if all jobs
of all tasks will meet their deadlines during execution, when the tasks are scheduled on processors
by a specific scheduling policy. Schedulability tests may compute the response time of tasks. The
response time is the time between the release of the task and its completion. The response times
are compared to deadlines to assess schedulability.

Schedulability tests are associated with task models that abstract the architecture of a RTES for
the analysis. There are several task models in the literature that consider more or less interactions
between tasks, and characteristics of the execution environment that hosts the tasks.

1



2 introduction

Scheduling analysis is necessary for the development of some Real-Time Embedded System
(RTES). For example, certain radio equipments are typical RTES. This kind of system receives
radio electromagnetic waves, maintains a link with other radio stations in the network, and com-
municates with them. When radio stations communicate, some radio protocol needs to be defined
and implemented. Radio protocols may be impacted by the method to access the shared communi-
cation medium between several radio stations.

One common method, implemented by radio protocols to access the shared medium, is Time
Division Multiple Access (TDMA) [30]. In TDMA, time is divided into several time slots and at
each time slot, a radio either transmits its data, or receives some data. TDMA is one reason, among
others, that some activities of a radio protocol are divided into time slots. Therefore there are time
constraints in systems that use the TDMA method.

Traditionally radios were implemented as dedicated hardware components. Trends in the last
two decades have seen the emergence of software radios [99], where more and more components
are implemented as software. This is the case for the radio protocol, which is then called a software
radio protocol.

In software radio protocols, activities are implemented by software tasks, that are time-constrained.
The time constraints must be considered in the development of such a system. Thus scheduling
analysis needs to be applied, during the development of a software radio protocol.

Software radios are one of the main products developed at Thales Communicatinos & Security
(TCS). There is a will at TCS to integrate scheduling analysis in the development cycle of its prod-
ucts, especially for software radio protocols.

During the development cycle, the system architecture is modeled and the architecture models
are exploited either for code generation, or for documentation. Models are made using languages
such as Make your CORBA Component Model (MyCCM) [25]. MyCCM is a component-based
model developed at Thales. It is dedicated to code generation. Thales also participates in the
standardization Modeling and Analysis of Real-Time Embedded systems (MARTE) [42], a profile
for the Unified Modeling Language (UML) that extends it for the design and analysis of RTES.

This thesis is on scheduling analysis of software radio protocols. It has been done in collaboration
between Thales Communications & Security and the Université de Bretagne Occidentale.

objective and problems

The objective of this thesis is to analyze the schedulability of a software radio protocol that uses
TDMA. The analysis method must be automatic, to be integrated into the development cycle.

As we will see, current task models and schedulability tests are not applicable to a software radio
protocol that uses a time-division multiplexing method to access the shared medium. Therefore a
task model and a schedulability test must be proposed for such a system, they must be adapted to
the characteristics of the system.

In order to automate the analysis, there are two issues to solve. We will see that task models are
complex to be used directly by engineers. Task models and their analysis methods must thus be im-
plemented in a tool. But currently not all task models and their analysis methods are implemented
in available tools.

Another issue to solve, in order to automate the analysis, is the applicability of an Architecture
Description Language (ADL) for scheduling analysis. Indeed, the tasks set for the analysis must be
produced automatically from architecture models described with an ADL, used by engineers. We
will see that scheduling analysis has not been performed automatically with an ADL specific to the
software radio protocol domain.
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overview of the solution

To solve the issue of task models, a new task model and its analysis method are proposed in this
thesis. This work is based on characteristics of real software radio protocols developed at Thales.
The task model is an extension of an existing one in the literature. The choice of the task model
to extend is made by experiments. The new task model is applicable to the characteristics of a
software radio protocol.

In the work of this thesis, the proposed task model and its analysis method are implemented in
Cheddar, an open-source scheduling analysis tool. We will see how the the tool is extended.

A model conforming to the task model is then produced automatically from an architecture
model of the system. Since scheduling analysis has not been performed with an ADL specific to the
software radio protocol domain, this thesis proposes to experiment with UML MARTE, a generic
modeling language for the RTES domain. MARTE is chosen because there exists a transformation
of its architecture models to development models used by engineers at Thales Communications &
Security.

contributions

The solution proposed in this thesis is the result of works that propose several contributions.

Extension of the General Multiframe Task Model

This thesis proposes the Dependent General Multiframe (DGMF) task model, an extension of the
General Multiframe (GMF) task model [14]. A GMF task is a vector of frames that represent the
jobs of the task. The jobs may not have the same parameters, such as deadline and execution time.
It is thus possible in the GMF task model to represent individual job parameters of a task.

On the other hand, precedence dependencies and shared resources cannot be modeled in GMF,
and thus they are not considered by the schedulability tests for GMF. Furthermore, GMF is appli-
cable to a uniprocessor systems.

The DGMF task model extends GMF with precedence dependencies and shared resources. The
DGMF task model is also applicable to a multiprocessor system with partitioned scheduling.

GMF was not originally proposed for a specific domain. This task model was motivated by
generic multimedia and control-command systems. Thus DGMF can also be applied to other do-
mains than software radio protocols, for example the mentioned ones.

DGMF to Transaction

The analysis method for DGMF consists in exploiting another kind of model called transaction
[143]. A transaction is a group of tasks related by precedence dependency. This thesis proposes
an algorithm to transform DGMF tasks to transactions. The transformation solves the issue of
difference in semantic between the two models.

Extension of Schedulability Test for Transactions

The transactions that are the results of the transformation have some characteristics not consid-
ered by current schedulability tests for transactions. Thus this thesis proposes the WCDSOP+NIM
test, which is an extension of the WCDOPS+ test in [118]. The extension considers non-immediate
tasks, which have a specific kind of task release.
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Consider a successor task that has a precedence dependency with its predecessor task. In the
immediate case, the predecessor task releases immediately the successor task, upon completion.
In the non-immediate case the predecessor does not necessarily release immediately the successor
task. For example, if the predecessor completes before the earliest release time of the successor task,
the successor task is not released immediately.

This kind of release must be considered by the schedulability test. Otherwise, as we will see, the
response times computed by the test may be overestimated or underestimated. These problems are
solved by the schedulability test proposed in this thesis.

Transactions are not domain-specific and thus the schedulability test proposed in this thesis can
be applied to other domains than software radio protocols.

Automatic Analysis with UML MARTE Models

To exploit the transaction and DGMF task models, an architectural model is proposed in UML
MARTE. MARTE lacks clearly defined semantics for a specific RTES domain, and modeling guide-
lines.

This thesis thus shows an experience on modeling a software radio protocol with the UML
MARTE modeling language. The model is described with UML structural diagrams and activ-
ity diagrams. The model is transformed automatically to the task model proposed in this thesis, for
scheduling analysis.

Although initially motivated by software radio protocols, the model uses concepts of UML
MARTE, which is a generic modeling language for RTES domains.

Available Tools

The GMF, DGMF, transaction models, and their analysis methods, are all implemented in Ched-
dar. As a reminder, Cheddar is an open-source scheduling analysis tool, available for both the
research and industrial communities.

The UML MARTE model was done in Papyrus, an open-source modeler of Eclipse. The trans-
formation of the UML MARTE model is implemented as a generic plug-in for Eclipse. The plug-in
works on any model respecting the Eclipse implementation of UML.

thesis organization

This thesis is divided into six chapters that are organized as follows.
In Chapter 1, a detailed presentation of RTES is given. This chapter focuses on entities of such a

system concerned by scheduling. Some basic scheduling policies are presented. The chapter also
exposes some development methods for RTES, focusing on models.

Chapter 2 gives a perspective of scheduling analysis. Some fundamental task models are pre-
sented and their analysis methods are explained. The chapter shows the relation of generalization
between the different task models. The expressiveness of a task model, compared to its analysis
difficulty, is discussed.

In Chapter 3, the software radio protocol system is presented. This chapter defines the assump-
tions and context of the work. It gives some details on the problems faced when trying to apply
scheduling analysis to such a system. An overview of the solution is then presented.

Since no task models are applicable, the idea is to extend an existing one from the literature. To
decide which task model to extend, an experiment is done in Chapter 4. This experiment consists
in applying a fundamental task model to a software radio protocol. The task model is applied by
modeling the system in UML MARTE, and transforming it to the task model.
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The DGMF task model, extension of GMF, is proposed in Chapter 5. We will see how DGMF
can be transformed into transactions and how tests for transactions need to be adapted for specific
needs of DGMF tasks.

In Chapter 6, the WCDOPS+NIM schedulability test is presented. The schedulability test is appli-
cable to tree-shaped transactions with non-immediate tasks. The chapter exposes the consequences
of non-immediateness, before presenting the algorithm of the test.

DGMF tasks and transactions should be automatically produced from a system architecture
model. For this purpose, in Chapter 7, the UML MARTE model of Chapter 4 is extended. The
extension is based on existing Thales specification documents. The transformation of the UML
MARTE model is then presented.

This thesis concludes by exposing some technical and methodological future works. The ap-
pendix sections contain technical details that will be referenced throughout the chapters.





Part I

S TAT E O F T H E A RT





Chapter 1

R E A L - T I M E E M B E D D E D S Y S T E M

Systems called Real-Time Embedded System (RTES) are now part of our daily life today. Their
usage ranges from flight navigation software for avionic systems, to sensor data processing in
autonomous vehicles, to everyday communication systems in smartphones. Unlike an Information
Technology (IT) system, a RTES has special characteristics.

In this chapter, the concept of RTES is first defined. Then some of the entities of its architecture are
presented: software, operating system, and hardware. Afterwards let us focus on the development
cycle of a RTES. A development method called model-drive engineering, and its concepts, are
presented. The application of this method and its concepts to RTES is the main focus.

1.1 generalities on real-time embedded systems

A RTES is both an embedded system and a real-time system. This sections defines such systems
and describes their characteristics.

Definition 1 (Embedded System [74]). An embedded system is a computing system composed of hardware
and software, with a specific mission to accomplish, using limited resources (e.g. processing, memory, battery).
This kind of system is embedded within a larger system. The embedded system, or the system that hosts it,
may have an interaction with the environment in which it executes.

As embedded systems may interact with their environment, for which the state evolves in time,
they are also often real-time systems.

Definition 2 (Real-time System [135, 32, 74]). A real-time system is a computing system composed of
hardware and software, where computing is subject to time constraints. A real-time system takes as input
some data then launches some behavior, or produces some data as output, within a time limit. As such
the correctness of a real-time system’s computing is not only judged by the correctness of the produced
data (functional correctness), but also the time at which the data is produced (temporal correctness). Time
constraints are generally referred as deadlines.

A RTES can be characterized by its time constraints:
– Hard Real-Time: In hard real-time systems, time constraints must be met at all cost. The

violation of time constraints may lead to human or material damage [150]. Examples of hard
real-time systems are flight controls, nuclear plant control systems.

– Soft Real-Time: In soft real-time systems, time constraints must be met but their violation
can be tolerated [72], sometimes only leading to a decreased Quality of Service (QoS) without
any damage on the environment with which the system interacts. Examples of soft real-time
systems are video decoders.

– Mixed-Criticality: Mixed-criticality systems [13] have constraints that must be met and con-
straints for which the violation is tolerable. In terms of time constraints, this means that some
time constraints may be missed, but there is a limit to the number of times a time constraint
is not respected. An example of a mixed-criticality system is a flight information system that

9



10 real-time embedded system

Figure 1.1: RTES Architecture

coexists with a flight control system. The flight control system has a higher criticality than the
flight information system.

A RTES can also be characterized by the entities of its architecture. Figure 1.1 shows a very
simplified architecture of a RTES. The software layer contains some tasks and shared resources in
memory partitions. The operating system layer contains a component called scheduler, that schedules
the tasks of the software. It also contains some primitives to protect the shared resources. Finally
the hardware layer has some hardware components, like processor, bus and memory. The execution
of the software and operating system is supported by these hardware components.

In the following three sections, the three layers of Figure 1.1 are described in detail and their
entities are defined.

1.2 software of a rtes

The software of a RTES accomplishes the mission of the system, with the help of the Operating
System (OS) and hardware. It takes as input some data and, executes some operations, and may
produce some data as output. These systems are sometimes called control-command systems. The
operations must be done within some time constraint which must be met.

There are several ways to design the software of a RTES. Among these designs let us focus on
the multi-tasking approach. In the following sections, the task concept is first defined. Then some
types of tasks are presented. Afterwards common parameters of a task are defined. Tasks may
have dependencies, through precedence and shared resource. These dependencies will be defined.
Finally tasks are allocated in a memory partition, which are presented of the last section.

1.2.1 Concept of Task

In the multi-tasking design, the software has several units of execution, called tasks. In this
section the concept of a task is defined and then its life cycle is exposed.

Definition 3 (Task [3, 126]). A task is a unit of execution in a software. Each time a task is released, we say
that a job of the task is released. Once released, a task has a number of instructions to execute sequentially.
Instructions are executed on a processor and are either for computing or synchronization with other tasks.

A task has a life cycle composed of several states. Figure 1.2 shows these states:
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Figure 1.2: Task Life Cycle

– Inactive: Once the task is created, it starts in the inactive state. It does not have any data to
handle, nor any operation to execute. When an event occurs, indicating to the task that it must
handle some data and execute some operations, it is released and goes to the ready state.

– Ready: In the ready state, the task is waiting to be elected, among other tasks, for execution.
The election process will be explained in later sections that describe the OS of a RTES.

– Executing: Once elected, the task executes its instructions on a processor. During execution, if
at some point an instruction asks for some unavailable resource, the task goes to the waiting
state. Furthermore if a task is executing on a processor, and another task is elected to execute
on the same processor, then the executing task is interrupted and goes back to the ready state.
It then waits to be elected again to resume it left off its execution. This phenomenon is called
preemption. Finally once a task completes execution, it goes back to the inactive state.

– Waiting: When a task is waiting for a resource to become available, it is in this state. We say
that the task is blocked. Once the resource becomes available, the task goes to the ready state
to be elected for execution.

1.2.2 Types of Task

Tasks may be released by events occurring by different patterns. The release pattern can be used
to define the type of the task:

– Periodic task [85]: Once a periodic task is released a first time, its next jobs are released in
strictly regular intervals called the period. The periodic release mechanism may be imple-
mented as a timer for example. An example of a periodic task is one that polls data from a
sensor regularly.

– Sporadic task [16]: A sporadic task is released regularly, without necessarily a strict period.
On the other hand the minimum time between two releases is known. A periodic task is a
particular case of a sporadic task. An example of a sporadic task is one released by incoming
Internet Packet (IP) packets. The IP packets arrive more or less quickly but the rate of arrival
cannot be higher than the throughput of the network infrastructure.

– Aperiodic task [133, 137]: An aperiodic task is a task for which the minimum time between
two releases is unknown, nor the first release time.

Tasks are said synchronous or asynchronous depending on when the tasks are released for the
first time.

Definition 4 (Synchronous [5]). Tasks are said synchronous if the first jobs of the tasks are released at the
same time.
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Definition 5 (Asynchronous [17, 108]). Tasks are said asynchronous if there is at least one first job of a
task that is not released at the same time as the other first jobs of other tasks.

1.2.3 Parameters of Task

Let us now see some parameters of a task that describe it. In the previous section, we saw how a
task is released. Task releases may be subject to some jitter.

Definition 6 (Jitter [143, 105]). A task released at earliest at t, and experiencing a release jitter of J, is
released at any time in [t; t+ J].

Jitter may be due to coarse grain clocks in the system. For example a task may have a period
of 1 μs but the system clock is only as accurate as every 5 μs. Another example of jitter is when
the scheduler in the OS switches from one executing task to another that just got elected. This
phenomenon is called context switch.

Since tasks are in concurrence for access to the processor, there must be some mechanism to
determine which task is of higher priority than another, for access to the processor, at any given
time.

Definition 7 (Priority [3, 126]). A task’s priority indicates its order of importance for scheduling.

We say that a task is of higher priority than another. At a given time, the highest priority task in
the ready state should have access to the processor for execution.

The number of instructions executed by a task may be described by its execution time.

Definition 8 (Execution Time [10]). The processor time taken by a task to execute its instructions is called
an execution time.

A task may not always execute the same set of instructions from a job to another. This means its
execution time can vary from one job to another. The upper and lower bounds of its execution time
are called Worst Case Execution Time (WCET) and Best Case Execution Time (BCET).

Definition 9 (Worst Case Execution Time [149]). The WCET of a task is the longest execution time of a
task.

Definition 10 (Best Case Execution Time [149]). The BCET of a task is the shortest execution time of a
task.

The execution time does not describe the total time taken by a task to complete its instructions.
This time value is described by the response time of a task.

Definition 11 (Response Time [105]). The time from a task’s release to its completion is called a response
time.

The response time of a task is usually expressed relative to the release time of the task. It may be
expressed according to another referential. For example for a given timeline, a response time may
be expressed as absolute, i.e. a value on the timeline.

Like with execution times, a task also has bounds to its response time. It thus has a Worst Case
Response Time (WCRT) and a Best Case Response Time (BCRT).

Definition 12 (Worst Case Response Time [105]). A task’s WCRT is the longest of the response times of
any of its jobs.

Definition 13 (Best Case Response Time [105]). A task’s BCRT is the shortest of the response times of
any of its jobs.

The time constraint of a task concerns its response time and is expressed as a deadline of the
task.
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Definition 14 (Deadline [3, 126]). The deadline of a task is the longest allowed response time.

Like a response time, a deadline is usually expressed relative to the release time of a task. We
call this a relative deadline. But like response times, it may be expressed according to another
referential. For a given timeline, a deadline may also be expressed as a value on the timeline. We
call this an absolute deadline.

1.2.4 Task Dependencies

Tasks cooperate to accomplish the main mission of the software so they may have some depen-
dencies between them.

Definition 15 (Dependent Tasks [3, 126]). Two tasks are said dependent if they may synchronize at some
point during their execution. Tasks that do not have dependencies are said independent.

Dependency comes in two forms: precedence dependency and shared resource.

Definition 16 (Precedence Dependency [34, 3, 36]). A task I has a precedence dependency with a task J,
if I precedes J or J precedes I. I precedes J means that the kth job of J can only be released after the completion
of the kth job of I. Precedence dependencies are transitive. If task I precedes a task J, and task J precedes a
task K, then task I precedes task K.

For example tasks may pass some messages among each other. This means the receiver task waits
for a message from the sending task, and is thus released upon arrival of the message.

Tasks may also use shared resources in a mutual exclusive way.

Definition 17 (Shared Resource [127, 117, 3]). A shared resource is a resource accessed by several tasks,
in a mutual exclusive manner to enforce data consistency. The shared resource is protected by some primitive.
A task that wants to access a unavailable shared resource is said to be blocked. It is blocked by another task
that has access to the shared resource.

Shared resources are used in critical sections during a task’s execution.

Definition 18 (Critical Section [127, 117, 3]). A (shared resource) critical section of a task, is an interval
within a task’s execution. At the start of the interval, the task asks for access to the resource by some call to a
primitive, and locks the resource if available. At the end of the interval, the task unlocks the shared resource.

In multiprocessor systems, shared resources may be local [127] or global [117]. A local shared
resource is only used by tasks executing on the same processor. A global shared resource is used
by tasks that execute on any processor. We then talk about local and global critical sections [117].

1.2.5 Memory Partition

The task and shared resource software entities are allocated in another software entity called a
memory partition.

Definition 19 (Memory Partition [139]). A memory partition is a list of memory locations. Supposing a
task is allocated on a memory partition, the task can read from and write in the memory locations within the
list.

A shared resource is then allocated in a memory partition and a task executes within a memory
partition. This means the task can only access instructions and data stored in the memory locations
defined by the memory partition. Sometimes in the literature the term "address space" [139] is also
used instead of memory partition.
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1.3 operating system of a rtes

The OS plays the role of interface between the software and the hardware. It allows the software
to access the resources of the hardware and it may transmit events of the hardware to the software.

1.3.1 Scheduler

An important role played by the OS is that it elects which task of the software has access to the
hardware processors at a given time. This is called scheduling and is done by a component called
the scheduler.

Definition 20 (Scheduling [3, 126]). Scheduling is a method by which tasks are given access to resources,
noticeably computing resources, with the goal of respecting time constraints. Scheduling is done according to
a scheduling policy.

Definition 21 (Scheduling Policy [3, 126]). A scheduling policy (or scheduling algorithm) is the algorithm
which describes how tasks are given access to resources, like computing resources.

Definition 22 (Optimal Scheduling Policy [3, 10, 126]). A scheduling policy is said to be optimal among
a group of scheduling policies, if a tasks set that is schedulable by a scheduling policy in the group, is also
schedulable by the optimal scheduling policy.

Definition 23 (Schedulable [10]). A task is said to be schedulable under a scheduling policy, if none of its
jobs, during execution, will ever miss their deadline. A tasks set is said schedulable under a scheduling policy,
if all of its tasks are schedulable.

Scheduling is done in the OS by a component called the scheduler. It elects tasks according to
their priority. There exists many scheduling policies in the literature. In this thesis they are broken
down into:

– Offline/online scheduling policies
– Preemptive/non-preemptive scheduling policies
– Fixed/dynamic priority scheduling policies
– Partitioned/global scheduling policies
The following sections present the difference between these policies.

1.3.1.1 Offline/Online Scheduling

Scheduling policies can be characterized as offline or online.

offline scheduling Offline scheduling establishes a schedule before the system is executing,
and thus scheduling decisions are taken offline [3]. The offline schedule must ensure that no
deadlines are missed in the schedule. During execution, the role of the scheduler in the OS is
simply to repeat infinitely the offline schedule. As such, the scheduler can be implemented as a
table [3] where each entry contains a time at which to give a certain task access to the processor.
The scheduler loops through the table indefinitely.

online scheduling Online scheduling takes scheduling decisions during execution [3]. It is
an algorithm that elects which task should have access to the processor at any given time. To elect
a task, the task parameters are considered. They are used to determine which task has a higher
priority than another.

Contrary to offline scheduling, online scheduling is flexible and can adapt to changes in the
system [3]. On the other hand, offline scheduling guarantees that deadlines are met before the
execution of the system, which is not the case with online scheduling. Thus an offline scheduling



1.3 operating system of a rtes 15

Figure 1.3: Scheduler Electing Tasks in Queues: It is assumed that tasks are all ready and only released once

analysis is necessary before using online scheduling, to guarantee that deadlines will be met during
execution.

A scheduler running an online scheduling policy can be implemented as a queue(s) handling
component, with queues containing task identifiers. This is the case for Portable Operating System
Interface (POSIX) operating systems [28]. The way that the scheduler handles the queue(s), and
elects a task, depends on the scheduling policy it implements.

Figure 1.3 shows an example where a simple scheduler elects ready tasks in two queues. There
is a high priority queue and a low priority queue. Tasks in the high priority queue are elected first, so
task 1 is elected first. Then tasks in the lower priority queue are elected. First task 2 is elected because
it is at the head of the queue, then task 3 is elected.

1.3.1.2 Preemptive/Non-preemptive Scheduling

Scheduling policies can be characterized as preemptive or non-preemptive. Both of these schedul-
ing policies are online.

preemptive In preemptive scheduling, the scheduler can arbitrarily suspend a task’s execution,
and resume it later [3]. This typically happens when a task, of higher priority than the preempted
task, becomes ready when the preempted task is executing.

non-preemptive In non-preemptive scheduling, the scheduler does not suspend a task’s exe-
cution [3]. For example if a low priority task is executing and a high priority is released during the
execution of the low priority task, then the high priority task has to wait until the low priority task
completes execution.

preemptive vs . non-preemptive Figure 1.4 shows an example of two schedules illustrating
the difference between preemptive and non-preemptive scheduling.

In Figure 1.4a), low priority task is released first. During the execution of low priority task, high
priority task is released. The latter must wait until low priority task completes execution before it can
execute.

In Figure 1.4b), low priority task is released first. During the execution of low priority task, high
priority task is released. The latter preempts low priority task since it is of higher priority. Then when
high priority task completes execution, low priority task resumes execution.

In systems where there are only local shared resources, non-preemptive scheduling has the ad-
vantage that shared resources do not need to be protected [3]. Indeed, a task’s execution cannot be
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Figure 1.4: Preemptive vs Non-Preemptive Scheduling: Arrows are task releases

suspended, thus it cannot be preempted inside a critical section. On the other hand, preemptive
scheduling increases the number of tasks set that are schedulable [3].

1.3.1.3 Fixed/Dynamic Priority Scheduling

A scheduling policy determines which task has access to the processor at a given time. The task
with the highest priority is elected. Task may have a fixed priority or a dynamic one that may vary
during execution. Both of these policies are online policies.

fixed priority scheduling In Fixed Priority (FP) scheduling, the priorities of tasks are fixed
and assigned offline. The priorities are then used online for scheduling decisions. There are several
methods to assign priorities. Among them, there are the rate-monotonic and deadline-monotonic
methods:

– Rate-monotonic [85]: The Rate-Monotonic (RM) scheduling method assigns priorities for peri-
odic tasks for which the relative deadline is equal to the period. Task priorities are inversely
proportional to their period. Otherwise said, the task with the shortest period has the highest
priority.

– Deadline-monotonic [76] The Deadline-Monotonic (DM) scheduling method assigns priorities
for tasks. Task priorities are inversely proportional to their relative deadline. Otherwise said,
the task with the shortest relative deadline has the highest priority.

RM and DM are methods to assign priorities but they are also called scheduling policies [85].
Preemptive RM and DM are said to be optimal among preemptive FP scheduling policies under
certain conditions.

Theorem 1 (Optimality of preemptive RM [85]). When tasks execute on a single processor, preemptive
RM is optimal, within preemptive FP scheduling policies, for synchronous independent periodic or sporadic
tasks that have a deadline equal to their period.

Theorem 2 (Optimality of preemptive DM [76]). When tasks execute on a single processor, preemptive
DM is optimal, within preemptive FP scheduling policies, for independent periodic or sporadic tasks that have
a deadline less than their period.

dynamic priority scheduling In Dynamic Priority (DP) scheduling, the priority of a task
may vary during execution due to the state of its other parameters. A task is said to have a dynamic
priority computed according to its other parameters during execution, like its deadline. Some DP
scheduling policies are:

– Earliest Deadline First [85]: At a given time during execution, the Earliest Deadline First (EDF)
scheduling policy assigns the highest priority to the ready task with the nearest absolute dead-
line.
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– Least Laxity First [43]: The Least Laxity First (LLF) scheduling policy assigns priority by laxity.
For a job of a task, its laxity is defined as the difference between the task’s relative deadline
and its remaining execution time.

Preemptive EDF and LLF are said to be optimal among preemptive scheduling policies under
certain conditions.

Theorem 3 (Optimality of EDF and LLF [85, 43]). When tasks execute on a single processor, preemptive
EDF and LLF are optimal, within preemptive scheduling policies, for independent periodic or sporadic tasks
that have a deadline less or equal to their period.

1.3.1.4 Partitioned/Global Scheduling

When tasks execute on a multiprocessor system, there are scheduling policies that define how
tasks can execute on the different processors. Let us mention two policies:

partitioned scheduling In partitioned scheduling, each task is statically allocated on a pro-
cessor [102, 86, 35, 40] and all the jobs generated by the task are required to execute upon that
processor [11]. Tasks are scheduled locally on each processor as in a uniprocessor system.

global scheduling In global scheduling, different jobs of the same task may execute on
different processors and a preempted job may resume execution on a processor different from the
one it has been executing on prior to preemption [7, 11, 40]. We say that jobs are allowed to
arbitrarily migrate across processors during their execution [35].

1.3.2 Resource Synchronization Primitive

When tasks use a shared resource, the OS handles the protection of the shared resource by
offering primitives that tasks call when they want to access the shared resource. The method used
by the OS to protect the shared resource may have a consequence on the scheduling of tasks.

A task may go from the executing state to the waiting state because a shared resource is un-
available during its execution. If no precautions are taken, this may result in unbounded priority
inversions and deadlocks in the system. These phenomenons may be defined as follows:

Definition 24 (Priority Inversion [127]). Priority inversion is the phenomenon where a task of higher
priority is blocked by a lower priority task.

Definition 25 (Unbounded Priority Inversion [127]). Unbounded priority inversion is the phenomenon
when a higher priority task is blocked by a lower priority task for an indefinite period of time.

Definition 26 (Deadlock [139]). A set of tasks is deadlocked if each task in the set is waiting for an event
that only another task in the set can cause.

In the case of tasks using shared resources, a deadlock occurs when a task A is blocked by a
task B due to some shared resource R1 and task B is blocked by task A due to some other shared
resource R2.

Figure 1.5 shows an example of two schedules during execution of the system, where a deadlock
and a unbounded priority inversion occur. The tasks are scheduled by a FP preemptive policy.

Figure 1.5a) shows a deadlock. A low priority task L is released first, it asks for a resource R1,
and locks it. In the critical section where L uses R1, it is preempted by a high priority task H. Task
H later asks for R2, and locks it. In the critical section where H uses R2, it asks for R1 which is
already locked by L so it waits for L to unlock it. L then continues execution and asks for R1 but
fails because R1 is still locked by H. This results in a deadlock because H is waiting for R2 locked
by L, which is waiting for R1 locked by H.

Figure 1.5b) shows a unbounded priority inversion. A low priority task L is released first, it asks
for a resource R, and locks it. L is then preempted by a high priority task H. During execution of H,
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a mid priority task M is released. H asks for R during its execution and has to wait for L to unlock it.
At this time, the highest priority released task is M so M executes, even if it is of lower priority than
H and does not block H due to a shared resource. Therefore the priority inversion is unbounded
because H not only has to wait for the end of the critical section of L but also the completion of
any jobs of tasks of higher priority than L, released before the end of the critical section, even if the
tasks are of lower priority than H.

There are several access protocols for shared resource that prevent unbounded priority inversion.
The basic idea of these access protocols is to modify task priorities when they ask for access to a
shared resource. With such protocols, the blocking time of a task is bounded.

Definition 27 (Worst Case Blocking Time [127]). The Worst Case Blocking Time (WCBT) of a task is an
upper-bound to the blocking time of a task.

Among the shared resource access protocols, three historical ones are presented in the following
sections.

1.3.2.1 Priority Inheritance Protocol

The Priority Inheritance Protocol (PIP) was proposed in [127] to solve the problem of unbounded
priority inversions. In PIP, when a task gets access to a resource, its priority is modified to the
highest priority of tasks that it blocks. The modification of its priority occurs whenever a higher
priority task asks for access to the already locked shared resource. When a task unlocks a resource,
its priority is re-computed according to resources it is still locking. When a task exits all of its
critical sections, it regains its initial priority.

PIP is only applicable to systems with fixed priority. It does not prevent deadlocks but it is
possible to compute an upper-bound to the blocking time of tasks. With PIP, there are potentially
very long WCBTs [127].

1.3.2.2 Priority Ceiling Protocol

The Priority Ceiling Protocol (PCP) proposed in [127] aims at reducing blocking times compared
to PIP and prevent deadlocks. It is applicable to FP scheduling and later adapted for EDF in [31],
which proposes the Dynamic Priority Ceiling Protocol (DPCP).

A ceiling priority is assigned to each shared resource. The ceiling priority of a resource is the
highest priority of tasks that may use it. At a given time during execution, a system priority is
defined as the highest ceiling priority of resources locked at the given time. When a task asks for



1.4 hardware of a rtes 19

access to a resource, it is given access only if its priority is strictly higher than the system priority.
Otherwise the task is blocked and the task that already has access to the resource inherits the
priority of the blocked task.

With PCP, a task H can only be blocked by at most one critical section of a task L of lower priority,
using a resource with a ceiling priority higher than the priority of H [127].

1.3.2.3 Stack Resource Policy

Another resource access protocol applicable to EDF scheduling is the Stack Resource Policy (SRP).
This protocol is furthermore applicable to systems where a resource has several instances and a task
may access several instances of the resource.

In this protocol, each task is assigned a preemption level, which reflects its relative deadline. For
example tasks may be assigned preemption levels by the DM method. During execution, a resource
is given a ceiling value, defined as the maximum of preemption levels of tasks that want to access
more instances of the resource than what is available. In the same way as with system priority in
PCP, in the SRP a system has a system ceiling value during execution.

In PCP, tasks may be blocked when they asks to access resources. In the SRP, tasks may be
blocked when they want to preempt another task. A task H can only preempt another task L when
the following conditions are satisfied:

– Task H is of higher priority than task L.
– Task H’s preemption level is higher than task L’s.
– Task H’s preemption level is higher than the system ceiling value.
The general idea behind the SRP is thus to prevent a task from starting execution, before all of the

resources the task needs are available. Like PCP, the SRP prevents deadlocks and bounds blocking
times.

As stated before, the OS is the interface between the software and the hardware. The next section
focuses on the latter.

1.4 hardware of a rtes

This section describes the hardware platform of a RTES, through a model of the hardware from
a scheduling point of view. As such, this section shows some relations between entities of the
hardware and entities of the software/OS.

1.4.1 Scheduling and Processors

The hardware platform has processors for the execution of the software. The processor may either
be a general-purpose one or dedicated to a specific kind of computing, like digital signal processing
in a Digital Signal Processor (DSP).

The system may be characterized according to the number of processors and how they interact:
– Uniprocessor: There is only one processor.
– Multiprocessor [139]: There are several processors that share a common memory. The proces-

sors are connected by interconnects that are optimized for this kind of architecture [139]. The
processors are either identical or heterogeneous. For readability, in this thesis a multiprocessor
system scheduled by global scheduling is called a global multiprocessor system. One with
partitioned scheduling is called a partitioned multiprocessor system.

– Distributed [139]: In a distributed architecture, there are several processors that do not share
a common memory, Each has its own memory. The processors are connected by a network.
These kind of systems are often referred as multicomputer [139] rather than multiprocessor.
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Figure 1.6: V-Model Development Cycle

1.4.2 Scheduling and Networks

The interconnects and networks connect the processors. They may schedule messages that pass
through them, by a scheduling policy.

For example messages may have a fixed priority if transiting on some bus (e.g. Controller Area
Network (CAN) bus [142, 120]). Thus messages are scheduled on network while tasks are scheduled
on processors [105].

Through the previous sections, entities of a RTES were presented. The next section focuses on
the development of a RTES.

1.5 development cycle

Due to the complexity of a RTES, the cost and delays of development, and the different expertise
necessary for the development of its different entities, the system is developed through several steps
described by a development cycle. A development cycle is a structure describing the steps that take
place during the development of a product.

There exist several models of development cycles. One common model is the V-model [22], shown
in Figure 1.6.

The V-model is separated into two distinct branches. One branch goes down and describes the
steps from requirements to design, to implementation. This branch is called the verification branch
because it verifies the requirements through reviews.

After implementation, the other branch goes up (hence the V shape) and focuses on testing. This
branch is called the validation branch because it validates the development.

Each step of a branch is mirrored by another step of the other branch. For example, a step in
the validation branch is supposed to validate a specification in the verification branch. Steps in the
V-model are:

– Requirements Analysis: Requirements of the system are defined according to understanding of
the client’s needs. The requirements may be functional and non-functional. System testing can
be specified in parallel to requirements analysis.

– High-Level Design: An abstract system is defined according to understanding of the require-
ments. The necessary components of the system are defined. This includes the interfaces of
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each component and the functions they must implement. Integration tests can be specified in
parallel to high level design.

– Detailed Design: Each component of the system is defined in detail. This includes how each
function is implemented. Unitary tests can be specified in parallel to detailed design of com-
ponents.

– Code Generation and Coding: The high-level and detailed design steps use models. The models
may not only serve as documentation, but also for code generation. The generated code is then
completed by manually written code.

– Unitary Test: The validation branch starts with unitary test. Each functions of each component
is tested alone through functional test vectors.

– Integration Test: Once each unitary part of the software is functionally validated, they are assem-
bled and integration tests validate end-to-end functionality between interacting components.

– System Test: System test is black box testing. A black box is a component for which the internal
structure and functions are masked. In this step requirements are validated, and deviations
between the developed system and the specified system are listed. Making sure requirements
are met ensures that the client’s needs are validated.

In the verification branch, the designs of the system are specified in two steps. Models may be
exploited in these steps. In the next section, the concepts of models and model-driven engineering
are introduced.

1.6 model-driven engineering

Model-Driven Engineering (MDE) is a development methodology that aims to increase produc-
tivity by promoting interoperability between systems, simplification of the design process, and
communication between teams working at different steps of the development cycle.

Definition 28 (Model-Driven Engineering [122]). MDE is a software/hardware development methodol-
ogy, where domain-specific models are exploited for verification and implementation, rather than computing
concepts (i.e. algorithms).

In the following sections the concepts of model and model transformation are exposed.

1.6.1 Introduction to Models

In the previous section, we saw that MDE is based on the description of a system with models.

Definition 29 (Model). A model is an abstraction of a system. A system can be described by different
models, offering different levels of abstraction, which are related to each other.

A model may be specific to a domain.

Definition 30 (Domain-Specific Model [67]). A model of an area of interest or a particular development
effort.

A model describes a system with a modeling language.

Definition 31 (Modeling Language). A modeling language is a language used to express information,
knowledge or systems in a structure defined by a set of rules. The rules define the semantics of the entities in
the structure.

A system is described by a model, while a model itself is described with a meta-model.

Definition 32 (Meta-Model). A meta-model is a model of a model. A meta-model describes the model
entities and their relationships. Otherwise said a meta-model is a model of a modeling language.
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During the verification branch of the V-model development cycle, models can be created at each
step. The lower in the verification branch we are, the less abstract the model is. Otherwise said
a model created at a given step is a refinement of the more abstract model of the previous step.
Models can thus be refined at each step, until a sufficiently detailed model is created for the imple-
mentation of the system. Refinement of model can also be done through model transformation.

1.6.2 Model Transformation

Models can be produced from other models through model transformation.

Definition 33 (Model Transformation [125, 98]). Model transformation is the automated process of taking
one or more source models as input, and producing one or more target models as output, following a set of
transformation rules (also called mapping).

To perform model transformation, a clear understanding of the abstract syntax and semantic
of input and output models is necessary. Remember that the abstract syntax between entities of
a model, and their relationship, are described by using meta-models. Transformation rules are
then defined between meta-models of the input and output models [125]. Once the transformation
rules are defined, any model conforming to the input meta-model can be transformed to a model
conforming to the output meta-model.

The next section presents some modeling languages for describing the architecture of a system.
Such models may be exploited for model transformation.

1.7 architecture description languages

A modeling language can be used to describe the - more or less abstract - architecture of the
system. These kind of modeling languages are called Architecture Description Language (ADL)
[97, 54], which can be defined as follows:

Definition 34 (Architecture Description Language [97]). An ADL focuses on the high-level structure of
the overall system rather than the implementation details of any specific source module.

An ADL is a Component-Based Model (CBM) where architectural components, connectors, and
architectural configurations are described [97].

Definition 35 (Component [97]). A component in an architecture is a unit of computation or a data store.

According to [97], an ADL must also offer the possibility to describe a component’s interface.

Definition 36 (Interface [97]). A component’s interface is a set of interaction points between it and the
external world. The interface specifies the services a component provides, and services the component requires.

A service of a component can be defined as follows:

Definition 37 (Service [97]). A service is a set of functionalities that can be reused. Examples of services
are messages, operations, and variables of the component.

Components are connected together, through their interface, by connectors.

Definition 38 (Connector [97]). Connectors are architectural building blocks used to model interactions
among components and rules that govern those interactions.

Finally the connected components are shown in architectural configurations.

Definition 39 (Architectural Configuration [97]). Architectural configurations are connected graphs of
components and connectors that describe the architectural structure.

Some ADLs are generic, while others are domain-specific. In the next sections, a generic ADL is
first presented. Afterwards some domain-specific ADLs are briefly introduced.
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1.7.1 Generic ADL for RTES: UML MARTE

A generic ADL for RTES is based on an extension of the Unified Modeling Language (UML)
[121, 103], a standard modeling language of the Object Management Group (OMG).

In the next sections first UML and its extension mechanisms are presented. Then entities of the
extension called Modeling and Analysis of Real-Time Embedded systems (MARTE) are introduced.
Afterwards an example illustrates how a simple system is described in UML MARTE. Finally tool
support for the modeling language is exposed.

1.7.1.1 UML and Profiles

For MDE, UML is promoted by the OMG, a standardization organization focusing on models.
UML is a generic modeling language, and it the result of an effort to propose a standard software
modeling language, by considering those from the 80s and 90s.

An entity in the UML meta-model is called a meta-class. Some examples of meta-classes will
now be defined. Since this thesis does not focus on meta-modeling of UML, the meta-classes are
defined as how they are used in the modeling work of this thesis.

basic meta-classes Some basic meta-classes of UML are:
– Class: A class describes a set of entities with the same attributes and operations. An attribute

defines some data of the class.
– Operation: An operation is a service of the class. It may have some parameters that are typed

by classes.
– Property: A property is a structure that represents an attribute of a class. A property is typed

by a class, in which case the property may be an instance of the class.
– Constraint: A constraint represents some condition, restriction or assertion related to one or

several UML entities. The entity owns the constraint.

data structure meta-classes Some meta-classes of UML are dedicated to the modeling of
data structures:

– Datatype: A datatype is a class that represents some data structure with values. The values
may be typed properties. A datatype is typically used to type some property representing an
attribute of a class.

– Enumeration: An enumeration is a datatype. Its values are only enumerated with enumeration
literals which are not typed properties.

component based model meta-classes Some meta-classes of UML are dedicated to CBM:
– Component: A component is a class representing a re-usable part of a system. In this thesis, it

represents a component as defined in an architecture model.
– Interface: An interface is a set of operations that must be implemented by any class that

implements the interface.
– Port: A port is a part of a component through which other components access the component’s

operations, or through which the component access other components’ operations. A port is
typed by an interface so its operations are defined by an interface. Through a port, a component
either provides the operations of the interface or requires them.

– Connector: A connector is a link between two components or two ports of two components.
When a connector exists between two components, communication is enabled between the two
entities.

behavior meta-classes Finally some meta-classes are dedicated to modeling behaviors of the
system. One such meta-class, used in this thesis, is an activity. An activity of a class or component
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is a sequence of actions and their conditional activation. The actions are connected by control flows
of UML. The activity starts at an initial node and ends at an activity final.

relationships between meta-classes Some meta-classes are dedicated to the modeling of
relationships between the entities of UML:

– Association: An association is a relationship between two classes that describes the reason of
the relationship and the rules of the relationship. An association may be directed from a client
to a supplier.

– Abstraction: An abstraction is a directed association between two classes that describe the same
concept at different abstraction levels. The client is an abstraction of the supplier.

– Usage: An usage is a directed association between two classes. It means the full implementa-
tion of the client requires the supplier.

– Generalization: A generalization is a directed relationship that indicates that one class is a
specific case of the other.

– Extension: An extension is a directed association between a stereotype and a meta-class. A
stereotype is an extension mechanism of UML, defined below.

uml diagrams A UML model is described through different graphical diagrams. There are
three kinds of diagrams: structural diagrams, behavioral diagrams, and interaction diagrams.

The static structure of the system is shown in structural diagrams. They are useful to model
entities at different levels of abstraction of the system. Some examples of structural diagrams are:

– Class diagram: shows the structure of the system and the relationship between entities. Typi-
cally UML structural entities and their relations are specified in this kind of diagram.

– Composite structure diagram: shows the internal structure of an entity and how entities are
connected together. Typically components, ports and connectors are represented in this kind
of diagram.

– Profile diagram: is not used to model a system, but to define a UML profile that may then be
used to model a system. In this kind of diagram, UML entities are extended.

The dynamic behavior of entities are shown in behavior diagrams. Some example of behavioral
diagrams are:

– Activity diagram: shows sequences of actions executed by an entity, and conditions for actions
to execute, i.e. an activity.

– State machine diagram: shows the behavior of the entity as a set of finite states, and conditions
to transit from one state to the other.

Finally interaction between entities are shown in interaction diagrams. An example of an in-
teraction diagram is a sequence diagram which shows interaction between entities in the form of
messages exchanged between them.

The diagrams may be used to define views, that may be defined as follows:

Definition 40 (View [63]). A view is a representation of the system from the perspective of some specific
concerns.

uml profile The generic modeling language UML is not itself an ADL, nor is it specific to
the RTES domain. On the other hand, the concepts of profiles and stereotypes make it possible to
define an ADL for RTES with UML.

Definition 41 (UML Profile). A UML profile extends UML for a specific domain. The extension mechanism
is additive, so it does not contradict standard semantics of the original modeling language.

Profiles are defined with stereotypes, tag definitions and constraints applied to specific entities
in UML.
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Figure 1.7: MARTE Packages

Definition 42 (Stereotype). A stereotype is a class of the profile that defines how a meta-class of UML is
extended. A stereotype uses the "<<" and ">>" notation. A stereotype is applied to a meta-class in a UML
model.

A stereotype has a number of attributes that are used to tag other entities of the model.

Definition 43 (Tagged Value). In a UML model, an entity that is specified as the value of an attribute of a
stereotype, is a tagged value.

The next section presents a profile for UML, dedicated to the RTES domain.

1.7.1.2 Entities of MARTE

For the RTES domain, one of the most complete UML profile to date is MARTE [62, 42]. MARTE
is a UML profile standardized by the OMG. It was specified to cover a large area of RTES, including
avionic, automotive or software radio systems.

The profile adds capabilities to UML for MDE of RTES. It provides a modeling language for the
design of such a system but also the modeling facilities to annotate the model for different kinds of
analysis.

The different packages of MARTE are shown in Figure 1.7. The figure show that MARTE de-
scribes the system through a design model and an analysis model.

The design is independent of the analysis and thus the design model is independent of the anal-
ysis analysis model. This way it is possible to perform several kinds of analysis on the system,
without having to modify its design model that may be used in the development cycle for docu-
mentation or to generate code.

MARTE has a number of sub-profiles, which are profiles containing partial entities of the MARTE
profile. For example in Figure 1.7, HLAM is a sub-profile. The sub-profiles are regrouped within
packages, which have the following signification:

– Foundations package: The foundations of MARTE contain fundamental concepts of a RTES
and they are a base for the design and analysis packages.

– Design Model package: The design model package of MARTE extends the entities of the foun-
dations package. The sub-profiles in the design model package are dedicated to describe the
architecture of the system.

– Analysis Model package: The analysis model package extends entities of the foundations pack-
age for different kinds of analysis. There are two sub-profiles in this package. The General
Quantitative Analysis Model (GQAM) sub-profile is for generic quantitative analysis. It offers
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Figure 1.8: Example of Using of MARTE

a foundation for the Scheduling Analysis Model (SAM) sub-profile that is dedicated to schedul-
ing analysis, and the Performance Analysis Model (PAM) sub-profile for performance analysis.
The GQAM sub-profile can be extended for other kinds of analysis.

– Annexes package: The annexes package contains facilities offered by MARTE to annotate non-
functional properties in the model. For example, it offers the Value Specification Language
(VSL) to express non-functional properties.

MARTE is a profile for UML so to model an entity in MARTE, a stereotype of the profile is applied
to a UML meta-class. The next section shows an example of use of MARTE for the modeling of a
RTES.

1.7.1.3 Example of Use

Figure 1.8 shows an example of task, memory partition and scheduler in MARTE. Tshe three
tasks called RW_Data, DSS_Data, and Gyro_Data are allocated on the AOCS memory partition.

The memory partition is modeled as a UML component stereotyped <<MemoryPartition>>,
while tasks are modeled as properties of the component stereotyped <<SwSchedulableResource>>.
Tasks are scheduled by a fixed priority scheduler stereotyped <<Scheduler>>.

The attributes of the MARTE stereotypes tag some properties of the components, to give them a
semantic. For example period property of RW_Data is tagged as the period of the task.

1.7.1.4 Tool Support

Since MARTE is a profile for UML, it benefits from the eco-system of UML modelers. For exam-
ple MARTE is implemented by IBM’s Rational Software Architect (RSA) [131] modeler. It is also
implemented in Papyrus [104], an open-source UML modeler for Eclipse. Finally MARTE is also
implemented in Softeam’s Modelio [130], a commercial UML modeler implemented above Eclipse,
with an open-source version that also exists.



1.7 architecture description languages 27

1.7.2 RTES Domain-Specific Architecture Description Languages

Beside UML MARTE, there are several ADLs that are dedicated to a specific domain within the
RTES domain. In the following sections three standard domain-specific ADLs are briefly introduced.
For each ADL, entities and tool support are described.

1.7.2.1 AADL

Architecture Analysis & Description Language (AADL) [49] is a standard ADL of the Society of
Automotive Engineers, proposed in 2004. AADL has strong roots in the avionics domain.

entities of aadl model An architecture in AADL is described as a set of connected compo-
nents, and interfaces. The components of AADL are separated according to three categories. The
entities of a RTES, presented previously in this chapter, can be organized into these categories:

– Software: tasks and data
– Hardware: processors, memories and buses
– System: a component called "system" that wraps the software and hardware components

tool support There exists several modelers that support AADL. For example OSATE [124] is
an Eclipse plug-in that lets the user describe an AADL model either graphically, in textual format,
or in the Exensible Markup Language (XML) format.

1.7.2.2 EAST-ADL

EAST-ADL [41] is an ADL dedicated to the automotive domain. EAST-ADL is designed to com-
plement the AUTomotive Open System ARchitecture (AUTOSAR) [73]. AUTOSAR is an open and
standardized software architecture for the automotive domain.

EAST-ADL complements the AUTOSAR standard by offering a modeling language to describe a
higher level of abstraction of the vehicular system.

entities of east-adl model An EAST-ADL model contains entities that are divided into
four levels of abstraction:

– Vehicle level: entities to represent functionality of the system, without knowledge of the solu-
tion to realize the functionalities (i.e. independent of software and execution platform)

– Analysis level: abstract decomposition of the vehicle into set of functions, represented by com-
ponents with internal and external interfaces

– Design level: contains the functional architecture (set of functions represented by components
with internal and external interfaces), hardware architecture (hardware components), and allo-
cations of functional components onto hardware components

– Implementation level: relies on AUTOSAR design model standards

tool support EAST-ADL currently exists as a UML profile. Papyrus, the open-source UML
modeler of Eclipse also offers an implementation of the EAST-ADL profile, with diagrams and
palettes. Some domain-specific tools, such as MetaCase MetaEdit+ [144], were also adapted for
EAST-ADL within the scope of some European projects.

1.7.2.3 MyCCM

The ADL of Make your CORBA Component Model (MyCCM) is part of the MyCCM framework
[25]. MyCCM provides tools for modeling and code generation. It is based on the the concept of
separation of wrapper, communication, and business code of a CBM, shown in Figure 1.9.

The wrapper code of a component is the code used for interfacing of the component with other
components. The communication code implements the communication between components, i.e.
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Figure 1.9: Component-Based Model

Figure 1.10: MyCCM Code Generation

code of the connectors. The business code of the component is the functions and procedures imple-
mented by the component.

Usually the business code is written manually by the developers at the coding step of the develop-
ment cycle. The wrapper code of a component, and the communication code between components,
are generated from the architecture model, by MyCCM.

Development with MyCCM is summarized in Figure 1.10. The architecture model of the system is
described in the ADL of MyCCM. Afterwards the model is input into the MyCCM generator that
generates the wrapper code. Business code is then integrated into the components and compiled to
get the binary.

The ADL of MyCCM is based on the CORBA Component Model (CCM) [148] modeling lan-
guage. CCM is dedicated to the modeling of components in Common Object Request Broker Ar-
chitecture (CORBA) [146, 23], a standard of the OMG for communication between components on
heterogeneous execution platforms.

entities of myccm model Entities of a CCM model are:
– Component: As defined by components of an ADL
– Port: A mechanism to interact with other components
– Container: A container wraps a component and offers it some services.
There exists four kinds of ports defined in [148]:
– Facet: A facet is an interface that specifies services provided by the component.
– Receptacle: This kind of port specifies services needed by the component to function correctly.

They are provided by other components.
– Event source/sink: A component may produce events through a source port, and observe

events through a sink port.
– Attributes: This kind of port represents attributes of the component.
Ports are connected together: a facet is connected to a receptacle, an event source is connected to

an event sink.
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tool support The MyCCM framework is implemented as a plug-in for the SpectraCX [112]
modeler. SpectraCX is a modeler implemented above IBM’s RSA [131], itself implemented above
Eclipse.

1.8 conclusion

In this Chapter various concepts related to RTES were introduced. The chapter focused on the
software, and execution platform (OS and hardware) of a RTES. Some important concepts were
defined, especially concerning tasks and scheduling.

Afterwards the chapter focused on the development of a RTES through its development cycle.
A development methodology called MDE was presented. This methodology exploits models of
the system, to serve the purposes of the different steps of the development cycle. The concept of
architecture models, and ADLs dedicated to the RTES domain, were then exposed.

One important step part of the development of a RTES, is to verify its time constraints. This
can be done with various methods called scheduling analysis, which will be presented in the next
chapter.





Chapter 2

S C H E D U L I N G A N A LY S I S

The previous chapter showed that a RTES has several time-constrained tasks scheduled by some
scheduling policy, on some processors. These tasks may have dependencies through precedence
and shared resources, for which there exist a number of access protocols. The time constraints of
tasks must be verified during the development of the system. This can be done with scheduling
analysis. In this chapter scheduling analysis is presented. This kind of analysis determines if tasks
of a RTES respect their deadlines.

In the next sections of this chapter, methods of scheduling analysis are first presented. Afterwards
we will focus on the concept of task models for scheduling analysis. Then some task models of the
literature, and their analysis method, will be exposed in detail.

2.1 methods of scheduling analysis

Scheduling analysis either determines the feasibility or schedulability of a system. These terms
are defined as follows:

Definition 44 (Feasibility [10, 12]). For a given tasks set executing on a given set of processors, the tasks
set is said to be feasible if the tasks set is schedulable on the processors by at least one existing scheduling
policy.

Definition 45 (Schedulability [10, 12]). For a given tasks set executing on a given set of processors, and
a given scheduling policy, schedulability is the assessment that the tasks set is schedulable by the scheduling
policy on the processors.

There are several scheduling analysis methods in the literature. Some of these methods are shown
in Figure 2.1.

Figure 2.1: Scheduling Analysis Methods

31
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2.1.1 Empirical Methods

Empirical scheduling analysis methods do not always guarantee schedulability. On the other
hand they may determine unschedulability: there is at least one case where deadlines are missed.
Some empirical methods are: mention two:

– Simulation: Simulation is the imitation of real world operations. In the case of scheduling, it is
the computation of a schedule according to an input tasks set, processors set, and scheduling
policy of the processors [36]. When not exhaustive, simulation is not able to determine schedu-
lability. Scheduling simulation tools usually use the WCET of tasks [145] but recent trends
see the emergence of simulators that do not always use the WCET of tasks to determine the
performance of a scheduler [33].

– Integration Test: Integration test is a step in software testing where individual software pieces
are combined and tested together. As such integration tests may execute individual tasks
together and check for missed deadlines. Contrary to simulation, integration tests are generally
performed on an implemented system, or partially implemented.

2.1.2 Analytical Methods

Analytical scheduling analysis methods are based on equations, or formal methods to determine
schedulability (or feasibility). Contrary to empirical methods, these methods do guarantee schedu-
lability, given the assumptions of the system to analyze. Among analytical methods, let us mention
two:

– Model Checking: Model checking takes as input the model of a system and some of its prop-
erties. The model of the system is expressed in a mathematical language. The analysis then
proceeds to check, exhaustively, whether the model meets its properties. Properties may con-
tain time constraints. Some examples of model checking tools for real-time systems are UP-
PAAL [18] and ROMEO [53]. UPPAAL uses timed automatas [19] to model the system, while
ROMEO uses timed petri nets [110].

– Feasibility and Schedulability and Tests: This thesis focuses on this kind of scheduling analysis
method. Feasibility and schedulability tests are defined below.

Definition 46 (Feasibility Test [10, 12]). A feasibility test assesses if a tasks set, executing on a given set
of processors, is feasible.

Determining the feasibility of a tasks set may be done by imposing some constraints on the set
of scheduling policies that may schedule the tasks set [15]. For example example feasibility may be
determined only for preemptive against non-preemptive, FP against DP policies.

Definition 47 (Schedulability Test [10, 12]). A schedulability test assesses if a tasks set, executing on a
given set of processors, with a given scheduling policy, is schedulable.

To illustrate feasibility and schedulability, consider an example of a uniprocessor system, with a
set of synchronous independent periodic tasks with their deadline less or equal to their period.

Since EDF is an optimal scheduling policy, among preemptive scheduling policies feasibility
determination, for preemptive policies, consists in determining the schedulability of the tasks set
by the EDF policy [10]. If the tasks set is schedulable by EDF then there is at least one policy that
can schedule them. Therefore the tasks set is feasible.

Feasibility determination for preemptive FP policies is different. Determining if the tasks set can
be scheduled by at least one preemptive FP policy, comes in two forms [10]:

– Priority testing: Given a tasks set with fixed priorities assigned, does there exist a preemptive
FP scheduling policy that can schedule the tasks set, on a given set of processors, without any
missed deadlines?
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– Priority assignment: Given a tasks set, does there exists a priority assignment method (e.g. RM)
that assigns priorities so that the tasks set can be scheduled by a preemptive FP scheduling
policy, on a given set of processors, without any missed deadlines?

Feasibility and schedulability tests have conditions that assess whether a tasks set’s feasibility or
schedulability is met. These conditions may either be sufficient or necessary or both:

– Sufficient: A tasks set that satisfies these conditions is enough to be assessed as feasible (resp.
schedulable). If a tasks set does not satisfy these conditions, it may still be feasible (resp.
schedulable).

– Necessary: A tasks set that does not satisfy these conditions is not feasible (resp. schedulable).
If it does satisfy these conditions, it may still not be feasible (resp. schedulable).

– Necessary and sufficient: A tasks set is feasible (resp. schedulable) only if it respects these
conditions. We say that the conditions are exact.

Feasibility and schedulability tests are equations and algorithms that computed different values:
– Processor utilization: Processor utilization is the fraction of time the processor is executing

tasks.
– Response time: Response times are computed and compared to deadlines to assess schedula-

bility. The method to compute response times is called Response Time Analysis (RTA).
– Processor demand: Tasks demand access to the processor. Tests based on processor demand

computes the cumulative demands of a processor by tasks, in a time interval. This is usually
done with a demand bound function. A tasks set’s schedulability is then assessed by studying
their demand bound on some intervals that are enough to assess the tasks set’s schedulability.

– Speedup bound: Determining exact feasibility of a tasks set, on a global multiprocessor, is
intractable [24]. Thus the idea is to compute an approximate result. The approximation is
based on the concept of schedulability tests defined by a speedup bound, A speedup bound is
an increase of the processors’ speed. If the tasks set is feasible on the processors with unitary
speed, then the test determines that it is schedulable on the processors with increased speed
[24].

Feasibility and schedulability tests take as input a system described with a model called a task
model. Some task models of the literature are presented in the next section.

2.2 task models and tests

A task model is scheduling analysis domain-specific model used for feasibility and schedulability
tests. There exists numerous task models in the literature, which have been proposed either for a
specific RTES system, or a specific hardware architecture. Figure 2.2 shows some of the most well-
known task models.

From Figure 2.2, we see that task models usually have a relation of generalization. When a
task model generalizes another, it increases its expressiveness, at the cost of an increase in analysis
difficulty. The order by expressiveness and analysis difficulty, is also a chronological one, as task
models with more expressiveness have been proposed later, motivated by the increasing complexity
of RTES.

The task models in Figure 2.2 can be grouped together, Each group is highlighted by its color in
the figure. These groups are:

– Fundamental: periodic and sporadic task models
– Transaction: linear, tree-shaped and graph-shaped transactions
– Multiframe: multiframe, General Multiframe (GMF) and non-cyclic GMF
– Directed Acyclic Graph (DAG) task: Recurring Real-time Task (RRT), non-cyclic RRT, sporadic

DAG, and Digraph Real-time Task (DRT)
The fundamental and transaction models are dedicated to the modeling of individual tasks, and

their dependencies. The multiframe and DAG models are dedicated to the modeling of jobs of
tasks.
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Figure 2.2: Task Models: Filled arrows between task models indicate generalization
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In the next section each group is presented through one of its task models. Tests for the task
model are also exposed.

2.3 fundamental models : periodic and sporadic

The periodic task model is based on the seminal Liu and Layland task model proposed by in [85]
for RM scheduling. Since then the periodic task model has been extended with release jitter and
WCBT. Furthermore some constraints of parameters of the model in [85] have been relaxed, such
as the implicit "deadline equal to period" constraint. A periodic task is only a particular case of a
sporadic task [16], and thus the two task models may be defined with the same parameters.

In the following sections, first the definition, of the periodic and sporadic task models, is given.
Afterwards three types of tests are presented: test based on processor utilization, response time,
and processor demand.

2.3.1 Definition

A periodic task, denoted by τi, is a task with parameters:
– Ci is the WCET.
– Di is the relative deadline.
– Ti is the period.
– prio(τi) is the fixed priority (for FP scheduling).
– Ji is the release jitter.
– Bi is the WCBT due to shared resources.
A sporadic task is defined with the same parameters as a periodic task, with some differences

in semantics and constraints. The definition of the Ti parameter changes: Ti is the minimum-
separation time between two releases of a sporadic task. Furthermore a sporadic task does not have
the constraint of Di = Ti since Ti is not a strict period.

Although semantically different, a sporadic task can be defined with the same parameters as a
periodic task. The period parameter is the minimum-separation time of the sporadic task [134]. For
readability, this section on the periodic and sporadic task models, will only refer to the periodic
task model.

All of the parameters are set arbitrarily - while still respecting constraints of the scheduling
policy, e.g. constraints of RM - except Bi, which is computed. The following paragraphs show how
to compute the Bi parameter of a task, when shared resources are protected by the PIP or PCP
access protocols, proposed in [127].

Theorem 4. [127] Under PIP, the WCBT Bi of a task τi is:

Bi =
∑
R

max
j�=i

(
Critical section duration of τj

)
(1)

with R denoting a shared resource.

Theorem 5. [127] Let R denote a shared resource, C(R) the ceiling priority of R, and Dj,R the duration of
the longest critical section of task τj using shared resource R. Under PCP, the WCBT Bi of a task τi is:

Bi = max
j,R

(
Dj,R | prio(τj) < prio(τi), C(R) � prio(τi)

)
(2)

In the following sections, some feasibility and schedulability tests for the periodic task model are
presented.
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2.3.2 Processor Utilization Feasibility Tests

The processor utilization is the fraction of time the processor is executing tasks. The processor
utilization is expressed as a value between 0 and 1.

The utilization of the processor by a task τi is computed as:

Ui =
Ci

Ti
(3)

For example if a task τi has a period of Ti = 4 and a WCET of Ci = 2, then it uses, in the
worst case, the processor during 2 time units, every 4 time units. Thus its processors utilization is
2/4 = 0.5 = 50%.

The total processor utilization of a tasks set of n tasks (allocated on the same processor) is then
the sum of processor utilization of each task:

U =

n∑
i=1

Ci

Ti
(4)

The following sections show some feasibility tests that determine if there is at least one preemp-
tive FP or DP scheduling policy that can schedule a set of synchronous independent tasks. The tasks
have some constraints on their deadline and period, which will be mentioned in the description of
the tests. The tests are applicable to a uniprocessor system.

2.3.2.1 Preemptive FP Scheduling

Assessing if a preemptive FP scheduling policy can schedule synchronous independent tasks,
with Di = Ti, is done with the following theorem:

Theorem 6. [85] A tasks set of n synchronous independent periodic tasks, executing on a uniprocessor, and
with Di = Ti, is schedulable by preemptive RM if:

U =

n∑
i=1

Ci

Ti
� n

(
21/n − 1

)
(5)

where U is the processor utilization.

Therefore if the condition of Equation 5 is respected, then at least preemptive RM can schedule the
synchronous independent tasks set, with Di = Ti. The tasks set is then feasible on a uniprocessor.

Similarly, assessing if a preemptive FP scheduling policy can schedule synchronous independent
tasks, with Di � Ti, is done with the following theorem:

Theorem 7. [76] A tasks set of n synchronous independent periodic tasks, executing on a uniprocessor, and
with Di � Ti, is schedulable by preemptive DM if:

U =

n∑
i=1

Ci

Di
� n

(
21/n − 1

)
(6)

where U is the processor utilization.

Therefore if the condition of Equation 6 is respected, then at least preemptive DM can schedule
the synchronous independent tasks set, with Di � Ti. The tasks set is then feasible on a uniproces-
sor.

Notice that the difference between Equation 6 and Equation 5 is that the deadline Di is used in
Equation 6, while the period Ti is used in Equation 5.

Property 1. [85] The processor utilization by a set of periodic tasks under RM and DM tends towards 0.69,
when the number of tasks increases.

lim
n→∞n

(
21/n − 1

)
= ln 2 ≈ 0.69 (7)
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Later in [127], the Bi parameter is integrated into the processor utilization based test for preemp-
tive RM:

Theorem 8. [127] Under RM scheduling, a tasks set τ1..τn, ordered by increasing priorities, of tasks using
shared resources protected by PCP, is schedulable if:

∀i ∈ [1;n],
Bi

Ti
+

i∑
j=1

Cj

Tj
� i

(
21/i − 1

)
(8)

2.3.2.2 Preemptive DP Scheduling

Assessing if a preemptive scheduling policy can schedule synchronous independent tasks, with
Di = Ti, is done with the following theorem:

Theorem 9. [85] A tasks set of n synchronous independent periodic tasks, executing on a uniprocessor, and
with Di = Ti, is schedulable by preemptive EDF if, and only if:

U =

n∑
i=1

Ci

Ti
� 1 (9)

Therefore if the condition of Equation 9 is respected, then at least preemptive EDF can schedule
the synchronous independent tasks set, with Di = Ti. The tasks set is then feasible on a uniproces-
sor.

Compared to optimal preemptive FP scheduling policies like preemptive RM and DM, it is pos-
sible to achieve more processor utilization with an optimal preemptive DP scheduling policy like
preemptive EDF [85]. Indeed with EDF it is possible to achieve 100% utilization when the number
of tasks tends towards infinity, while with RM or DM it is possible to achieve about 69% when the
number of tasks tends towards infinity.

In this section feasibility tests that compute processor utilization were exposed. In the next section
a schedulability test that computes response times is presented.

2.3.3 Response Time Schedulability Test

As a reminder, a response time of a task is the time between the task’s release and its completion.
To assess if a task is schedulable, its WCRT is compared to its deadline. The computation of
response times is called RTA and it has been studied extensively for periodic tasks on a uniprocessor
system (e.g. [64, 4, 21]). RTA is based on concepts like busy period, critical instant, and workload.
The following section first define these basic concepts. Then a schedulability test is presented.

2.3.3.1 Basic Concepts

Definition 48 (Busy Period of Processor [75]). The processor busy period is the time interval during
which the processor is busy executing jobs of tasks.

Definition 49 (Busy Period of Task [75]). The busy period of a task is the time interval during which the
processor executes jobs of the task and jobs of other tasks of higher priority or equal priority.

Definition 50 (Critical Instant [143]). The time at which the busy period (of a processor or task) starts is
called the critical instant.

Definition 51 (Workload [14]). The workload of jobs of a task within a time interval is the total processor
time that the execution of its jobs occupy.
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The workload of jobs of a periodic task τl in an interval [0; t] is the sum of the WCETs of its jobs:

∀t > 0,Wl(t) =

⌈
t

Tl

⌉
·Cl (10)

In Equation 10,
⌈

t
Ti

⌉
computes the number of jobs of a task in [0; t]. The workload of a processor

in an interval [0; t] is then the sum of workloads of n tasks allocated on the processor:

∀t > 0,W(t) =

n∑
i=1

⌈
t

Ti

⌉
·Ci (11)

The W(t) function is used to compute the busy period of a processor. The critical instant leading
to the highest processor busy period starts when all tasks are released at the same time [85]. For n

tasks, the length of the busy period of the processor is denoted by L and is computed by iteration:

L(0) =

n∑
i=1

Ci

∀k > 0, L(k) = W(L(k−1))

(12)

Equation 12 converges only if the processor utilization is less or equal to 1 (U � 1).
The following section shows how these concepts are applied in a schedulability test for the peri-

odic task model.

2.3.3.2 Schedulability Test for Periodic Tasks

The following paragraphs present a RTA schedulability test for tasks scheduled by a preemptive
FP scheduling policy on a uniprocessor. The tasks are assumed synchronous. They are also assumed
independent but we will see how the test can be extended for jitters and WCBTs.

The WCRT of a periodic task τi is computed according to the following theorem:

Theorem 10. [75] The WCRT of a task τi is the response time of one of its jobs that occur in the busy period
of τi, starting at a critical instant where all tasks are released at the same time.

By applying Theorem 10, the WCRT of a task τi is obtained by the following steps:
– Compute the length of the busy period of τi
– Compute the number of jobs of τi that occur in the busy period
– Compute the response time of each job and take the maximum response time as the WCRT of

τi
In the following paragraphs, let us denote by hpi the set of tasks, different to τi, of higher or

equal priority to task τi.

length of busy period Let us denote by Wi the function that computes workload of jobs of
a periodic task τi and tasks in hpi, in an interval [0; t] [64]:

∀t > 0,Wi(t) =
∑

τj∈hpi∪{τi}

⌈
t

Tj

⌉
·Cj (13)

The length of the busy period of τi, denoted by Li, is computed similarly to the way the length
of the busy period of a processor is computed (Equation 12). This time the computation only takes
the workload of jobs of tasks that are of higher or equal priority to τi, plus jobs of τi itself:

L
(0)
i =

∑
τj∈hpi∪{τi}

Cj

∀k > 0, L
(k)
i = Wi(L

(k−1))

(14)
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number of jobs in busy period The number Q of jobs that occur in the busy period of τi of
length Li is:

Q = �Li/Ti� (15)

wcrt of task τi By respecting theorem 10, and assuming tasks are synchronous, the comple-
tion time wi of the pth job of τi is composed of two parts:

– Workload of jobs of τi upto the pth job
– Workload of jobs of tasks in hpi in the busy period of τi
The completion time of job p of τi is also computed as:

∀0 < p < Q, w
(0)
i (p) = p · Ci

∀0 < p < Q, ∀k > 0, w
(k)
i (K) = p · Ci +

∑
τj∈hpi

(⌈
w

(k−1)
i

Tj

⌉
· Cj

)
(16)

where Q is the number of jobs of τi that occur in its busy period of length Li .
Since the pth job of τi is released at (p − 1) · Ti , its response time is:

∀0 < p < Q, Ri (p) = wi (p) − (p − 1) · Ti (17)

After computing response times of jobs 1 to Q of τi , the WCRT Ri of τi is:

Ri = max
p∈[1 ;Q]

Ri (K) (18)

The WCRT of τi is compared to its deadline Di to determine if the task is schedulable. Under
RM or DM scheduling, only the response time of the first job of τi is computed, which simplifies
the schedulability condition of a task:

Theorem 11. [64] A synchronous independent periodic task τi , executing on an uniprocessor, scheduled by
RM or DM, with Di � Ti , is schedulable if the following iterative equation is satisfied:

R
(0)
i = Ci

∀k > 0, R
(k)
i = Ci +

∑
τj∈hpi

(⌈
R
(k−1)
i

Tj

⌉
· Cj

)
� Di

(19)

effects of wcbt and jitter To extend the RTA for shared resources, protected by a protocol
like PCP, the authors in [127] proved that the WCBT Bi of a task τi is simply added to Equation
16:

∀0 < p < Q, ∀k > 0, w
(k>0)
i (p) = p · Ci + Bi +

∑
τj∈hpi

(⌈
w

(k−1)
i

Tj

⌉
· Cj

)
(20)

If tasks may experience release jitter Ji , Equation 20 can be extended according to [4]:

∀0 < p < Q, ∀k > 0, w
(k)
i (p) = p · Ci + Bi +

∑
τj∈hpi

(⌈
Jj + w

(k−1)
i

Tj

⌉
· Cj

)
(21)
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Equation 17 is also extended:

∀0 < p < Q, Ri (p) = wi (p) + Ji − (p − 1) · Ti (22)

In this section, a schedulability test that computes response times was exposed. In the next
section, a feasibility test that computes demand bounds is presented.

2.3.4 Processor Demand Feasibility Tests

Processor demand based tests also compute workloads of the system. Contrary to RTA based
tests, tests that compute processor demand will determine the general schedulability of the system
rather than the schedulability of each individual task by computing its WCRT. The schedulability
of a tasks set, scheduled by an optimal policy, is used to determine its feasibility.

The following paragraphs show how to determine the feasibility of tasks scheduled by a pre-
emptive scheduling policy on a uniprocessor. The tasks are assumed independent. Assessing if a
preemptive scheduling policy can schedule independent tasks, with Di � Ti, is done by assessing
the schedulability of tasks set under EDF.

Let us now focus on a processor demand based schedulability test for EDF. The function that
computes processor demand by jobs of n tasks released in [t1; t2], with their deadlines in [t1; t2], is
denoted by dbf(t1, t2) and computed in [16, 17]:

dbf(t1, t2) =

n∑
i=1

ni(t1, t2) ·Ci (23)

where ni(t1, t2) is the number of jobs of task τi released in [t1; t2], and with their absolute deadline
in [t1; t2].

Since the tasks set is scheduled by EDF, the dbf(t1, t2) function gives the amount of workloads
that must be completed in [t1; t2] for the tasks set to be schedulable. A necessary and sufficient
condition of schedulability of tasks scheduled by EDF is then [17]:

dbf(t1, t2) � t2− t1 (24)

The condition in Equation 24 means all intervals [t1; t2] must be checked, which is impossible
since there is an infinite number of intervals. We must thus find a sufficient interval [t1; t2] in
which to assess schedulability. A sufficient interval can be found due to the periodic behavior of
the system. Assuming that tasks are released at t = 0 (synchronous system) and the processor
utilization is U < 1, in [17] the authors proved that the schedulability can be assessed in an interval
[0; t] bounded by the longest busy period of the processor. The bound of the interval, denoted L, is
computed as follows:

L =
U

1−U
· max
i∈[1;n]

(Ti −Di) (25)

The condition in Equation 24 then becomes:

∀L > 0, dbf(0, L) � L (26)

To compute dbf(0, L), the number ni(0, L) of jobs of each task τi released in [0;L], and with their
absolute deadlines in [0;L], must be computed. In [17], ni(0, L) is computed as:

∀L > 0, ni(0, L) = max
(
0,

⌊
L−Di

Ti

⌋
+ 1

)
(27)
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Figure 2.3: Distributed System

The value of dbf(0, L) is then the sum of processor demands by jobs of each task τi released in
[0;L], and with their absolute deadlines in [0;L]:

∀L > 0, dbf(0, L) =

n∑
i=1

max
(
0,

⌊
L−Di

Ti

⌋
+ 1

)
·Ci (28)

If the condition of Equation 26 is respected, then at least EDF can schedule the synchronous
independent tasks set, with Di � Ti. The tasks set is then feasible.

The next section presents a model where the periodic task model is generalized by a model called
transaction.

2.4 transaction models : illustration with tree-shaped

Most of the results, presented for the periodic task model, assume synchronous tasks. To extend
the analysis to asynchronous tasks, where tasks releases are delayed, the periodic task model was
extended with offsets [143, 56, 109], resulting in the transaction model [143].

Figure 2.3 shows an example of a distributed system where tasks are not all released at the same
time due to precedence dependencies. In the system, a task on the left processor releases another
task also on the left processor. This task then sends a message, through a bus, to a task on the right
processor.

There are end-to-end flows in such distributed systems. An end-to-end flow starts with the
release of an entity to the completion of execution of another entity. For example in Figure 2.3, an
end-to-end flow starts with the release of the first task in the left processor, to the completion of the
last task in the right processor.

In this section the transaction model is first defined. Afterwards a historical perspective of schedu-
lability tests for transactions will be exposed. Finally a test that exploits precedence dependencies
between tasks in transactions, will be presented in detail.

2.4.1 Definition

According to [141], "a transaction is a group of related tasks (related either through some collec-
tively performed function, or through some shared timing attributes whereby it is convenient to
collect these tasks into a single entity)". In [105], transactions are used to model groups of tasks
related by precedence dependency. Let us see some definitions and notations for the transaction
model, taken from [141, 143, 105, 106, 118].

A transaction is denoted by Γi and its tasks are denoted by τij. A transaction is released by a
periodic event that occurs every Ti. A particular instance of a transaction is called a job. A job of a
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task in a transaction corresponds to a job of the transaction. If the event that releases the pth job of
Γi occurs at t0, then the pth jobs of its tasks are released after or at t0. The release time of the first
job of Γi is denoted by ri. A task τij has the following parameters:

– Cij is the WCET.
– Cb

ij is the BCET.
– Oij is the offset, a minimum time that must elapse after the release of the job of Γi before

τij is released [105]. Otherwise said τij is released at least Oij units of time after t0. Value
rij = ri +Oij is the absolute release time of the first job of τij.

– dij is the relative deadline. Value Oij + dij is the global deadline [106] of τij. Value ri +Oij +

dij is the absolute deadline of the first job of τij.
– Jij is the maximum jitter, i.e. τij is released in [t0 +Oij; t0 +Oij + Jij].
– Bij is the WCBT [127].
– prio(τij) is the fixed priority.
– proc(τij) is the processor on which τij is allocated on.
– Rw

ij is the global WCRT, which is the WCRT relative to the release of the transaction [105]. A
global response time is the response time of a task plus its offset. As a reminder, a response
time of a task is relative to its release, in this case its offset.

– Rb
ij is the global BCRT, which is the WCRT relative to the release of the transaction [105].

Tasks may use shared resources in critical sections. A critical section is denoted by (τ, R, S, B)

where τ is the task using the resource R. Task τ asks for R at S of its execution time, and locks it
during the next B of its execution time.

Tasks in a transaction are related by precedence dependencies [106]. A precedence dependency
between two tasks is denoted by τip ≺ τij. As a reminder, the precedence dependency means that
a job p of τip must complete before a job p of τij can be released. τip (resp. τij) is called the
predecessor (resp. successor) of τij (resp. τip). According to the precedence dependencies that
may exist between tasks, transactions are of different type.

Definition 52 (Linear Transaction [52]). In the linear transaction model, each event that releases a trans-
action, generates a response in the form of a sequence of actions of the transaction. Each action is released by
the event generated by the previous action. An action may be a task (or a part of a task) or a message sent
through an interconnect. Normally, the first action of a transaction is a task. Actions can only be released
from a single event, and can only generate one event that may in turn release another single action.

Definition 53 (Tree-Shaped Transaction [118]). A tree-shaped transaction Γi has a root task, denoted by
τi1, which leads to the releases of all other tasks, upon completion. A task τij, of a tree-shaped transaction,
is said to have at most one immediate predecessor (denoted by pred(τij)) that releases it upon completion. A
task τij may have several immediate successors (denoted by succ(τij)) that it releases upon completion. The
root task τi1 has not predecessor.

Definition 54 (Graph-Shaped Transaction [66]). A graph-shaped transaction is a generalization of a tree-
shaped transaction, with less constraints. A graph-shaped transaction does not have an unique root task. A
task τij, of a graph-shaped transaction, has a set of predecessors, denoted by pred(τij), and thus it can have
more than one immediate predecessor.

Note that a linear transaction is a more constrained tree-shaped transaction where a task can have
at most one immediate successor, instead of several. On the other hand, a graph-shaped transaction
is less constrained than a tree-shaped transaction.

Figure 2.4 shows some examples of the different types of transactions defined above. Figure 2.4a)
is a linear transaction, Figure 2.4b) is a tree-shaped transaction, and Figure 2.4c) is a graph-shaped
transaction.

Generally an analyzed task is denoted by τab, and it belongs to a transaction denoted by Γa. The
set hpi(τab) is the set of tasks in transaction Γi with a priority higher than or equal to prio(τab)

and allocated on the same processor as τab. A respective definition is given for lower priority tasks
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Figure 2.4: Transaction Types: Circles are tasks; Arrows are precedence dependencies

lpi(τab). For readability issues, when analyzing τab, sometimes hpi(τab) is denoted by hpi, and
similarly for any other notation that has the τab parameter.

The following section gives a historical perspective on the different schedulability tests for differ-
ent types of transactions.

2.4.2 Offset-Based Response Time Analysis: A Historical Perspective

Schedulability tests for transactions use the offset-based RTA method to compute response times.
For example, it can compute the WCRTs of tasks.

Figure 2.5 shows a timeline of some schedulability tests for transactions based on their RTA. Most
of the tests in Figure 2.5 contribute to extend previous tests focusing on several improvements:

– Lesser response time pessimism
– Faster analysis time
– Applicability to EDF scheduling
– Applicability to new types of transactions (e.g. tree-shaped)
The following sections describe the contributions of each test in Figure 2.5.

2.4.2.1 Fundamental Tests

Schedulability test for transactions based on RTA was first proposed by Tindell et al. [143], where
the authors use the linear transaction model. This test improves previous tests (e.g. [64]), in terms
of response time pessimism, when applied to systems where tasks are asynchronous.

Although precedence dependencies between tasks of a same transaction are implicitly modeled,
the authors use static offsets, i.e. a fixed value for the offset. Precedence dependencies aren’t fully
specified [118], nor exploited. Furthermore the transaction model proposed by Tindell restricts the
parameters of its tasks: a task is not allowed to have a deadline, offset, or jitter higher than the
period of the transaction.

In [105] Palencia et al. generalize Tindell’s work, for systems where task offset, jitter and deadline
may be higher than their period so several jobs of tasks in a linear transaction may interfere. The
authors also introduce dynamic offset to fully model precedence dependency between tasks. A
dynamic offset is an offset whose value is within an interval. Indeed, the offset of a task depends
on response time of its preceding task. Their test, called WCDO, computes an upper-bound to the
WCRT of a task.

Both [143] and [105] propose a method to compute the exact and approximate response times
of tasks. The exact response times are computed in exponential time, while the approximation is
computed in pseudo-polynomial time. For the large systems with many tasks, the computation of
exact response times is intractable [143, 105]. Thus the approximation is necessary in this case.
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Figure 2.5: Schedulability Tests Based on RTA for Transactions
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2.4.2.2 Lesser Response Time Pessimism

Having proposed dynamic offsets and jitters to fully model precedence dependencies, Palencia
et al. proposed an improvement of the WCDO test, called WCDOPS in [106]. This test gives less
pessimistic WCRTs than the WCDO test, for systems where tasks are released immediately after
the preceding one. The authors exploit the precedence dependencies between tasks of different
priorities to identify scenarios where not all higher priority tasks may interfere an analyzed task.

In [90, 91], Mäki-Turja et al. observe that previous RTA methods introduce pessimism in the
response time computation due to the computation of interference.

Take the example of Equation 13 where we have the term
⌈

t
Tj

⌉
·Cj. Let us assume that Cj = 3,

Tj = 4, and we have an interval size of t = 5. Due to the ceiling operation, we would get an
interference of 2× Cj = 6 for a task τj in [0; 5], although the interference contained within [0; 5]
cannot be higher than the length of the interval, i.e. 5. The actual interference in [0; 5] is 4.

The authors thus exploit the fact that that the interference in an interval cannot be higher than
the length of the interval. Their approach for computing interference is thus equivalent to float
addition, while previous methods are equivalent to interger addition. Their method reduces the
pessimism of computed WCRTs.

Later, the authors also propose in [93] to compute interference in systems where tasks have some
kind of dependency between their execution times. One task executing at its WCET may mean
that another does not execute at its WCET. Thus the WCET value is not always considered for the
computation of interference.

2.4.2.3 Faster Analysis Time

The analysis time taken by schedulability tests based on RTA is also a factor that can be improved.
In [89, 91, 92], Mäki-Turja et al. propose an efficient implementation of the fundamental schedula-
bility tests based on RTA proposed by [143, 105]. Their implementation computes response times
faster, thus making the analysis time shorter.

Their idea comes from the observation that the interference from a transaction to a task shows
a periodic pattern. Therefore instead of computing the interference of a given transaction to a
given task, whenever this value is needed, the interference of the transaction to the task, in a given
period, is computed beforehand and stored in a table. Each time the interference of the transaction
is needed, a lookup function checks the value in the table and sums it accordingly by the number
of jobs of the transaction that may interfere. The interference from each transaction to each task is
thus stored beforehand to make the analysis time faster.

2.4.2.4 Applicability to EDF Scheduling

All of the previous tests are applicable to a system with FP scheduling. Some tests have also
been proposed for systems scheduled by EDF. In [107], the WCDO is adapted for global clock
EDF (GC-EDF). In a system scheduled by GC-EDF, there is a global clock synchronized between all
processors. In [44], the authors adapt the WCDO and WCDOPS tests for local clock EDF (LC-EDF).
A system scheduled by LC-EDF is one where the clocks of each processor is not synchronized.

2.4.2.5 Applicability to New Types of Transactions

All previous tests are only applicable to linear transactions. There exists tests for tree-shaped and
graph-shaped transactions.

Early works by Garcia et al. in [52] already propose to analyze transactions with multiple-event
synchronization: a task may have several predecessors and several successors. Among N predeces-
sors, a task may wait for 1-among-N to complete execution, or all-N to complete execution, before
being released. Upon completion, a task may release 1-among-N successors or all-N successors.
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The approach of the authors is to transform these synchronization semantics into linear transac-
tions. The authors state in [52] that the analysis may be pessimist, because of the transformation to
linear transactions.

Later tests consider directly the type of the transactions to analyze. The WCDOPS+ test proposed
by Redell in [118], adapts the original WCDOPS test for tree-shaped transactions, with tasks sched-
uled by FP. It also reduces further the pessimism of WCDOPS by further eliminating interferences
that are not possible, due to precedence dependencies and how priorities are specified.

Response times computed by the WCDOPS+ test are improved in [58], where the concept of
relative offsets is proposed. Previously offsets were relative to a single event, which is the release of
the transaction. With a relative offset, the offset value may be relative to any event, for example the
release of any task in the transaction instead of the transaction only. In [58], when a task τij has a
predecessor τip that releases several tasks, an offset is specified for τij relative to the release of τip.
This allows the authors to further eliminate interferences that are not possible.

WCDOPS+ is adapted in [95] for time partitioned systems, where some tasks can only execute
within a given time slot but must complete before the end of the time slot. In [66], WCDOPS+ is
adapted for graph-shaped transactions.

2.4.3 Basic Concepts of RTA of Transactions

As a reminder, the RTA schedulability test for synchronous periodic tasks scheduled by RM or
DM, considers that there is only one critical instant for the whole system, when tasks are all released
at the same time. Furthermore, because of RM or DM scheduling, only the response time of the
first job of a task needs to be computed to assess schedulability. Finally RTA tests for RM and DM
assume tasks do not have precedence dependencies, so the impact of this kind of dependency on
response times is not considered.

These three assumptions do not hold true in the transaction model, where tasks have precedence
dependency, and are released with an offset. Thus several issues are raised:

– Tasks have precedence dependency which must be modeled with the task parameters, and
considered by the RTA.

– There are several potential critical instants, and thus several potential worst case scenarios that
lead to the WCRT of a task.

– Due to precedence dependencies and how task priorities are specified, not all higher priority
tasks may be part of a same busy period of an analyzed task.

In the following sections, let us first see how these issues are solved by the tests in [143, 105, 106,
118]. Throughout these sections, examples are illustrated with the sub-figures in Figure 2.6. Three
jobs of tasks of a transaction Γi are shown in Figure 2.6a). In Γi there are three tasks: τi1 ≺ τi2 ≺ τi3.
The analyzed task is denoted by τab.

2.4.3.1 Dynamic Offset

As stated before, an issue is that tasks have precedence dependency which must be modeled with
the task parameters, and considered by the RTA.

Consider two tasks with a precedence dependency. The successor task is released after the com-
pletion of the predecessor task. Therefore the earliest release time of the successor is the earliest
completion of the predecessor. The offset is a parameter to specify the earliest release of a task. This
parameter is thus used to model precedence dependency.

According to [106], when a task is released with an offset that is constant, independent of the
execution of other tasks in the system, the offset is said to be static. An offset is said to be dynamic
if it can vary between some minimum and maximum interval: [Omin

ij ;Omax
ij ]. This variation is due

to the completion of other tasks for which the released task must wait.
Dynamic offsets are necessary to model precedence dependent tasks. To analyze tasks with

dynamic offsets, the authors in [105] propose to transform the concept of dynamic offset into static
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task τab; Dashed line is priority level of τab; Dotted double arrows are jitters; Up arrows are
transaction releases; All tasks are on same processor
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offset combined with jitter. The lower bound of a dynamic offset is the the static offset: Oij =

Omin
ij . The difference between the lower and upper bounds of the dynamic offset is the jitter:

Jij = Omax
ij −Omax

ij .
When dynamic offsets are used to model precedence dependent tasks, the lower and upper

bounds of the interval are defined by the response times of tasks. Thus when transformed to static
offsets and jitters, the values of offset and jitter are also defined by the response times of tasks. Let
us have τip = pred(τij). The parameters of offset and jitter are then:

Oij = Rb
ip (29)

Rb
ij = Oij +Cb

ij (30)

Jij = Rw
ip − Rb

ip = Rw
ip −Oij (31)

Rw
ip = Oip +Cw

ip (32)

The offset Oij of τij is the global BCRT of its immediate predecessor τip (Equation 30). The
BCRT of a task τij is its offset plus its BCET (Equation 30). The jitter of a task τij is the difference
between the WCRT of τip and the BCRT of τip. The BCRT of τip is also the offset of τij (Equation
31). Initially the WCRT of a task τip is its offset plus its WCET (Equation 32).

To illustrate dynamic offsets and jitters, let us take the example of the transaction Γi in Figure
2.6a) and 2.6b). We have Ci1 = Ci2 = 1. For readability issues, let us assume that the BCETs are
equal to the WCETs, i.e. Cb

i1 = Cb
i2 = 1. As indicated by Figure 2.6a), the offset of τi3 is:

Oi3 = Rb
i2

= Oi2 +Cb
i2

= Rb
i1 +Cb

i2

= Cb
i1 +Cb

i2 = 2

(33)

In Equation 33, notice that the offset of τi3 is the sum of WCETs of its predecessors. Now let us
assume the WCRT of τi2 is Rw

i2 = 13 due to some interference from other transactions in the system.
In Figure 2.6a), if Rw

i2 = 13, the jitter of τi3 is:

Ji3 = Rw
i2 −Oi3

= 13− 2

= 11

(34)

Jitters are updated as response times are computed. Furthermore during the analysis, the re-
sponse time of a task is computed by considering the jitter of the task. Therefore we have response
times that depend on jitters and jitters that depend on response times. The analysis thus iterates
until a convergence of values is reached [143].

2.4.3.2 Worst Case Scenario

As stated before, an issue is that there are several potential critical instants, and thus several
potential worst case scenarios that lead to the WCRT of a task. The busy period of a task and a
critical instant are defined in Definitions 49 and 50. The length of the busy period is denoted by w

and the critical instant is denoted by tc.
For example in Figure 2.6b), the busy period starts at tc. 2 jobs of task τi1 and 3 jobs of task τi3

are in the busy period because they are of higher priority than τab (the analyzed task), itself also
in the busy period. The length of the busy period is then w = 2Ci1 + 3Ci3 +Cab = 9.
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In the worst case scenario, the interference of transactions to a task τab is maximum. The problem
of determining the critical instant that leads to the worst case scenario is the problem of determin-
ing how all transactions are released according to a critical instant tc. Otherwise said, we must
determine how transactions are phased according to tc.

For example in Figure 2.6a), transaction Γi is phased such that its first job that occurs after the
critical instant tc is released at t = tc + 1. In [105] the authors showed the following theorem:

Theorem 12. [105] The maximum interference from a transaction Γi to a task τab (i.e. maximum contribu-
tion to a τab busy period) occurs when the release of Γi is phased such that some task τik ∈ hpi is released
at a critical instant tc after having experienced its maximum release jitter Jik.

We say that τik starts the τab busy period and we created a scenario. After creating a scenario,
without lose of generality, it is also assumed that the critical instant tc = 0 [105]. Jobs of tasks in
hpi before tc must experience enough jitter to be released at tc, and jobs of tasks in hpi after tc
must not experience jitter to be released as early as possible.

When τik starts the τab busy period, not only can several jobs of Γi interfere τab but several jobs
of τab may need to be analyzed. The phasing of jobs of Γi or Γa can be determined. Figure 2.6b)
shows parameters of the phasing of jobs of Γi.

A job number p is assigned to a job of Γi according to the job’s release time. Jobs p � 0 are
released before or at tc and jobs p > 0 are released after tc. For a particular task τij ∈ Γi, the first
job p = 1 after tc is released at ϕijk [105]:

ϕijk = Ti +Oij − (Oik + Jik) mod Ti (35)

The number of pending jobs of τij at tc is [105]:

nijk =

⌊
Jij +ϕijk

Ti

⌋
(36)

Since the last pending job of τij at tc is numbered p = 0, the first pending job of τij at tc is
numbered p0,ijk [105]:

p0,ijk = 1−

⌊
Jij +ϕijk

Ti

⌋
(37)

The number of jobs of τij after tc that are released within a τab busy period of length w is [105]:

⌈
w−ϕijk

Ti

⌉
(38)

For example in Figure 2.6b), τi3 starts the τab busy period after having experienced its jitter Ji3.
Γi is then phased such that task τi3 is released at ϕi33 = 3. For task τi1 (resp. τi2), this value is
ϕi13 = 1 (resp. ϕi23 = 2). We have 3 jobs of τi3 in the τab busy period: 2 jobs before tc and one
after tc. The first pending job of τi3 at tc is thus numbered p0,i33 = −1. For task τi1 (resp. τ21),
this value is p0,i13 = 0 (resp. p0,i23 = 0).

Similarly values representing the phasing of Γa, to which the analyzed task τab belongs to, can
also be computed.

Once a scenario is created, the goal is to compute interference of transactions Γi, and transaction
Γa, to τab. When computing interference, Γi and Γa contributes to the τab busy period. The
interference contributes to the WCRT of τab.

To create the scenario that leads to the exact WCRT of a task, all combinations of tasks τik in
all transactions must be tested [143, 105]. This operation is exponential and intractable for large
systems with many tasks [143, 105]. Thus tests for transactions usually compute an upper-bound
to the WCRT of a task by considering each transaction contributes its maximum to the busy period
of τab, without knowledge of how other transactions interfere τab.
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2.4.3.3 Execution Conflicts

As stated before, an issue is that due to precedence dependencies and how task priorities are
specified, not all higher priority tasks may be part of a same busy period of an analyzed task.

When analyzing a task τab, not all tasks in hpi are eligible to execute within the same τab busy
period. This is called an execution conflict. Figure 2.6 illustrates the consequences of execution
conflicts.

Figure 2.6a) shows the execution of the three jobs of Γi alone. Two jobs are released before tc,
and one job is released after. Figures 2.6b) to 2.6d) show how Γi contributes to the τab busy period,
according to different tests, in the scenario where τi3 starts the τab busy period.

Figure 2.6b) shows the interference computed by WCDO [105]. The test does not consider execu-
tion conflicts so any jobs of τij ∈ hpi(τab), that experiences enough jitter to be released at tc, or
that is released after tc in the τab busy period, can contribute to the τab busy period. Therefore
the two jobs of τi1 and three jobs of τi3 contribute to the τab busy period.

Figure 2.6c) shows the interference computed by WCDOPS [106]. The test reduces pessimism
by solving an execution conflict. Since tasks of Γi are related by precedence dependency, and
τi2 ∈ lpi(τab) must complete before the release of τi3, tasks τi1 and τi3 cannot be in the same
τab busy period. For the second job of Γi, τi3 is chosen to contribute to the busy period because its
WCET is longer than the WCET of τi1. For the third job of Γi released at tc, only τi1 can contribute
to the busy period because τi2 cannot execute in the busy period and thus τi3 cannot be released
before the end of the busy period.

Figure 2.6d) shows the interference computed by WCDOPS+ [118]. It also shows the real schedule
of the scenario, where τi3 experiences jitter to be released at tc, and thus τi2 completes at tc. In
Figure 2.6d), WCDOPS+ further reduces pessimism by solving another execution conflict. Since
the first job of τi3 starts the τab busy period, it must be in the busy period. Once the busy period
starts, the second job of τi2 cannot be in the busy period. Neither can the second job of τi3 since it
is preceded by τi2. Thus for the second job of Γi, only task τi1 can contribute to the busy period.

The next section presents the WCDOPS+ test, where the basic concepts, presented in this section,
are all considered.

2.4.4 The WCDOPS+ Test

This section presents the schedulability test in [118] for tree-shaped transactions. In the following
sections, first an overview of the RTA method of the test is given. Afterwards key steps of the
method are exposed.

2.4.4.1 Overview of the RTA Method

In this section, an overview of the analysis is shown. Then the approach of the analysis is
compared to the WCRT computation approach for the periodic task model. As we will see, there
are similarities and differences.

Figure 2.7 show the general algorithm of WCDOPS+, for the analysis of a given task τab, during
an iteration of the algorithm. The approach is based on [143, 105].

Some tasks sets are first defined to solve execution conflicts (Op0). The idea is to compute the
WCRT of τab for each scenario where a task τac starts the τab busy period (Op1). Within a
scenario, the WCRT of each job pab of τab in the τab busy period is computed. The length of the
busy period w can be estimated [105]. To compute the WCRT of job pab of τab, interference from
transactions of the system is computed (Op2). The interference includes those from transactions
Γi and transaction Γa to which the analyzed task τab belongs to. The WCRT of τab is then the
maximum of WCRTs of each job pab of each scenario (Op3).

Once the WCRT of each task τab is computed, jitters are updated. Convergence is then checked
and if any values are modified, the test goes on to the next iteration.
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Figure 2.7: WCDOPS+ Overview: Circles indicate key operations

The approach is similar to the RTA method for the periodic task model. Indeed, the WCRT of a
periodic task is computed by first computing the length of its busy period, then the number of jobs
in its busy period, then the response times of each job to get the maximum.

The approaches are similar but there are some major differences, due the basic concepts of RTA
of transactions. First, there are several scenarios to consider. This was explained previously in
Section 2.4.3.2. Second, the interference computation is different due to precedence dependencies.
This was explained previously in Section 2.4.3.3 and will be fully exposed in later sections, since
the interference computation is the bulk of the WCDOPS+ test. Third, jitters are updated after the
WCRT computation and the whole algorithm iterates if jitters are modified. This was explained
previously in Section 2.4.3.1.

All of these concepts, and others, are part of the key operations of the WCDOPS+ algorithm.
These key operations are illustrated in Figure 2.7. In the following sections each key operation is
explained. To illustrate the operations, the example of the tree-shaped transaction in Figure 2.8 will
be referred to.

2.4.4.2 Op0: Task Sets and Execution Conflicts

To identify and solve execution conflicts, it is useful to group tasks of a transaction in sets ac-
cording to their priorities and on which processor they are allocated on [106, 118]. This is done in
Op0.

h segment and h section In [118], two kinds of sets are defined: H segments and H sections.
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Figure 2.8: Tree-Shaped Transaction: Task τab assumed under analysis; Tasks belong to Γi; Black circles are
tasks in hpi(τab); White circles are tasks in lpi(τab); Crossed circles are tasks on another processor

An H segment is a set of tasks that must all execute within a same τab busy period. Two tasks
in hpi(τab) belong to the same H segment if there is no other task that is not in hpi that precedes
one but not the other. Formally an H segment is defined as:

H
seg
ij (τab) = {τim | τim ∈ hpi(τab)∧

(¬∃τil ∈ ΓijΔΓim | τil /∈ hpi(τab)}
(39)

where Γij is defined as:

Γij = {τik ∈ Γi | τik ≺ τij}∪ {τij} (40)

and ΓijΔΓim is defined as:

ΓijΔΓim ≡ Γij ∪ Γim \ Γij ∩ Γim (41)

To illustrate H segments, let us see some examples in Figure 2.8. We have H
seg
i3 = {τi3}, H

seg
i4 =

H
seg
i5 = {τi4, τi5}, H

seg
i10 = {τi10}, and H

seg
i7 = H

seg
i8 = {τi7, τi8}.

An H section is a set of tasks that may execute in the same τab busy period. Two tasks in
hpi(τab) belong to the same H section if there is no other task in lpi(τab) that precedes one but
not the other. Formally an H section is defined as:

Hij(τab) = {τim | τim ∈ hpi(τab)∧

(¬∃τil ∈ ΓijΔΓim | τil ∈ lpi(τab)}
(42)

To illustrate H sections let us see some examples in Figure 2.8. We have Hi4 = Hi5 = Hi10 =

{τi4, τi5, τi10}.

precedence dependency of h segment A task τik is said to precede an H segment Hseg
ij ,

denoted by τik ≺ H
seg
ij , if it precedes all tasks in H

seg
ij . The immediate predecessor of an H segment

is denoted by pred(Hseg
ij ) and satisfies the following condition:

τip ≺ H
seg
ij ∧ (∃τim ∈ H

seg
ij | pred(τim) = τip (43)

If τi1 is in H
seg
ij then pred(Hseg

ij ) is undefined. For example in Figure 2.8, we have pred(Hseg
i4 ) =

τi1.
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The set of immediate successors of an H segment are tasks that do not belong to H
seg
ij but whose

predecessors do:

succ(Hseg
ij ) =

{
τim | τim /∈ H

seg
ij ∧ pred(τim) ∈ H

seg
ij

}
(44)

For example in Figure 2.8, we have succ(Hseg
i4 ) = {τi6, τi9}.

An H segment Hseg
ij is said to precede a task τim, denoted by H

seg
ij ≺ τim, if:

τim /∈ H
seg
ij ∧ (pred(Hseg

ij ) ≺ τim ∨ τi1 ∈ H
seg
ij ) (45)

For example in Figure 2.8, Hseg
i4 precedes τi6, τi7, τi8, τi9, τi10.

h segment offset and jitter H segments may have an offset and jitter defined by the offset
and jitter of their first task(s). The first task(s) of an H segment is (are) the one(s) with the smallest
offset.

Let XPi(τab) denote the set of tasks in Γi that come first in their respective H segment:

XPi(τab) = {τif ∈ hpi(τab) | pred(τif) /∈ hpi(τab)} (46)

For example in Figure 2.8, we have XPi = {τi3, τi4, τi7, τi8, τi10, }.
The offset of an H segment Hseg

ij is then:

O
seg
ij (τab) = Oif | τif ∈ XPi(τab)∧H

seg
if (τab) = H

seg
ij (τab) (47)

For example in Figure 2.8, we have O
seg
i7 = Oi7 = Oi8.

The jitter Jsegij (τab) of an H segment Hseg
ij is defined in the same way. For example in Figure 2.8,

we have J
seg
i7 = Ji7 = Ji8.

phasing of h segment It is also possible to define the phasing of an H segment. The phasing
of an H segment is described by values that describe the phasing of the first task(s) of the H
segment.

Job p = 1 of an H segment Hseg
ij , when τik starts the busy period, is released at:

ϕ
seg
ijk (τab) = Ti +O

seg
ij (τab) − (Oik + Jik) mod Ti (48)

Otherwise said, job p = 1 of an H segment Hseg
ij is released at the time job p = 1 of its first task(s)

is released. For example in Figure 2.8, we have ϕ
seg
i4k = ϕi4k.

The first pending job of an H segment Hseg
ij at tc is numbered:

p
seg
0,ijk(τab) = 1−

⌊
J
seg
ij (τab) +ϕ

seg
ijk (τab)

Ti

⌋
(49)

Otherwise said, the first pending job of an H segment Hseg
ij at tc is the first pending job of its

first task(s). For example in Figure 2.8, we have p
seg
0,i4k = p0,i4k.
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execution conflicts of h segment There are execution conflicts between tasks and an H
segment is a set of tasks. Therefore the exists execution conflicts between H segments. They are in
blocking conflict or precedence conflict.

H segments that have an immediate predecessor in lpi are called blocking H segments. Only one
of these from all jobs of all transactions, can execute within a τab busy period. For example, Hseg

i3 ,
H

seg
i4 , and H

seg
i7 are blocking H segments. Two tasks that belong to different blocking H segments

are said to be in blocking conflict. For example, tasks τi3, τi5, τi8 are in blocking conflict.
Let us consider τix and τiy both in lpi. They are said to be in precedence conflict, if they belong

to different H sections and either H
seg
ix ≺ τiy or H

seg
iy ≺ τix. For example, τi5 and τi7 are in

precedence conflict.

2.4.4.3 Op1: Worst Case Scenario

A scenario, where τik starts the τab busy period, is created so the phasing of Γi can be deter-
mined, so its interference can computed.

A scenario is created by choosing τik ∈ Γi to start the τab busy period at tc. Tasks in Γi that
may start the busy period are in a set XPi(τab), which is the set of tasks that come first in their
respective H segments. In the case of Γa, to which τab belongs to, task τac ∈ XPa(τab) starts the
τab busy period. This reduces the number of scenarios to create compared to a test like WCDO
[106, 118].

For example in Figure 2.8, tasks in XPi = {τi3, τi4, τi7, τi8, τi10, } are tasks τikk that may start
the τab busy period at tc.

For the analysis of τab, each scenario created by τac ∈ XPa is combined with only one scenario
created by a τik, in each XPi. Otherwise said, each τac is only combined with only one τik in
each XPi. For example, if there are 2 tasks in XPa, and there are 3 other XPi sets, then there are
2× 3 = 6 combinations. Task τik of XPi is chosen if it leads to the greatest interference of Γi to τab,
in the scenario where τac starts the τab busy period. This τik is determined in the interference
computation operation (Op2).

The combinations of all scenarios, created by tasks τab and τik, are not checked because other-
wise the operation is exponential. For example if there are 2 tasks in XPa, and there are 3 other XPi
sets, with 2 tasks in each XPi set, the number of combinations is 24 = 16.

For tasks τikXPi, the one that starts the one that gives the greatest interference of Γi, in the
scenario where τac starts the τab busy period. is chosen to start the τab busy period. As a
reminder, each combination of tasks τac and τik

2.4.4.4 Op2: Worst Case Interference

Once a scenario is created, the interference from any transaction to jobs of τab is computed. Let
us consider the analysis of a job pab of τab.

The test computes two kinds of interference for a transaction: blocking and non-blocking. Block-
ing interference is the interference of a transaction, with interference from one of its blocking H
segment. Only one blocking interference from any job of any transaction in the system, can con-
tribute to the τab busy period. If a transaction’s blocking interference is not chosen to contribute,
then only its non-blocking interference contributes to the τab busy period.

The following paragraphs show how to compute interference of jobs of a transaction Γi, and Γa,
before or at tc, then jobs after tc. Afterwards it is shown how to compute the total interference, i.e.
interference from all Γi and Γa.

It is assumed that task τik ∈ XPi of Γi, and task τac ∈ XPa of Γa, start the τab busy period, of
length w, at tc = 0.

jobs before or at tc (p � 0) The blocking and non-blocking interferences are computed for
the jobs p of Γi released before or at tc . To compute both interferences the idea is to iterate through
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each pending job p of Γi before or at tc that may interfere. The first pending job of Γi that may
interfere is the first pending job of the H segment of the last task of Γi that belongs to hpi .

The last task of Γi that belongs to hpi is the task in hpi with the greatest offset. This task is
denoted by τiN. For example in Figure 2.8, assuming all tasks have a WCET of 1, τiN is τi7 or τi8
or τi10.

The first pending job of τiN is numbered p
seg
0,iNk(τab), which is computed with Equation 49.

Therefore only jobs p
seg
0,iNk(τab) � p � 0 may interfere.

The blocking interference and the non-blocking interference of a particular job p of Γi are com-
puted by exploring the tree representing the transaction. After exploring the whole tree, the combi-
nation of H segments, that gives the highest blocking and non-blocking interferences, is determined
for job p.

Only some H segments may interfere together within the given scenario, where τik and τac
start the τab busy period. Indeed, some H segments are in blocking and precedence conflicts.
Furthermore an H segment may also be in blocking or precedence conflict with the H segments of
tasks τik, τac, and τab.

After the blocking interference and non-blocking interference for each job p are computed, the
blocking interferences are summed to get the interference of jobs p � 0 of Γi. The maximum of the
non-blocking interferences is the non-blocking interference of jobs p � 0 of Γi.

For jobs p � 0 of Γa, the blocking and non-blocking interferences computation is similar to the
Γi case. The difference relies in how some H segments may interfere together, since there are more
execution conflicts in the case of Γa, due to the fact that τab belongs to Γa and it may precede some
other tasks [118].

The computation of interferences of jobs p � 0 of Γi and Γa is performed with three functions
that are described in the next Section 2.4.4.5.

jobs after tc (p > 0) The interference of jobs after tc is computed differently for Γi and Γa .

������������ �� Γi Jobs p > 0 of τij can only interfere τab if τij belongs to the first H section of
Γi , and the first H segment is not a blocking segment. As such, the set of tasks that may interfere
are in:

MPi (τab ) = {τil ∈ Γi | (¬∃τix ∈ lpi (τab ) | τix ≺ τil )} (50)

In Figure 2.8, MPi = ∅ because τi1 ∈ lpi . Otherwise suppose that τi1 /∈ lpi . Graphically in
the figure, this would mean τi1 is a crossed task. In this case we have MPi = {τi4 , τi5 , τi10 }.

A task τij in MPi contributes to the τab busy period if its H segment Hseg
ij is released within

the busy period. As such, the interference from jobs p > 0 of tasks τij in MPi is:

Wik (τab , w) |p>0=
∑

τij∈MPi(τab)

⌈
w − ϕ

seg
ijk (τab )

Ti

⌉
0

Cij (51)

where �x�0 = max(�x�, 0).
In Figure 2.8, let us suppose again that τi1 /∈ lpi . Let us now suppose that each task has a

WCET of 1 and the busy period w is long enough for jobs 0 < p � 3 of tasks τij to be released
within the busy period. Only tasks τi4 , τi5 , and τi10 can interfere because they belong to the first
H section Hi4 . We then have Wik (τab , w) |p>0= 3Ci4 + 3Ci5 + 3Ci10 = 9.

������������ �� Γa Similarly to Γi , jobs p > 0 of τaj can only interfere τab , if they belong to a
similarly defined MPa set. Contrary to Γi , a job of a task in MPa cannot interfere τab if the task
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is preceded by τab and the job is the analyzed job pab or later jobs. Therefore there are two sets
of tasks that may interfere τab :

MP1
a (τab ) = {τal ∈ MPa (τab ) \ {τab } | ¬(τab ≺ τal )} (52)

MP2
a(τab) = {τal ∈MPa(τab) \ {τab} | τab ≺ τal} (53)

Tasks in MP1
a are not preceded by τab so the interference of their jobs p > 0 is:

W1
ac(τab, w) =

∑
τaj∈MP1

a(τab)

⌈
w−ϕ

seg
ajc (τab)

Ta

⌉
0

Caj (54)

Tasks in MP2
a are preceded by τab so at most pab − 1 jobs of these tasks may interfere:

W2
ac(τab, w, pab) =

∑
τaj∈MP2

a(τab)

min

(
pab − 1,

⌈
w−ϕ

seg
ajc (τab)

Ta

⌉
0

)
Caj (55)

In Figure 2.8, let us suppose that τi5 is the analyzed task, i.e. τab = τi5 and Γa = Γi. Let us also
suppose that τi1 /∈ lpi. Graphically in the figure, this would mean τi1 is a crossed task. In this case
we have MP1

a = {τi4}. We also have MP2
a = {τi10}.

Suppose that job pab = 3 of τi5 is under analysis. Then at most 2 jobs of τi10 can interfere job 3

of τi5. There is no such restriction on the interference of jobs of τi4 since it is not preceded by τi5.
Sets MP1

a and MP2
a both do not contain τab. Thus when job pab of τab is under analysis, the

contribution of pab number of its jobs, to the busy period, must be added. For pab < 0, the
contribution cannot be negative. Therefore the total interference from jobs p > 0 of Γa is:

Wac(τab, w, pab) |p>0= W1
ac(τab, w) + max(0, pab ·Cab +W2

ac(τab, w, pab)) (56)

Let us take the same example with the same assumptions as stated previously. Let us suppose
that each task has a WCET of 1 and the busy period w is long enough for jobs 0 < p � 3 of tasks τaj
to be released in the τi5 busy period. We have Wac(τi5, w, 3) |p>0= 3Ci4+max(0, 3Ci5+ 2Ci10) =

8

total interference The total interference of Γi is composed of interference of jobs p � 0 and
jobs p > 0. Let Wik(τab, w) denote the non-blocking interference and WBik(τab, w) the blocking
interference. Therefore we have Wik(τab, w) � WBik(τab, w). These values are computed as
follows:

[Wik(τab, w, τac),WBik(τab, w, τac)] = [transI_NoB, transI_B] + [1, 1].Wik(τab, w) |p>0 (57)

where [transI_NoB, transI_B] are the non-blocking and blocking interference of jobs p � 0 of Γi.
In Figure 2.8, let us suppose that task τik = τi8 and τac = τab start the busy period. Let us

suppose that the busy period w is long enough for jobs 0 � p � 3 of tasks τij to be released within
the busy period. Finally let us suppose that each task has a WCET of 1 except Ci8 = 5. We then
have Wi8(τab, w, τab) = Ci10 = 1 and WBi8(τab, w, τab) = Ci10 +Ci7 +Ci8 = 7.

The result of the example means that for job p = 0, the blocking interference WBi8(τab, w, τab)

of Γi is the interference of Hseg
i8 (blocking segment) and H

seg
i10 (non-blocking H segment). The non-

blocking interference Wi8(τab, w, τab) is simply the interference of Hseg
i10 (non-blocking H segment).
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For jobs p = {1, 2, 3}, the first H segment is a blocking H segment so no jobs p > 0 of Γi cannot
interfere.

Once interference has been computed for each τik that may start the τab busy period, an upper-
bound to the interference can be computed. Let W∗

i (τab, w, τac) (resp. WB∗
i (τab, w, τac)) denote

the upper-bound of the blocking (resp. non-blocking) interference of Γi. The upper-bound to
the blocking interference is the greatest blocking interference computed for each scenario where
τik starts the τab busy period. The upper-bound to the non-blocking interference is computed
similarly.

W∗
i (τab, w, τac) = max

τik∈XPi(τab)
Wik(τab, w, τac) (58)

WB∗
i (τab, w, τac) = max

τik∈XPi(τab)
WBik(τab, w, τac) (59)

Previously, in the example, the computed blocking and non-blocking interference, for τik =

τi7, are the upper-bounds: W∗
i (τab, w, τac) = Wi8(τab, w, τab) = 1 and WB∗

i (τab, w, τac) =

WBi8(τab, w, τab) = 7. Indeed, when τik starts the τab busy period, we get the greatest interfer-
ence since Ci8 = 5 and other tasks have a WCET of 1.

The difference between the blocking and non-blocking interference of Γi can be expressed as an
interference increase to the blocking interference:

ΔW∗
i (τab, w, τac) = WB∗

i (τab, w, τac) −W∗
i (τab, w, τac) (60)

In the example, we have ΔW∗
i (τab, w, τac) = WBi8(τab, w, τab) −Wi8(τab, w, τab) = 6.

Similarly the non-blocking interference of Γa is denoted by Wac(τab, w, pab), computed with
corresponding equations for Γa. The blocking interference is denoted by WBac(τab, w, pab) and
the interference increase is denoted by ΔWBac(τab, w, pab). Upper-bounds are not computed for
Γa since we iterate through each scenario where τac ∈ XPa starts the τab busy period. The reason
to not compute an upper-bound, an thus iterate through τac tasks, is to reduce some pessimism
[118].

2.4.4.5 Op2 cont.: Worst Case Interference Algorithms

The previous section showed how interference from Γi and Γa is computed. The equations for
the computation of the interference of jobs p > 0 were given. This section describes the algorithms
for the computation of the interference of jobs p � 0.

The interference of jobs p � 0 of Γi is computed with three functions:
– (f1) Compare/sum interference of each job p � 0 of Γi
– (f2) Compute interference of a particular job p of Γi
– (f3) Compute interference of a particular task of job p of Γi
The following three paragraphs describe each function. Then the final paragraph introduces the

modifications necessary for Γa.

(f1) transactioninterference Interference from jobs of Γi before or at tc is computed by
the TransactionInterference function. The function takes as input parameters:

– τab: task to analyze
– τik: task that starts the τab busy period
– w: length of the busy period
– τac: task in Γa that starts the τab busy period
The function returns a transaction’s blocking and non-blocking interference:
– transI_NoB: non-blocking interference
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– transI_B: blocking interference
The idea is to iterate through each pending job p of Γi, before or at tc, that may interfere. The

first pending job of Γi that may interfere is the first pending job of the H segment of the last task of
Γi that belongs to hpi. Algorithm 2.1 shows the TransactionInterference function.

Algorithm 2.1 TransactionInterference Function

1: function TransactionInterference(τab, τik, w, τac)
2: Add ghost root task τi0 as predecessor to tasks without any predecessor
3:
4: for p in p

seg
0,iNk(τab)..0 do

5: [jobI, jobDelta]← BranchInterference(τab, τik, τi0, w, p, τac)
6: transI_NoB← transI_NoB + jobI
7: transDelta← max(transDelta, jobDelta)
8: end for

9:
10: transI_B← transI_NoB + transDelta
11: return [transI_NoB, transI_B]
12: end function

To simplify the algorithm, line 2 adds a ghost root task as predecessor of tasks without predeces-
sors. A ghost root task is not formally defined in [118] so it may be defined as follows:

Definition 55 (Ghost Root Task). A ghost task is allocated alone on a processor modeled only for the
purpose of the analysis. It has a BCET and WCET of 0, an offset of 0, an infinity deadline, no jitter, a WCBT
of 0, and its priority does not matter since it is allocated alone on the unique processor. In a transaction, a
ghost root task is a ghost task that precedes all other tasks, and does not have any predecessor.

(f2) branchinterference To compute the interference of a particular job p � 0 of Γi, since
the transaction is tree-shaped, the tree is explored by a depth-first search algorithm. The algorithm
is the BranchInterference function in Algorithm 2.2. The function takes as input parameters:

– τab: task to analyze
– τik: task in Γi that starts the τab busy period
– τiB: task defining a branch (defined below)
– w: length of the busy period
– p: job of Γi to compute interference
– τac: task in Γa that starts the τab busy period
The function returns the interference of a branch without interference from any blocking H seg-

ment, and its interference increase if a blocking H segment of the branch is allowed to contribute
to the τab busy period:

– branchI: branch non-blocking interference
– branchDelta: branch interference increase
The tree is explored by branches. A branch is defined by a task denoted by τiB, and we have

τiB /∈ hpi. The branch contains τiB and all tasks preceded by τiB. For example in Figure 2.8, tasks
τi1, τi2, τi6, τi9 define branches.

If τiB precedes an H segment, let τim be a task in the H segment A branch can have a number
of sub-branches denoted by SB, which contain tasks in succ(Hseg

im ) and immediate successors of
τiB that are not in H

seg
im . For example in Figure 2.8, the set of sub-branches of branch τi1 is

SB = {τi6, τi9}.
The following paragraphs explain the algorithm of the function. During the description of the

algorithm, it is illustrated by examples taken from the tree-shaped transaction in Figure 2.8. Let
us assume that all tasks have a WCET of 1, except Ci8 = 5. Let us assume also that all tasks can
potentially be released in the τab busy period. Values are computed for the τi1 branch.

The BranchInterference function is called recursively. The general idea is to compute interfer-
ence of an H section Him preceded by τiB, denoted by sectionI (line 5), and compare/sum it with
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Algorithm 2.2 BranchInterference Function

1: function BranchInterference(τab, τik, τiB, w, p, τac)
2: SB← succ(τiB)

3: if ∃τim ∈ SB | τim ∈ hpi(τab) then

4: S← {τil ∈ Him(τab) | τiB ≺ τil}

5: sectionI← ∑
τij∈S

TaskInterference(τab, τik, τij, w, p, τac)

6: SB← {SB∪ succ(Hseg
im (τab))} \ {succ(τiB)∩Hseg

im (τab)}

7: end if

8:
9: for τiS ∈ SB do

10: [bI, bD]← BranchInterference(τab, τik, τiS, w, p, τac)
11: subBranchesI← subBranchesI + bI
12: subBDelta← max(subBDelta, bD)
13: end for

14:
15: if τiB ∈ lpi(τab) then

16: branchI← subBranchesI
17: branchDelta← max(sectionI - subBranchesI, subBDelta)
18: else

19: branchI← max(sectionI, subBranchesI)
20: branchDelta← max(subBranchesI + subBDelta - branchI, 0)
21: end if

22:
23: return [branchI, branchDelta]
24: end function

interference from sub-branches of the τiB branch in SB, denoted by subBranchesI and subBDelta.
This will compute correct values of branchI and branchDelta by eliminating blocking and precedence
conflicts.

For the τi1 branch, sectionI is the sum of WCETs of tasks in Hi4 = {τi4, τi5, τi10}:

sectionI = Ci4 +Ci5 +Ci10 = 3 (61)

Value subBranchesI (line 11) is the sum of branchI (denoted by bI) computed for sub-branches of
the τiB branch. Value subBDelta (line 12) is the maximum branchDelta (denoted by bD) computed
for sub-branches. These values are returned by calls of the BranchInterference function to tasks
in SB.

For the τi1 branch, the sub-branches are τi2, τi6, τi9. Tasks τi2 and τi6 are in lpi so only τi9
returns a non-blocking branch interference that is added to subBranchesI:

subBranchesI = Ci10 = 1 (62)

For the same reason, only branches τi2 and τi6 return a blocking interference to be compared for
the computation of subBDelta of branch τi1:

subBDelta = max(Ci3, (Ci7 +Ci8)) = max(1, 1+ 5) = 6 (63)

To compute the values of branchI and branchDelta for the τiB branch, it must be determined if the
H segment Hseg

im preceded by τiB is a blocking one, i.e. if τiB is in lpi (line 15).
If H

seg
im is a blocking segment, the non-blocking interference is simply the interference of the

sub-branches (line 16).
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Notice that the interference of H
seg
im is sectionI - subBranchesI. This value is compared to the

interference increase subBDelta of sub-branches, to get the maximum value to assign to branchDelta
(line 17).

If H
seg
im is not a blocking segment, then the interference of Him (sectionI) is compared to inter-

ference of sub-branches to eliminate precedence conflicts (line 19). The value of branchDelta is then
computed accordingly (line 20).

For the τi1 branch, task τi1 ∈ lpi. Therefore its branchI and branchDelta values are:

branchI = subBranchesI = 1 (64)

branchDelta = max(sectionI− subBranchsI, subBDelta) = max(3− 1, 6) = 6 (65)

The branchI and branchDelta values of branch τi1 mean that the transaction Γi has a non-blocking
interference of 1 and a blocking interference of 6.

This result is expected. Indeed only τi10 is in a non-blocking H segment. All other tasks are in
blocking segments and we have:

(Ci7 +Ci8 = 6) > (Ci4 +Ci5 = 1) > (Ci3 = 1) (66)

Therefore H
seg
i7 gives the largest blocking interference, which is the blocking interference of trans-

action Γi.

(f3) taskinterference When computing interference of a particular job p � 0 of Γi, each
task’s job’s interference is computed by the TaskInterference function. The function takes as
input parameters:

– τab: task to analyze
– τik: task in Γi that starts the τab busy period
– τij: a task to compute the interference
– w: length of the busy period
– p: job of τij to compute interference
– τac: task in Γa that starts the τab busy period
The function returns the task’s WCET if it can interfere, otherwise 0:
– taskI: interference of the task τij
A job p of a task τij can interfere if it is a job later than p

seg
0,ijk and if it is released in [0,w):

p � p
seg
0,ijk ∧w > ϕ

seg
ijk + (p− 1)Ti (67)

A job of a task can only interfere if it passes a number of reduction rules that eliminate furthermore
execution conflicts due to some jobs of tasks that must be in the τab busy period: jobs of τik, τac,
and τab itself.

For example in Figure 2.8, if τik = τi7 starts the τab busy period, then each task of Hseg
i4 has nil

interference because H
seg
i4 and H

seg
i7 are in blocking conflict and because they are also in precedence

conflict. Either conflict is sufficient to reduce the interference of one of the two H segments.
The complete TaskInterference function is in Algorithm 2.3. The reduction rules are shown in

the function.
Note that the parameter τac, that was passed through the different function until now, is only

used in the 4th reduction rule. This parameter does not exist when Γi = Γa so neither does the the
4th reduction rule when computing the interference of jobs of tasks in Γa.

modifications for interference of Γa For jobs p � 0 of Γa the interference computation
is similar to the Γi case. The only difference is the modification of a reduction rule and the addition
of two new reduction rules in the TaskInterference function. These rules are in [118].
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Algorithm 2.3 TaskInterference Function

1: function TaskInterference(τab, τik, τij, w, p, τac)
2: if p � p

seg
0,ijk ∧w > ϕ

seg
ijk + (p− 1)Ti then

3: taskI← Cij

4: end if

5: if p � p
seg
0,ikk ∧H

seg
ik ≺ τij ∧Hik �= Hij

6: or pred(Hseg
ik ) ∈ lpi ∧ pred(Hseg

ij ) ∈ lpi ∧ (Hseg
ik �= H

seg
ij ∨ p �= p

seg
0,ikk)

7: or pred(Hseg
ab ) ∈ lpi ∧ pred(Hseg

ij ) ∈ lpi

8: or pred(Hseg
ac ) ∈ lpi ∧ pred(Hseg

ij ) ∈ lpi then

9: taskI← 0

10: end if � Reduction rules 1 to 4

11: return taskI
12: end function

Furthermore the job pab of τab , currently under analysis, is an input parameter for all the
functions. Like the τac parameter for Γi , the pab parameter for Γa is only used for reduction
rules.

2.4.4.6 Op3: Worst Case Response Time

Op3 consists in computing the WCRT of τab. The following paragraphs give the details of the
WCRT computation, which is divided into:

– Compute the length of the τab busy period in a scenario
– Compute the number of jobs of τab that occur in the busy period in a scenario
– Compute the response time of each job pab in τab busy period of each scenario, and take the

maximum of the response times as the WCRT of τab

length of busy period To estimate the number of jobs to analyze, the length of the busy
period may be estimated. When τac starts the τab busy period, the length of the τab busy period
is denoted by Labc and computed as follows:

Labc = Bab +W′
ac +

∑
∀i �=a

W∗
i (τab, L, τac) + max(WB′

ac −W′
ac, ΔW

∗
i (τab, L, τac)) (68)

where W′
ac = Wac(τab, w, pab) and W′

ac = WBac(τab, w, pab).

number of jobs in busy period Jobs of τab numbered between p
seg
0,abc(τab) and p

seg
L,abc(τab)

need to be analyzed. The lowest job number pseg0,abc(τab) is computed with Equation 49 applied to
τac. The highest job number psegL,abc(τab) is computed as follows:

p
seg
L,abc(τab) =

⌈
Labc −ϕ

seg
0,abc(τab)

Ta

⌉
0

(69)

If τab is not in MPa, then p
seg
L,abc(τab) = 0.

wcrt of task τab First let ΔWB∗
ac (τab , w, pab ) denote the maximum interference increase

among all transactions in the system:

ΔWB∗
ac (τab , w, pab , τac ) = max(ΔWBac (τab , w, pab ), ΔW∗

i (τab , w, τac )) (70)

The response time of job pab of τab , when τac starts the busy period, is derived from its
completion time wabc (pab ) which is the sum of: its WCBT (Bab); the non-blocking interference
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from Γa (Wac); the sum of non-blocking interference upper-bounds from other transactions Γi ;
and the maximum interference increase (ΔWB∗

ac (τab , w, pab , τac )). The completion time is
computed as follows:

wabc (pab ) = Bab + Wac +
∑

∀i �=a

W∗
i + max(ΔWac , ΔW∗

i ) (71)

Equation 71 is solved by iteration. Job pab of τab is released at ϕabc + (pab − 1)Ta, so its
response time, denoted by Rw

abc(pab), is computed as follows:

Rw
abc(pab) = wabc(pab) − (ϕabc + (pab − 1)Ta) +Oab (72)

Equation 72 is applied to each job of τab that may be in the busy period.
The WCRT of τab (denoted by Rw

ab) is then the maximum Rw
abc(pab) for all τac that start the

τab busy period:

Rw
ab = max

τac∈XPa(τab)

{
max

pab=p
seg
0,abc(τab)..pseg

L,abc(τab)
Rw
abc(pab)

}
(73)

The WCRT Rw
ab given by Equation 73 is compared to global deadline (Oij + dij) of a task to

determine if it is schedulable. The analysis is performed for all tasks τab in the system to determine
if the system is schedulable. The assessment of schedulability is performed at each iteration where
response times are computed. After an iteration jitters are updated, if necessary, and then Rw

ab are
re-computed if necessary.

The transaction and periodic task models both express task parameters. The next section presents
a task model that expresses parameters of jobs of a task.

2.5 multiframe models : illustration with gmf

The GMF task model exposed in [14] is a generalization of the multiframe task model proposed
in [100]. Multiframe allows to model tasks that don’t have the same execution time from one job
to the other, due to some input data of the task. Such behaviors occur in the multimedia domain,
which motivated the multiframe task models.

It is proven in [100] that if this behavior is not considered, in some cases the fundamental periodic
task model [85] assesses that the tasks are not feasible, although they are in reality. When analyzed
with the multiframe task model, the tasks are assessed feasible.

GMF generalizes the multiframe task model by relaxing some constraints on the task parameters:
a task not only can have a different execution time from one job to the other, but it can also
have a different deadline and minimum separation time to its next release time. GMF models
the individual job parameters of a sporadic task.

In the following sections, the definition of the GMF task model is first given. Afterwards two
tests are presented: a test for preemptive DP scheduling based on processor demand, and a test for
FP scheduling based on response time.

2.5.1 Definition

The definition of a GMF task, and its parameters, is taken from [14]. A GMF task Gi is an
independent task, with an ordered vector composed of Ni frames F

j
i, with 1 � j � Ni. Each frame

is a job of Gi, and has the following parameters:
– E

j
i is the WCET of Fji.
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Figure 2.9: GMF Example: Up arrows are frame releases; Down arrows are frame deadlines

– D
j
i is the relative deadline of Fji.

– P
j
i is the min-separation of Fji, defined as the minimum time separating the release of Fji and

the release of Fj+1
i .

A set of GMF tasks are assumed to be independent and all tasks are allocated on a uniprocessor.
Under FP scheduling, a GMF task Gi has a fixed priority.

Frames are released cyclically [14]: frames are released in the order defined by the vector and any
released frame F

j+k×Ni
i has parameters equal to frame F

j
i, for k > 0. Later this constraint is relaxed

in [140], which proposes the non-cyclic GMF task model.
The sum of Pj

i is the GMF period of Gi, denoted by Pi [14]:

Pi =

Ni∑
i=1

P
j
i (74)

Figure 2.9 shows an example of a GMF task Gi with three frames and their E
j
i, D

j
i, and P

j
i

parameters illustrated on the timeline. For example, the first frame F1i has parameters E1
i = 2,

D1
i = 3, and D1

i = 4. These parameters are different from those of the second frame F2i , which are
E1
i = 3, D1

i = 5, and D1
i = 6.

Two properties of GMF tasks are given below. Historically, these properties were given to ease
the analysis. The properties hold if the deadlines of frames are constrained.

Property 2 (Localized Monotonic Absolute Deadline [14]). A GMF task Gi is said to respect the localized
Monotonic Absolute Deadline (l-MAD) property if any of its frame F

j
i has a deadline less than the deadline

of the next frame Fj+1
i :

∀j ∈ [1;Ni], D
j
i � P

j
i +D

j mod Ni +1
i (75)

Property 3 (Frame Separation [138]). A GMF task Gi is said to respect the Frame Separation property if
any of its frame Fji has a deadline less than the release of the next frame Fj+1

i :

∀j ∈ [1;Ni], D
j
i � P

j
i (76)

Property 3 is more restrictive than Property 2 [138]. Indeed a GMF task respecting the Frame
Separation property also respects the l-MAD property [138].

In the following sections, first a feasibility test for GMF tasks is presented, for preemptive schedul-
ing. Then a schedulability test is exposed, for preemptive FP scheduling of GMF tasks. Since GMF
tasks are assumed to run on a uniprocessor, these tests are restricted to such systems.

2.5.2 Processor Demand Feasibility Test

A processor demand bound based feasibility test for GMF tasks is proposed in [14]. Let us
assume that a set of GMF tasks with the l-MAD property is analyzed. To determine the feasibility
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of the GMF tasks, the approach in [14] is first to transform the processor demands by the GMF tasks
to sporadic tasks. Then the feasibility of the sporadic tasks is assessed. The following paragraphs
gives some details on this approach.

In [14] the dbf(Gi, t) function computes the maximum processor demand by frames of Gi re-
leased in [0; t]. The maximum processor demand by frames of Gi is computed by considering that
any of its frames may start the critical instant by being released at time t = 0.

To compute dbf(Gi, t) for any t, in [14] the authors prove that only values of t ∈ [0;Pi] need to
be considered. The authors also prove that only values of t equal to all possible frame deadlines,
contained within [0;Pi], need to be considered. All possible frame deadlines within [0;Pi] are
obtained by considering that any frame can be released at time 0.

This determines the values of t for the computation of values of dbf(Gi, t). A list of couples
(w, t) is then computed. Parameter t is a value to consider in [0;Pi]. Parameter w is the workload
in the interval [0; t].

As shown in [14], with this list it is possible to determine the maximum processor demand of Gi

within any interval [0; t′], with t′ � Pi. The maximum processor demand of a Gi is the largest w
among all (w, t) pairs, where t′ is less than t. Thus the list can also be used to compute dbf(Gi, t

′)
for any t′ � Pi.

After building the list of (w, t) for each Gi, each (w, t) is transformed to a list of sporadic tasks.
Let us suppose that the list for Gi is < (w1, t1), (w2, t2), ..., (wm, tm) >. The transformation of Gi

gives a set of sporadic tasks, with parameters (Cj, Dj, Tj) defined in Section 2.3:

{(w0 = 0, t0 = 0, Pi), (w1 −w0, t1 − t0, Pi),

(w2 −w1, t2 − t1, Pi), ..., (wm −wm−1, tm − tm−1, Pi)}

The problem of assessing feasibility of a set of GMF tasks then becomes the problem of assessing
the feasibility of the sporadic tasks that are results of the transformation. If the set of sporadic tasks
is feasible, then the set of GMF tasks is feasible [14]. As a reminder, feasibility tests for sporadic
tasks are given in Section 2.3.

2.5.3 Response Time Schedulability Test

A response time based schedulability test for GMF tasks scheduled by FP scheduling is proposed
in [138]. This test assumes that GMF tasks respect the Frame Separation property (Property 3).

Let us call Wik(t) the workload of a task Gi in the time interval [0; t), when Fki is released at time
0. The computation of Wik(t) consists in summing the WCETs of frames that are released within
[0; t), starting with the release of Fki at 0:

∀t > 0,Wik(t) =

k+j−1∑
h=k

C
(h−1) mod Ni +1

i , j = min

⎛
⎝j :

k+j−1∑
h=k

T
(h−1) mod Ni +1

i � t

⎞
⎠ (77)

To assess the schedulability of a GMF task, the schedulability of each of its frame is assessed
through their response time. The WCRT of Fba occurs when Fba is released at the same time as a
frame of each Gi of higher priority [138]. To compute the exact WCRT of Fba, each combination of
frames, belonging to higher priority tasks Gi, must thus be tested. This gives a test of exponential
time complexity.

A pseudo-polynomial complexity test can be derived by considering only the maximum interfer-
ence that Fba can experience from frames of a higher priority task Gi. The maximum interference of
Gi to Fba, in a time interval of length t, is computed with a function denoted by Mi(t):

∀t > 0,Mi(t) = max
1�k�Ni

Wik(t) (78)
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The WCRT of Fba is then computed recursively:

R
b,(0)
a = Cb

a

∀n > 0, R
b,(n)
a = Cb

a +
∑

i∈hpa

Mi(R
b,(n−1)
a )

(79)

where hpa is the set of indexes of GMF tasks Gi of higher priority than Ga.
Once the WCRT of a frame is computed, the WCRT is compared to its deadline to assess the

schedulability of the frame. This assessment is done for all frames of all tasks to assess schedulabil-
ity of the tasks set.

To leverage some constraints on the modeling of jobs of a task, the next section presents a more
generalized task model for the modeling of jobs.

2.6 dag task models : illustration with sporadic dag
task

The GMF task model allows to model different jobs of a sporadic task, with different parameters.
The jobs have to execute in a single sequential order defined by the vector of frames of a GMF task.

To relax the constraint of a unique sequence of ordered jobs, it is proposed in [10] to model a task
as a DAG. A DAG is a graph where for any vertex, there is no sequence of edges that will lead
back to the vertex.

In the following section the sporadic DAG task model is first defined. This model is one of the
more generalized models among those that represent a task as a DAG. Afterwards the relations
between DAG task models is discussed. Finally feasibility and schedulability tests for the sporadic
DAG task model, on a global multiprocessor system, are presented.

2.6.1 Definition

This section presents the definition of a sporadic DAG task given in [12, 24]. A sporadic DAG
task is a tuple (Gi, Di, Ti):

– Gi is a DAG specified as Gi = (Vi, Ei), where Vi is a set of vertices and Ei a set of directed
edges. Each v ∈ Vi is a job. Each job v is characterized by ev, the WCET of the job. Each
edge (vi, vj) represents a precedence dependency between jobs: vi must complete execution
before vj can execute. A job becomes eligible to execute once all of its predecessor jobs have
completed execution.

– Ti is the period. When a DAG task is released, a dag-job is released. A dag-job is a sequence
of precedence-related jobs represented by the vertices: when a dag-job is released at at time t,
all jobs v ∈ Vi are released at time-instant t. The period denotes the minimum separation time
that must elapse between the release of successive dag-jobs: if a dag-job is released at t, then
the next dag-job may not be released before t+ Ti.

– Di is a relative deadline. If a dag-job is released at t then all jobs that are released at t must
complete execution by t+Di

Some notations are defined in [12, 24] and used in the analysis:
– vol(Gi) is the sum of WCETs of jobs of a sporadic DAG task Gi. It is computed as: vol(Gi) =∑

v∈Vi

ev.

– len(Gi) is the length of the longest chain in Gi. A chain is a sequence of vertices v1...vk such
that ∀1 � j < k, (vj, vj+1) ∈ Ei. The length of the chain is the sum of the WCETs of the vertices:
k∑

j=1

ej.
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The DAG tasks execute on a global multiprocessor system, with m identical processors, scheduled
by a preemptive scheduling policy. The speed of a processor is denoted by s, which is a fraction
of its frequency. The processor is said to be of speed-s. For example a processor of speed-1 at 400
Mhz processes at a frequency of 200 Mhz at speed-0.5.

The sporadic DAG task is one of the most generalized task models that represent a task as a DAG
but it is not the first. Let us see how it relates to other DAG task models.

2.6.2 Generalizations Between DAG Task Models

The representation of a sporadic task as a DAG dates back to the RRT task model proposed in
[10]. The RRT uses the same notations as the sporadic DAG task model. The RRT model was later
generalized by the non-cyclic RRT model proposed in [9]. A non-cyclic RRT does not repeat its jobs
in a cycle.

Both RRT and non-cyclic RRT are applicable to tasks allocated on a uniprocessor. In [12] the RRT
model is generalized as the sporadic DAG task model that was defined in the previous section.
Contrary to RRT, the sporadic DAG task model is applicable to a global multiprocessor system.

The acyclic constraint of a DAG is relaxed in [136] by using a directed graph to represent a task.
A directed graph is a graph where, contrary to a DAG, there may exits cycles. The resulting model
is called DRT but although it is more expressive than the models based on DAGs, the DRT model
is applicable to a uniprocessor system, contrary to the DAG task models.

In the next sections, feasibility and schedulability tests for sporadic DAG tasks, executing on a
global multiprocessor system, are exposed.

2.6.3 Speedup Bound Feasibility Tests

A necessary and sufficient feasibility test for a set of sporadic DAG task on a global multiproces-
sor system, with m identical processors, is intractable (NP-hard) [24]. For this reason, the authors
propose to develop approximate tests. The concept of speedup bound is used.

Definition 56 (Scheduling Policy Speedup Bound [24]). A scheduling policy is said to have a speedup
bound b � 1 if any tasks set, that is feasible on m speed-1 processors, is schedulable by the policy on m

speed-b processors.

Definition 57 (Schedulability Test Speedup Bound [24]). A schedulability test has speedup bound b � 1

if the following holds: any tasks set that is feasible on m speed-1 processors is assessed by the test to be
schedulable on m speed-b processors.

Note that a schedulability test of speedup bound b also assesses that the tasks set is schedulable
even if the tasks set is not feasible on m speed-1 processors.

The speedup bound of a test is a metric for quantifying the quality of the approximation of the
test [12]. In [24], the speedup bounds for EDF and DM are given:

Theorem 13 (EDF Speedup Bound). Any DAG tasks set that is feasible on m speed-1 processors is
schedulable by EDF on m speed-b processors where b = 2− 1

m .

Theorem 14 (DM Speedup Bound). Any DAG tasks set that is feasible on m speed-1 processors is schedu-
lable by DM on m speed-b processors where b = 3− 1

m .

These speedup bounds are used to assess schedulability of tasks set scheduled by EDF (resp.
DM), on m processors of speed 2− 1

m (resp. 3− 1
m ), using a pseudo-polynomial schedulability test

proposed in [24]. If the test determines non-schedulability, then the tasks set is not feasible on m

speed-1 processors.
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2.6.4 Schedulability Tests

In [24] the authors also give some simple sufficient schedulability tests for m speed-1 processors.
These tests run in polynomial time.

Theorem 15. [24] A sporadic DAG tasks set of n tasks is schedulable by EDF on m speed-1 processors if:

∀k ∈ [1;n], len(Gk) � Dk/3 (80)

∀k ∈ [1;n],
∑

∀i|Ti�Dk

(vol(Gi)/Ti) +
∑

∀i|Ti>Dk

(vol(Gi)/Dk) � (m+ 1/2)/3 (81)

Theorem 16. [24] A sporadic DAG tasks set of n tasks is schedulable by DM on m speed-1 processors if:

∀k ∈ [1;n], len(Gk) � Dk/5 (82)

∀k ∈ [1;n],
∑

∀i|Ti�Dk

(vol(Gi)/Ti) +
∑

∀i|Ti>2Dk

(vol(Gi)/4Dk) � (m+ 1/4)/5 (83)

Theorem 17. [24] A sporadic DAG tasks set of n tasks, all respecting Di � Ti, is schedulable by DM on m

speed-1 processors if:

∀k ∈ [1;n], len(Gk) � Dk/4 (84)

∀k ∈ [1;n],
∑

∀i|Ti�Dk

(vol(Gi)/Ti) +
∑

∀i|Ti>2Dk

(vol(Gi)/Dk) � (m+ 1/3)/4 (85)

2.7 conclusion

In this Chapter scheduling analysis was presented. This thesis focuses on scheduling analysis
methods based on feasibility and schedulability tests. Tests use several methods that compute
either the processor utilization by tasks, the response time of tasks, the processor demand by tasks,
or the processor speedup bound so the tasks are schedulable.

The tests are associated with task models and several common task models of the literature
were put into relation by generalization. The task models that were presented are the fundamental
periodic and sporadic task models, transactions, multiframe task models, and DAG task models.

The general idea that came out from this study is that task models are generalizations of each
other and the more a task model is generalized, the more it is expressive, but the more its analysis
is difficult. Some task models were illustrated and their tests were exposed.

In the next chapter, a system called software radio protocol is introduced. Its development is
also exposed. The next chapter thus defines the context of the work of this thesis. A software
radio protocol is a typical RTES with time constraints to verify during its development. Scheduling
analysis can be applied to verify the time constraints. The applicability of scheduling analysis on a
software radio protocol is studied in the next chapter.





Chapter 3

S C H E D U L I N G A N A LY S I S O F S O F T WA R E
R A D I O P R O T O C O L

Chapter 1 exposed some generalities on a RTES and its development methods. Verification of
time constraints is an important part of the development of such a system and the verification can
be done with scheduling analysis, presented in Chapter 2. The objective of the thesis is to perform
scheduling analysis of software radio protocol, and to integrate the analysis into the development
cycle of such a system. The goal of this chapter is thus to define the assumptions and context of the
work, expose some problems that must be leveraged to achieve the objective, and give an overview
of the solution proposed in this thesis.

In the rest of this chapter, the software radio protocol’s radio domain will first be presented.
Afterwards the system’s architecture, and its development, will be described. This defines the
assumptions made for scheduling analysis contributions proposed by this thesis. The problems of
applying scheduling analysis to a software radio protocol is then be stated, before the solution to
solve these problems are introduced.

3.1 introduction to radios

Radios are now part of our daily life. The roots of radios go as far back as 1873, when James
Clerk Maxwell put on paper the equations of the propagation of electromagnetic waves in free
space. It then took more than 10 years, in 1888, before Heinrich Rudolf Hertz was able to conduct
an experiment to transmit electromagnetic waves over the air. But it is then only about 20 years
later that the term "radio" was generally adopted.

The basic concept of a radio is that when some digital data are to be transmitted, it is converted
into electrical signal which is electrical energy from a source producing alternate current at a de-
sired frequency. The electrical energy goes to a transmitter which converts it into electromagnetic
wave, and impresses the signal on the wave by modulating it. Modulation consists in varying
the properties of the electromagnetic wave. For example the modulation may consist in simply
alternating the wave’s on/off state, or in altering its amplitude, frequency, or phase. Once the elec-
tromagnetic wave is impressed with a signal, it is sent over the air by a resonant antenna. The wave
propagates in the air and the process is reversed at the receiver’s end to rebuild the digital signal.

In the following sections the concepts of a radio network is first presented. Then we will see
how radio protocols are designed and how they enable the communication between users in the
network. Afterwards a particular functionality of a radio protocol is exposed. Finally we will see
how typical application constraints in communication systems translate to time constraints of the
RTES domain.

69
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Figure 3.1: Wireless Ad-hoc Network: Circles are nodes; A line between two nodes indicates a link

3.1.1 Radio Network

Today radios are not only used for communication between two points, but are part of networks
of several radio stations.

A network allows several users to exchange data between them. A user in the network is called
node and when one node can reach another, there is a link between them and they are neighboring
nodes. The nodes communicate over a shared communication medium. A medium in communica-
tion refers to the means of delivering and receiving data. In the case of radios, the medium is the
air. The medium shared between radio stations is thus wireless, for example a frequency shared
between stations.

One kind of network composed of several radio stations is a Mobile ad-hoc wireless NETwork
(MANET), illustrated in Figure 3.1. Radios developed by Thales are used in this kind of network.

A MANET [55] is a kind of wireless ad-hoc network. In a wireless network, the number of
neighboring radio stations that one can reach is limited in distance.

An ad-hoc network is a network where radio stations communicate without relying on an existing
infrastructure, i.e. without relying on pre-existing nodes that have specific roles in the network.
Each station in the ad-hoc network is free to associate itself with any other station. Thus each
station of a wireless ad-hoc network participates in the exchange of data in the network. For
example a station may not be the recipient of some data it receives. It then forwards the data to
some other stations, until the recipient is reached.

The mobile characteristic of a MANET means that in this kind of wireless ad-hoc network, the
stations are not geographically statically positioned. They may move and link up with different
stations. For this reason, the network may be reconfigured and radio stations must then update
their links.

To enable communication between the radio stations part of the network, a radio protocol stack
must be defined.

3.1.2 Radio Protocol Stack

A radio protocol is a set of rules to respect so communication can be established between different
users on a same network. A radio protocol defines the syntax and semantics of the messages
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Figure 3.2: Protocol Stack

exchanged between users, but also how communication is synchronized between all users. Several
protocols can cooperate.

The design of a protocol is done on the basis of the concept of layering. The Open Systems
Interconnection (OSI) model [152] for communication systems, proposed in 1970, standardizes the
functions of a communication system by dividing them into abstract layers. Each layer represents
one or several protocols, and it interfaces with a layer above and below it, representing themselves
other protocols. A layer serves the layer above and is served by the layer below. The set of layers,
organized from top to bottom, is called the protocol stack. Abstract layers of the OSI model are:

– L1, Physical: Modulation and conversion of digital data into physical signal to be sent over the
communication medium, establishment of connection between two radio stations.

– L2, Data Link: Provides a reliable link between two neighboring nodes of a network, detects
errors in the physical layer, controls medium access.

– L3, Network: Routing of messages to be sent, management of addresses
The protocol stacks developed at Thales follow loosely the OSI model. An example of a radio

protocol stack designed at Thales is shown in Figure 3.2. The PHYsical (PHY) layer is implemented
as part of the L1 abstract layer in the OSI model. The Media Access Controller (MAC), and
Radio Link Control (RLC) are implemented as part of the L2 abstract layer. Finally the Radio Sub-
Network (RSN), Internet Packet Convergence Sub-layer (IPCS) layers are implemented as part of
the L3 abstract layer. The IPCS layer, of the radio protocol stack, interfaces with the IP stack of the
system above it.

The functionalities of layers of a radio protocol stack may be impacted by the method used by
the radio to access the communication medium. The next section presents a typical method used
at Thales.

3.1.3 Impact of TDMA on Radio Protocol Stack

Time Division Multiple Access (TDMA) [30] is a channel access method, based on time-division
multiplexing. It allows several radio stations to transmit over a same communication medium. In
TDMA, time is divided into several time slots, called TDMA slots. At each slot, each radio station
in the network either transmits or receives. The sequence of slots is represented as a TDMA frame.
Figure 3.3 shows a typical frame.
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Figure 3.3: TDMA Frame

Figure 3.4: TDMA Frame Modes

Slots may be of different types. For example in Figure 3.3, the TDMA frame has three types
of slot: Service (S) for synchronization between stations; Beacon (B) for observation/signaling the
network; Traffic (T) for effective data transmission/reception.

Slots of different types do not necessarily have the same characteristics. One of the characteristics
of a slot is its duration. Therefore slots of different types do not necessarily have the same duration.
For example in Figure 3.3, a B slot duration is shorter than a S and T slot duration. The TDMA
frame duration is the sum of durations of its slots.

A TDMA configuration defines the combination of slots, of different types, in a TDMA frame. A
TDMA frame is repeated after it finishes. An instance of a frame is a cycle.

Slots can either be in transmission (Tx), reception (Rx), or Idle mode. In a Tx slot, a radio station
can thus transmit data. When a radio station can transmit in a slot, we say that the slot is allocated
to the station. When there are more stations than slots in a TDMA frame, some slots in the next
cycle of the TDMA frame can be allocated to stations that did not transmit in the previous cycle.

To illustrate transmission, reception, and idling, consider the four T slots in Figure 3.3. If three
stations are to communicate, Figure 3.4 shows a possible allocation of T slots. The first slot of radio
station 1 is in Tx mode (station 1 transmits), so the first slots of the other radio stations are in Rx
mode (they receive). The same logic is respected for the second and third slots. In the fourth slot,
since there is no transmission or reception to be done, the slot is in Idle mode for all stations.

When TDMA is used to access the communication medium, it impacts the functionalities of the
radio protocol stack. The allocation of TDMA slots is done in the RSN layer. RLC segments IP
packets, provided by the IPCS layer. RLC segments them into smaller data packets, which are small
enough in size to be sent in a TDMA slot. The MAC layers fetches these data packets regularly,
before the start of a Tx slot, and delivers them to the PHY layer so they are sent over the air in the
slot. In a Rx slot, the MAC layer receives some data packets to deliver to the RLC layer that will
assemble the data packets into an exploitable IP packet. Therefore TDMA has an impact on the
activities in the layers of the radio protocol stack.

The TDMA method is a particular case of the timed-token protocol for real-time communications
[94]. Indeed the same approach of dividing time into time slots, and allocating slots to entities, is
used in both methods. They also both focus on network scheduling, instead of task scheduling, but
the next section shows how the network scheduling has an impact on the task scheduling.
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Figure 3.5: Radio Network with QoS Constraints

3.1.4 From Application Constraints and Radio Protocol Configuration to Task Constraints

The configuration of a radio, like the TDMA configuration, is impacted by the user application
constraints (e.g. video streaming quality). In the case of TDMA, the characteristics of TDMA slots,
like their duration, are impacted by application constraints.

Consider the example of a radio network in Figure 3.5 that illustrates how constraints, apparently
not related to time, will result in different time constraints on the system. The figure shows a
network where station 1 streams a video to two other stations. The requirement is to stream at least
10 Frames Per Second (FPS). TDMA is implemented in the radio protocols. The goal is to determine
the allocation of T slots, the duration of T slots, and how many T slots are in a TDMA frame.

Let us assume a video frame is 100 KB and thus a minimum of 1 MB must be streamed in 1

second. It is supposed that the RLC layer can only produce data packets of a maximum size of 5
KB. Therefore 5 KB can be transmitted in a T slot. Let us assume that the duration of a S slot is
6 ms and the duration of a B slot is 2 ms. The sum of durations of 1 S and 2 B slots is then 10

ms. Assuming that synchronization (in a S slot) is necessary every 100 ms, the duration of a TDMA
frame is 100 ms. Finally it is assumed that at least 1 T slot is allocated to station 2, and at least 1 T
slot is allocated to station 3, in the TDMA frame.
1000 KB must be streamed in 10 cycles of the TDMA frame. Therefore 100 KB must be streamed

in one cycle. 5 KB are transmitted in 1 T slot so there must be 20 T slots in a cycle allocated to the
transmission of station 1. There are therefore 22 T slots in a TDMA frame (at least 2 T slots are
allocated for the other stations in the frame).
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Figure 3.6: Execution Environment of a Software Radio Protocol

Since the TDMA frame has a duration of 100 ms, and T and B slots take 10 ms, there are 90 ms
allocated to T slots. The duration of a T slot is then �90/22� = 4 ms.

In conclusion, a TDMA frame with 22 T slots, 20 T slots allocated to station 1, and a T slot
duration of maximum 4 ms, will guarantee the application constraint of streaming 10 FPS.

Data packets to send in T slots are fetched by software tasks in MAC. In the example, the tasks
in the MAC layer of station 1, which fetch the data packets to send in a T slot, have a deadline of 4
ms.

This example shows how a typical application constraint is translated into a typical time con-
straint of tasks scheduling. In the next section some characteristics of radio protocols developed at
Thales will be described. This will define the requirements for the scheduling analysis of such a
system.

3.2 context of work

The previous section showed how a radio protocol is designed. This section presents one possible
implementation by Thales, called a software radio protocol [99]. A software radio protocol defines
the system analyzed throughout this thesis.

The assumptions on the system are first described through the description of its software and ex-
ecution platform. The architecture of the system is then compared two typical architecture designs.
The characteristics to consider for scheduling analysis are then summarized. Finally we will see
how the system is developed.

3.2.1 Software and Execution Platform Architecture

Traditionally functionalities of a radio protocol are implemented as dedicated hardware (e.g.
Application-Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA)). There is
no concurrency to access these computing resources. Scheduling analysis is thus not necessary.

In the case of systems developed at Thales, the majority of the functionalities of the protocol is
implemented as software running on a General Purpose Processor (GPP). These systems are thus
called software radio protocols.

Figure 3.6 shows how a software radio protocol is integrated into a whole system. The system
to analyze is composed of the radio protocol implemented by a software executing on an execution
platform, composed of an OS and hardware. It is to be noted that the execution platform is shared with
the user application of the whole system, but the software of the radio protocol is of higher priority
than the user application.
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Figure 3.7: Architecture for Scheduling Analysis

The software entities are implemented by some entities in the execution platform: OS and hard-
ware. Figure 3.7 shows an example of these entities. As a reminder, their definitions are given in
Chapter 1.

Figure 3.7, shows that the layers of the protocol are implemented by tasks allocated on processors.
The system is a partitioned multiprocessor system. Indeed tasks are scheduled by partitioned
scheduling, i.e. a task is allocated on a processor, and it does not migrate. The main reason for
choosing this kind of multiprocessor architecture is the security offered by the partitioning: tasks
and data are logically and physically separated [39].

Let us see an example of partitioning for security. The Red CPU (left most in Figure 3.7) contains
encrypted data since it is accessible by the user. The Black CPU (right most in Figure 3.7) contains
clear data so it should not be accessible (like a black box). Between the two, there is processor for
encryption/deciphering of data passed between the two other processors. This middle processor
can be one dedicated to signal processing, e.g. DSP in Figure 3.7.

Tasks are scheduled by a preemptive FP scheduling policy. The choice of a FP policy is made
by engineers at Thales Communications & Security. This policy is well-known by the engineers at
Thales, it is less complex to implement [29], and it is available in OS part of real software radio
protocol systems.

They may have precedence dependency (e.g. communication through semaphores signaling [28]).
They may also use shared resources. Shared resources are assumed local, i.e. two tasks can use
a shared resource only if they are allocated on the same processor. Shared resources are either
protected by a resource access protocol that prevents unbounded priority inversion for uniprocessor
[127]. Such protocols can typically be found on execution platforms with the VxWorks [8] OS. This
OS is present in certain products developed by Thales.

Some tasks may be released sporadically. For example tasks implementing the IPCS layer are
typically released upon arrival of IP packets, which depends on the user application.

Other tasks are released at pre-defined times. This is the case for tasks implementing the MAC
layer. In this thesis, activities in MAC are divided in time due to the implementation of TDMA. The
releases of a task can follow a periodic pattern or a pattern defined by TDMA slots. Events called
TDMA ticks indicate the start of a slot and thus the release of some tasks. Tasks that are released
at the start of a slot may also have execution times and deadlines that are constrained by the slot.

In the rest of this thesis, it is assumed that a software radio protocol is based on the TDMA chan-
nel access method. The software architecture of the system is then conform to some architectures
found in the literature.
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3.2.2 Type of Software Architecture of a Software Radio Protocol

Two software architectures for RTES have been studied extensively in the literature: event-triggered
[70] and time-triggered [71]. In this section the design of a software radio protocol is compared to
these two architectures.

3.2.2.1 Event-Triggered

An event-triggered system is one where activities are released by significant events [70]. A sig-
nificant event is a change of state in the entities of the system, handled by the computing entities.
From an implementation point of view, the signaling of significant events is realized by interrupt
mechanisms.

The events may be predictable or by chance [70]. For example an entity may be released by a
sporadic event or it may wait for the completion of some entity that precedes it, but for which the
execution time is not constant. Sporadic and aperiodic tasks are part of an event-triggered system,
as well as tasks with precedence dependency implemented with a signaling mechanism.

Because of the unpredictable nature of certain events, online scheduling is often necessary for
these kind of systems [70].

3.2.2.2 Time-Triggered

In a time-triggered system, instead of waiting for events to occur, entities disseminate their states
periodically at fixed times [70]. The periodic sequence of time instants, at which an entity is ob-
served, is called its observation grid [70].

As such, the state of an entity is polled by other entities, independently of the activities that occur
in the given entity. With this strategy, since the observation grid is the same throughout the whole
execution of the system, it is defined and validated offline.

In the case of tasks scheduling, an offline schedule is often defined [70]. During execution, tasks
are then released at different time instants, following the offline schedule. Generally the absolute
deadline of a task is equal to the next instant when the data it produces will be polled by some
other task(s). The tasks set is assessed schedulable offline.

3.2.2.3 Comparison to Software Radio Protocol

A software radio protocol is both a time-triggered and an event-triggered system.
Indeed, some tasks released by TDMA ticks indicating the start of a slot. Thus certain tasks are

released at pre-defined times, which is conform to the time-triggered architecture.
On the other hand, there are also tasks released by sporadic events, for example upon arrival of

IP packets. Due to precedence dependency, a task can also be released by an event produced by a
predecessor task.

3.2.3 Summary of Characteristics for Scheduling Analysis

From the description of its architecture in Section 3.2.1, the characteristics of a software radio
protocol, useful for scheduling analysis, can be summarized in Table 3.1.

In this thesis, it is expected that the scheduling analysis method, proposed for software radio
protocols, covers all of the characteristics in Table 3.1.
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Table 3.1: Characteristics for Scheduling Analysis

Name Description

TDMA release
Tasks may be released at pre-defined times,
corresponding to start of TDMA slots, ac-
cording to the TDMA configuration

Periodic and sporadic release Tasks may be released by periodic and spo-
radic events.

Arbitrary deadline Deadlines are arbitrarily defined.

Arbitrary priority In case of FP scheduling, priorities are arbi-
trarily defined.

Precedence dependency Two tasks may have a precedence depen-
dency.

Local Shared resource

Tasks may use local shared resources and
thus have critical sections. Shared resources
are protected by an access protocol that pre-
vents deadlocks and unbounded priority in-
version time.

Individual job parameter

Task execution time and deadline may be
constrained by the nature of the release event
(e.g. TDMA slot), and may be different from
one job to the other. Precedence dependency
and shared resource critical sections may also
be different from one job to the other.

Preemptive FP policy on uniprocessor
On a uniprocessor, tasks are scheduled ac-
cording to a preemptive FP scheduling pol-
icy.

Partitioned multiprocessor
A task is allocated on a processor and does
not migrate. Tasks on different processors
may communicate.
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3.2.4 Software Radio Protocol Development

The development of a software radio protocol at Thales follows the V-model development cycle
presented in Section 1.5. There is a will at Thales to integrate scheduling analysis in the verification
branch, before coding, at the high level and detailed design steps.

This way the early verification of the architecture can ensure that no non-functional architecture
mistakes are made before coding and locate the source of mistakes in the coding step instead of the
design steps.

At Thales, the software of a radio protocol is designed with re-usability in mind. Thus the
software architecture is divided into several components, with interfaces and services to provide or
require. Data structures are also modeled in the architecture.

The MyCCM framework is used to model the software architecture, and then generate code of
software components from the software architecture model. Modelers used at Thales are based on
Eclipse.

3.3 problem statement

Now that the system assumptions of a software radio protocol are presented, the applicability
of scheduling analysis is discussed. Integration of scheduling analysis into the development cycle,
through an automatic process, is also addressed.

The following sections first discuss issues faced when applying task models to a software radio
protocol. Then the availability of tools, where the task models are implemented, is shown. After-
wards the applicability of ADLs will be discussed for software radio protocols. Finally all of the
issues presented will be summarized into three problem statements in the last section.

3.3.1 Applicability of Task Models

As a reminder, the characteristics of a software radio protocol, that are necessary to consider for
scheduling analysis, are listed In Table 3.1.

Let us see which task models, presented in Chapter 2, are applicable to these characteristics. A
task model is said applicable to a characteristic, if it is possible to model the characteristic, and if
there exists a feasibility or schedulability test for the task model that considers the characteristic.

Table 3.2 shows the applicability of task models to each characteristic. Their applicability is
discussed in the following paragraphs. Either the non-applicability of some task models is justified,
or the applicability of all task models is shown.

tdma release Initial tests in [85, 64] for the fundamental periodic and sporadic task models
assume a synchronous system, where tasks are all released at a unique critical instant.

Some works [108, 38] focus on asynchronous periodic and sporadic tasks. The asynchronous
release of tasks is not the TDMA release. Tasks are not synchronous but they are released at pre-
defined times.

The transaction model, that generalizes the fundamental periodic and sporadic task models, also
focus on asynchronous releases of tasks. In [143], Tindell analyzes tasks that are asynchronous,
with the transaction model. He takes the example of a network with a bus and messages scheduled
by TDMA. His goal was not to analyze the effect that TDMA has on the scheduling of tasks within
a single system (e.g. job execution time and release time constrained by the TDMA slot), but end-
to-end response times of message transiting in the whole network. For example he computes the
response time from the sending of a message by a task, to the transition of the message on the bus,
to the reception by another task.
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Table 3.2: Applicability of Task Models to Software Radio Protocol: Abbreviations are P/S = Periodic/Sporadic,
TR = Transactions, GMF = Multiframe Task Models, DAG = DAG Task Models; N = No, Y = Yes

P/S TR GMF DAG

TDMA release N N Y Y

Periodic and sporadic release Y Y Y Y

Arbitrary deadline N Y N Y

Arbitrary priority Y Y Y Y

Precedence dependency N Y N N

Local shared resource Y Y N N

Individual job parameter N N Y Y

Preemptive FP policy on uniprocessor Y Y Y Y

Partitioned multiprocessor N Y N N

Some tests for transactions in [106, 118] also consider a release pattern where a task is immedi-
ately released by its predecessor, instead of pre-defined times.

Finally some works have been done on systems that are both event-triggered and time-triggered,
like a software radio protocol. In [147], the authors work on an automotive system respecting the
design of both architectures. Their work does not focus on task scheduling, but network scheduling.
Indeed, their objective is to optimize the TDMA slot duration, when a bus is accessed by several
processors through the TDMA channel access method.

periodic and sporadic release All task models support tasks released by a periodic or
sporadic event [85, 143, 14, 12].

arbitrary deadline Tests for the periodic and sporadic task models assume Di � Ti [85, 64].
Thus the deadline is constrained.

Tests [14, 138] for GMF assume the l-MAD property (Property 2) or the Frame Separation property
(Property 3). These properties constrain the deadline of frames and thus tasks.

arbitrary priority There exists at least one test for each task model that supports this char-
acteristic [64, 105, 138, 10]. On the other hand, it is to be noted that tests for sporadic DAG tasks,
on a global multiprocessor, assume DM scheduling [12, 24].

precedence dependency Analysis of the periodic and sporadic task models do not fully
handle precedence dependencies, until they are first generalized by the transaction model, and
then dynamic offsets are proposed in [105].

Some works [34, 5, 143, 50] propose a method to schedule precedence dependent periodic or
sporadic tasks. These methods either constrain the fixed priorities of tasks, or their deadlines,
or they are proposed for EDF. Therefore they are not applicable due to the arbitrary priorities,
arbitrary deadlines, and FP scheduling policy of a software radio protocol.

Some works [51] also focus on periodic tasks with precedence dependencies that are not specified
for every job, but every 2, 3, ..., n jobs. These works are not applicable to a software radio protocol,
because precedence dependencies, among task jobs, do not follow this kind of pattern.

The multiframe and DAG task models assume independent tasks [14, 24], therefore precedence
dependencies are not supported.

local shared resource Like precedence dependencies, shared resources are not supported
by the classical multiframe task models and DAG task models, since they assume independent
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Table 3.3: Methods of Tests in Tools: Method abbreviations are WCBT = worst case blocking time, CPU =
processor utilization, RTA = response time analysis, DBF = demand bound function, SPD = speedup
bound; N = No, Y = Yes

WCBT CPU RTA DBF SPD

Rapid-RMA [61] Y Y N N N

Cheddar [129] Y Y Y N N

MAST [57] Y Y Y N N

SymTA/S [59] Y Y Y N N

Rubus-ICE [101] Y Y Y N N

tasks [14, 24]. In [47] the authors propose an optimal shared resource access protocol for GMF tasks
but the protocol is not implemented in the OS of Thales products.

individual job parameter The modeling of jobs with different parameters is only supported
by the multiframe and DAG task models [14, 10, 24], among those present in Table 3.2.

preemptive fp policy on uniprocessor All task models have tests for the preemptive FP
scheduling policy [85, 143, 14, 24].

partitioned multiprocessor The periodic, sporadic task models, and the multiframe task
models have tests for a uniprocessor system [85, 14]. The DAG task models has tests for uniproces-
sor systems [10], or global multiprocessor systems [24].

In conclusion, the results of Table 3.2 show that none of the task models presented in Chapter 2
support all characteristics of the software radio protocol to analyze.

3.3.2 Availability of Analysis Methods Implemented in Tools

The availability of tools that implement the selected task model, or their analysis methods, is also
to be considered. Table 3.3 shows some methods implemented in some scheduling analysis tools.
A system is described in the modeling language of a tool, before the scheduling analysis methods
can be applied. The tools are described in the following paragraphs.

rapid-rma [61] is a set of modeling and scheduling analysis tools. The architecture is modeled
with components. Design scenarios are then modeled for scheduling analysis. A design scenario
indicates the interactions between the components. Rapid-RMA uses tests for RM scheduling to
determine schedulability but it also provides a simulator.

cheddar [129] is a scheduling analysis tool with feasibility, schedulability tests, and a simulator.
In Cheddar, the architecture of the system is modeled with the tool’s own ADL called Cheddar-
ADL. Cheddar implements tests [85, 64] for the periodic and sporadic task models. Although the
transaction model is not implemented, Cheddar offers the possibility to express the offset, and
jitter parameters. Furthermore the test in [143] is implemented but without using the concept of
transaction.

mast [57] is a modeling and analysis suite for real-time applications. In the MAST, an architec-
ture is modeled with a modeling language based on events. Events are sent between tasks that
have precedence dependency. Tasks are allocated on processors and they may use shared resources.
MAST then transforms the event-based architecture model to transactions for scheduling analysis.
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Schedulability tests for transactions can then be applied. The tests in [143, 105, 105] are imple-
mented.

symta/s [59] is a scheduling analysis tool originally dedicated to the automotive industry. As
such, SymTA/S has entities based on those found in automotive systems. The architecture is mod-
eled as components allocated on buses and processors. Components have ports through which
they receive and send event streams. SymTA/S thus uses an event stream propagation model for
scheduling analysis. Although it does not implement the transaction model, the same approach of
jitter propagation is used in the RTA method implemented in the tool.

rubus-ice [101] is a tool suite for model-driven development of real-time systems, with model-
ers, code generators and analysis methods. The architecture is modeled in the Rubus Component
Model (RCM) language. In RCM, software functions are modeled as components that communicate
through a producer-consumer scheme. Time parameters are extracted from the component-based
model and scheduling analysis methods can then be applied. RTA schedulability tests have been
implemented as plug-ins in Rubus-ICE.

As shown by Table 3.3, most of these tools implement tests based on RTA or processor utilization.
None of the tools actually implement a test, or equivalent, for the multiframe and DAG task models
because these tests are based on demand bound or speedup bound.

Furthermore some tools implement RTA methods for the release pattern of the linear transaction
model. As we will see in this thesis, these methods are not sufficient for the work of this thesis.

3.3.3 Applicability of ADLs

Chapter 1 exposed some generic and domain-specific ADLs to describe a system’s architecture.
This section shows how these ADLs have been exploited for scheduling analysis.

marte There exists a number of tools that support directly MARTE for scheduling analysis.
MARTE is implemented in IBM’s RSA modeler. The modeler has a plug-in for Rapid-RMA [61].
Thales Research & Technology have also experimented by transforming RSA models to Cheddar for
scheduling analysis [88]. Since Rapid-RMA and Cheddar implement feasibility tests for periodic
tasks scheduled by RM or DM, the architectural entities of MARTE exploited by the tool are tasks
modeled with specific stereotypes of MARTE.

MARTE is also implemented in the Papyrus [104] modeler, a open-source UML modeler part
of the Eclipse Modeling Framework (EMF). There exists a plug-in for Eclipse that transforms a
MARTE model made with Papyrus, to a model in MAST for scheduling analysis with the tool [96].
The transformation exploits UML activities with MARTE stereotypes applied. The UML activity
actions are allocated on tasks, modeled as components with MARTE stereotypes applied on them.

aadl There exists several works on scheduling analysis of a system described with AADL. Some
of these works are based scheduling analysis of AADL models with model checking tools. The
AADL model is transformed to some model used by the model checking analysis method of a tool.
The output models of the transformation are either petri nets [119] (Tina tool [20]), synchronous
language models (Polychrony tool [87]), timed automata (UPPAAL tool [18]), or real-time process
algebra [132] (VERSA tool [37]).

Other works are based on scheduling analysis of AADL models with schedulability and feasibility
analysis tools. In [46], a system modeled in AADL is analyzed with Cheddar. The AADL model is
created in STOOD, developed by Ellidiss Software, and then analyzed with AADL Inspector which
includes the analysis core of Cheddar.
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east-adl Some works have been done to offer the capability of performing scheduling analysis
on EAST-ADL models. EAST-ADL has been extended with MARTE in [1] for scheduling analy-
sis with the MAST tool. In [115, 48] EAST-ADL models are transformed to timed automatas for
time constraints verification with UPPAAL, the model checking tool. As a reminder EAST-ADL is
an ADL for the AUTOSAR standard. In [69], the authors analyze the schedulability of a system
conform to AUTOSAR, with the SymTA/S [59] tool.

myccm The MyCCM framework is developed by Thales. Ongoing projects aim at integrating
a scheduling analysis solution. This will either be done by developing a proprietary scheduling
analysis tool of Thales, or by extending MyCCM models and transforming them to the model of an
existing scheduling analysis tool.

In conclusion, MARTE, AADL, and EAST-ADL, through AUTOSAR, have been exploited for
scheduling analysis with the feasibility and schedulability test approach. These ADLs are not
specific to a software radio protocol and they are not used to describe its architecture at Thales
Communications & Security. MARTE is generic to the domain of RTES but it lacks modeling
guidelines and clearly defined semantics [62, 114] which handicaps its adoption by engineers.

3.3.4 Summary of Problem Statement

In the previous three sections, three problems were determined for scheduling analysis of soft-
ware radio protocols. These problems are summarized as follows:

– Applicability of task models: No task model is applicable to all characteristics of a software
radio protocol, and it is not obvious to choose one for extension.

– Availability of analysis methods implemented in tools: Some existing task models and their
analysis methods are not implemented in scheduling analysis tools. Some of these task models
that are not implemented, can be chosen for extension in this thesis.

– Applicability of ADLs: There is not a domain-specific ADL for software radio protocols, that
has been tested for scheduling analysis. The generic modeling language MARTE also lacks
modeling guidelines and clearly defined semantics.

3.4 overview of the solution

The objective of this thesis is to perform scheduling analysis of a software radio protocol. To
achieve the objective, solutions are proposed for the problems stated in the last section. The solu-
tions are illustrated in Figure 3.8.

The general solution consists in first proposing a new task model called Dependent General Mul-
tiframe (DGMF), adapted for characteristics of a software radio protocol. This solves the problem
of applicability of task models. The new task model is then implemented in a scheduling analysis tool.
This solves the problem of availability of analysis methods implemented in tools. Finally an experimen-
tal architecture model, in UML MARTE, is proposed to perform automatically scheduling analysis
by transforming it to DGMF tasks. This solves the problem of applicability of ADLs for scheduling
analysis of a software radio protocol.

The solutions can be implemented with some existing tools. Some examples of implementation
are: the DGMF task model and its analysis method can be implemented in the Cheddar scheduling
analysis tool; the UML MARTE architecture model can be made with the Papyrus modeler of Eclipse;
the transformation of the architecture model to the task model can be implemented as an Eclipse
plug-in.

The next three sections describe in detail the proposed solution for each problem. First the solu-
tion to the applicability of task models problem is described. The the solution to the availability of
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Figure 3.8: Overview of the Solution: Solutions in the middle related to problems on the left, implemented by
tools on the right

analysis methods implemented in tools problem is presented. Finally the solution to the applicabil-
ity of ADLs problem is shown.

3.4.1 Applicability of Task Models Problem

First a task model needs to be proposed for software radio protocols. The solution is to extend
a task model among those in Table 3.2. The choice of the task model to extend must consider its
expressiveness, analysis difficulty, and the impact of characteristics of the software radio protocol
on the analysis results.

The task model to extend is chosen through an experiment presented in this thesis. The ex-
periment applies the fundamental periodic task model for schedulability analysis of a simplified
software radio protocol.

Through this experiment the characteristic of the system, that has the most impact on pessimism
of response times for schedulability analysis, is determined. This characteristic is individual job
parameters.

The multiframe task models, and the DAG task models, are expressive enough to model individ-
ual job parameters of a task.

The GMF task model is motivated by behaviors of tasks in the multimedia domain. Jobs of a
task have an execution time, deadline, and minimum separation time to the next job release, that
depend on the type of video image being processed by the task. This kind of behavior also occurs
in a software radio protocol. Thus the GMF task model is expressive enough for the aspect of
individual job parameters. On the other hand, GMF does not handle task dependencies, and it is
not applicable to a partitioned multiprocessor system.



84 scheduling analysis of software radio protocol

This thesis thus proposes the DGMF task model to extend GMF. DGMF extends GMF with task
dependencies. DGMF is also applicable to a partitioned multiprocessor system.

The DGMF analysis method consists in first transforming DGMF tasks to transactions. This ap-
proach is chosen because transactions support task dependencies, and they are applicable to a par-
titioned multiprocessor system. An initial independent GMF tasks to transaction is also proposed
in [116]. After the transformation, existing schedulability tests for transactions can be exploited, or
extended if necessary.

As we will see, the transformation faces the issue of the difference in semantic between the two
models. Indeed, transactions represent tasks related by collectively performed functionalities and
timing attributes [143], not individual jobs of a task. GMF, on the other hand, express the individual
job parameters through frames.

Due to the difference in semantic, schedulability tests for transactions must be also adapted or
results are pessimistic. Therefore this thesis proposes a schedulability test for transactions that may
be the result of DGMF transformation. As we will see, these transactions are tree-shaped and they
have tasks that are not necessarily released immediately by their predecessor. The test is called
WCDOPS+NIM and it extends the WCDOPS+ test in [118].

Since DGMF is a new task model, the model and its analysis method must be implemented in a
scheduling analysis tool.

3.4.2 Availability of Analysis Methods Implemented in Tools Problem

The GMF task model is not implemented in a scheduling analysis tool. Therefore in this thesis,
task models GMF, DGMF, transaction, transformation of DGMF to transaction, and transaction
schedulability tests, are all implemented in Cheddar. This thesis shows how the tool’s framework
is extended for this purpose. Once the tool is extended, its model must be produced from some
architecture model of a software radio protocol described with an ADL.

3.4.3 Applicability of ADLs Problem

MyCCM is used at Thales to describe the architecture of a software radio protocol but the frame-
work has not been tested for scheduling analysis with tools. An ADL among MARTE, AADL, and
EAST-ADL must thus be chosen to describe the system architecture.

For EAST-ADL, schedulability analysis is supported by SymTA/S for which an open-source ver-
sion is not yet available. Therefore the choice of an ADL comes down to MARTE and AADL. Table
3.4 compares UML MARTE to AADL according to some criterias.

Considering the criterias in Table 3.4, the MARTE profile for UML is chosen for the modeling of
a software radio protocol, for the following reasons:

– MARTE is not domain-specific.
– MARTE benefits from the UML extension mechanisms and extension for scheduling analysis

has no impact on the design model that may be used for code generation.
– MARTE can trace back analysis results to the entities of the architecture model, which is im-

portant for iterative engineering work.
– MARTE can be transformed to a MyCCM model used at Thales Communications & Security

for code generation.
Since one of the main issues with MARTE is the lack of modeling guidelines and clearly defined

semantics, this thesis proposes a model called Service Model and its mapping to MARTE concepts.
The model is made with the open-source Papyrus implementation of MARTE.

The Service Model contains architectural entities as well as behavior information. The behavior
information are the behavior of services of a software radio protocol. The model is transformed,
via an Eclipse plug-in, to a Cheddar model for scheduling analysis.
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Table 3.4: Architecture Description Language Comparison

Criteria Generic ADL: UML MARTE Domain-Specific ADL: AADL

Semantics: Do entities have
clearly defined semantics?

AADL was originally dedicated
to the avionic domain so its enti-
ties have clearly defined seman-
tics since they were limited to
this domain originally.

MARTE is a UML profile for
generic RTES. A same attribute
of a stereotype can have dif-
ferent signification, according
to the domain of the modeled
RTES.

Modeling guidelines: Are there
clearly defined modeling guide-
line?

AADL was dedicated to the
avionic domain originally.
Therefore modeling guidelines
exist for engineers of this do-
main. Guidelines are eased by
the clearly defined semantics of
AADL.

MARTE lacks modeling guide-
lines [114, 62], which is an issue
when the semantics of its enti-
ties can have different significa-
tions, according to the domain
being modeled.

Extensiveness: Is the ADL ex-
tensible if necessary?

AADL can be extended with an-
nexes and property-sets of the
modeling language. But the ex-
tension may have an impact on
the design models. In case of ex-
tensions for scheduling analysis,
the design model may then de-
pend on the scheduling analysis
tool [151].

MARTE being an UML pro-
file, benefits from the extension
mechanisms of UML. It can
thus be extended either through
the extension of its sub-profiles,
or the completion by other pro-
files. For example in [2] the
MARTE profile is extended for
power management of RTES.
Extending MARTE for analysis
has no impact on design, due
to the separation of design and
analysis models in the profile.

Traceability: Is there a way to
trace analysis results back to
their entities in the architecture
model?

Currently there is no solution to
trace back analysis results but
the feature may be added as an
extension of AADL.

The stereotypes of MARTE are
designed to trace back analy-
sis results to the entities of the
model.

Applicability: Is it applicable to
software radio protocols?

AADL was originally dedicated
to the avionic domain.

MARTE has been experimented
on the modeling of software ra-
dio protocols in [60]. The work
in [60] is based on early works
of this thesis, presented in later
chapters.

Integration at Thales Communi-
cations & Security: Is a model
described with the ADL easily
integrated into the Thales devel-
opment cycle?

AADL is currently not used at
Thales Communications & Secu-
rity.

There exists a MARTE to
MyCCM transformation plug-
in for Eclipse, developed by
Thales.

Tool support: Is the ADL sup-
ported by a large number of
modelers? By modelers used at
Thales?

A common way to use AADL
with Eclipse is through the OS-
ATE plug-in.

MARTE being an UML profile,
benefits for the large eco-system
of UML modelers based on
Eclipse, including several tools
(like RSA) used at Thales.
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3.5 conclusion

In this chapter the radio domain was first presented. Radios communicate in a network which
may be for example a MANET. In order to communicate, the radios must respect a radio protocol
that defines the rules of communication. Traditionally radio protocols are implemented as hardware
but at Thales Communications & Security, they are implemented as software. The architecture of
a software radio protocol was presented, focusing on radio protocols that use a TDMA channel
access method. We saw how this kind of system is a RTES that needs scheduling analysis.

To perform scheduling analysis, some characteristics of the system were described and summa-
rized in Table 3.1, thus defining the assumptions on the system to analyze. Scheduling analysis is
also to be integrated into the development cycle of a software radio protocol. The development cy-
cle at Thales follows the V-model. Software development also exploits models for code generation,
through the MyCCM framework.

Several issues were observed when studying the applicability of scheduling analysis to a software
radio protocol. First, no task model is applicable to all characteristics of a software radio protocol,
and it is not obvious to choose one for extension. Second, some existing task models and their
analysis methods are not implemented in scheduling analysis tools. Some of these task models, not
implemented, can be chosen for extension in this thesis. Third, there is not a domain-specific ADL
for software radio protocols, that has been tested for scheduling analysis. The generic modeling
language MARTE also lacks modeling guidelines and clearly defined semantics.

The approach to solve these problems is an analysis method that consists in first modeling a
software radio protocol in UML MARTE, in a model proposed by this thesis called Service Model.
The Service Model contains architectural entities but also behavior information. The UML MARTE
model is transformed to a task model adapted for software radio protocols. The task model is called
DGMF. It extends the GMF task model with task dependencies and partitioned multiprocessor
scheduling. The analysis method of DGMF is implemented in Cheddar, a scheduling analysis tool.

Several technical contributions are necessary to obtain the final scheduling analysis method for
a software radio protocol. These contributions are presented throughout the chapters of this thesis.
The next chapter focuses on the experiment that evaluates the viability of scheduling analysis on a
software radio protocol.
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Chapter 4

E X P E R I M E N T O N S C H E D U L I N G
A N A LY S I S O F S O F T WA R E R A D I O
P R O T O C O L

The previous chapters showed that scheduling analysis needs to be applied to software radio
protocols. Scheduling analysis must also be applied automatically through transformation of archi-
tecture models and usage of scheduling analysis tools.

Chapter 3 showed that there is not an applicable task model for scheduling analysis of a software
radio protocol. There is also an issue of applicability of ADLs for automatic scheduling analysis of
such systems.

This chapter presents an experiment where the periodic task model is applied to a simplified
software radio protocol. To apply the task model for scheduling analysis, an automatic scheduling
analysis approach is used.

The periodic task model is thus to be applied by producing automatically a tasks set from an
architecture model, described with basic entities of UML MARTE. The tasks set is analyzed by the
Cheddar tool in which the periodic task model is already implemented.

Experimental results will confirm that the periodic model is not suited for a software radio
protocol implementing TDMA. The observations of the experiment will then help choose a task
model to extend, among those compared in Section 3.3.1.

The following sections first present the case-study of the experiment. Then the case-study is
modeled in UML MARTE and transformed to a Cheddar-ADL model so the analysis of the case-
study can be performed. Finally the analysis results are discussed.

4.1 case-study of the experiment

The case-study for the experiment is a software radio protocol called Highly Dynamic Radio
Network (HDRN), developed by Thales as a demonstrator. HDRN is integrated below the IP stack
of a communication system. The radio protocol is based on TDMA. It is a simplified software radio
protocol that does not represent the majority of products developed at Thales. It was chosen for the
experiment because its simplified architecture makes the periodic task model applicable.

The protocol stack is designed according to Figure 4.1. The wrapper code of the software is
generated through a MyCCM model.

Under the experimental conditions, the system behavior is the following:

1. IP packets arrive from the IP stack and are segmented into RLC packets before being stored
in the RLC layer.

2. RLC packets are segmented into MAC packets before being stored in the MAC.

3. A TDMA tick from a synchronization source indicates the start of a new slot.

4. The current slot type and the next one are checked according to the TDMA configuration.

89
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Figure 4.1: Communicating HDRN Layers: Arrows show the communication

5. Packets stored in MAC are passed to PHY for transmission in the next transmission slot.

6. Received packets are assembled and transferred all the way from PHY to IPCS.

7. The system is prepared for the next slot.

The protocol is implemented by five tasks and 6 shared resources. These entities are illustrated
in Figure 4.2. The fives tasks are: IPPacketSendingTask, RLCPDUSendingTask, CommunicationMan-
agementTask 1, TickObserverTask 2, and DwellReceiverTask. The shared resources are: PDUsToSendFifo,
Queue, TDMAStructure, NextSlot, SlotProcessQueue, RxDataBuffer. Shared resources PDUsToSendFifo,
Queue, SlotProcessQueue, and RxDataBuffer are resources where data are stored. Shared resources
TDMAStructure and NextSlot are resources that indicate the state of the system.

The behavior of the tasks is the following:
– IPPacketSendingTask: This task is released by arriving IP packets from the IP stack. It puts

them into the PDUsToSendFifo.
– RLCPDUSendingTask: This task is released by the IPPacketSendingTask, each time there are

packets in the PDUsToSendFifo. It segments the packet and stores the segmented packets in the
Queue.

– CommunicationManagementTask: This task is released by a TDMA tick. It processes the cur-
rent slot and then checks the TDMAStructure for the TDMA configuration. Afterwards it up-
dates NextSlot with the next slot identifier, and wakes the TickObserverTask task. On reception
it stores received packets in the RxDataBuffer.

– TickObserverTask: This task is released by the CommunicationManagementTask. It reads NextSlot
and configures PHY for the next slot. It also transmits the data to be send over air on the next
slot (stored originally in the Queue) to the SlotProcessQueue. The TDMAStructure is checked for
slot consistency. These operations have to be done before the next slot.

– DwellReceiverTask: This task is released by the CommunicationManagementTask, each time there
are data in the RxDataBuffer. It processes the data and sends it all the way to the IP stack. The
TDMAStructure is checked for slot consistency.

The HDRN tasks are implemented by POSIX threads [28] with properties SCHED_ FIFO and
PTHREAD_SCOPE_SYSTEM. The properties ensure that the tasks are scheduled with a preemptive
FP scheduler, and that they can only be preempted by other SCHED_FIFO tasks and OS tasks.

The tasks are allocated on a same core of a quad-core processor. The core is dedicated to the
tasks of HDRN. Only OS kernel tasks still persist on the core.

1. May be abbreviated as "CommMgtTask" or "CommunicationMgtTask".
2. May be abbreviated as "TickObs".



4.2 applying the periodic task model 91

Use Resource

Release

Figure 4.2: HDRN Tasks and Shared Resources: Plain arrows are precedence dependencies; Dashed arrows are
shared resource usages

The scheduling parameters of the tasks are shown in Table 4.1. Table 4.2 shows how tasks use
shared resources. The shared resources are protected by the default POSIX mutex [28], i.e. there is
no protection against unbounded priority inversion.

The priorities of tasks of HDRN were assigned by software engineers, based on experience and
knowledge from the development of other software radio protocols. The scheduling parameters
in Table 4.1 show that the priority assignment is done such that a predecessor task has a higher
priority than a successor task. This priority assignment was initially proposed in [5]. With this
priority assignment, the tasks can be analyzed with the periodic task model, even when they have
precedence dependencies.

Time values in the tables come from real executions of instrumented code. Each instrumentation
point is used to measure a specific time value. A time value is then the maximum of values
measured at its instrumentation point. Some time values were measured more than 7500 times to
get the maximum. The times values are thus maximum values observed during a real execution.
The accuracy of the measurements, like the WCET, is not the purpose of this thesis.

The setup of the execution is shown in Figure 4.3. Three PCs are connected through a central hub.
PC-1 and PC-2 each run a HDRN protocol while PC-3 (called the "Communication Server") plays
the role of the synchronization source. It broadcasts ticks to PC-1 and PC-2. PC-3 also manages
data routing. This means PC-1 and PC-2 send their packets to PC-3 which redirects the packets to
the correct station. For the experiment the a video is streamed between PC-1 and PC-2.

In order to apply the periodic task model analysis on the case-study, it must be modeled. The
next section presents the modeling approach.

4.2 applying the periodic task model

To apply automatically the analysis of the periodic task model on HDRN, the approach is to first
model the system architecture in UML MARTE. The architecture model is then transformed to the
periodic task model implemented in Cheddar. The analysis can then be performed.

The UML MARTE model is based on existing MARTE models that can be transformed to MyCCM
models for development. The existing MARTE models are extended so they contain enough infor-
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Table 4.1: HDRN Task Parameters: Priorities in highest priority first order

Task Parameter Value

IPPacketSendingTask

Release Sporadic

Min. inter-arrival 6000 μs

Priority 20

WCET 207 μs

Deadline None

RLCPDUSendingTask

Release Sporadic

Min. inter-arrival 6000 μs

Priority 10

WCET 1725 μs

Deadline None

TickObserverTask

Release Periodic

Period 5000 μs

Priority 10

WCET 773 μs

Deadline 5000 μs

DwellReceiverTask

Release Sporadic

Inter-arrival 10000 μs

Priority 10

WCET 917 μs

Deadline 10000 μs

CommunicationManagementTask

Release Periodic

Period 5000 μs

Priority 40

WCET 1115 μs

Deadline 5000 μs

PC-2: "HDRN-2"
- eth0 192.168.91.102
- hdrn 192.170.0.102

PC-1: "HDRN-1"
- eth0 192.168.91.101
- hdrn 192.170.0.101

PC-3: "Communication Server"
- eth0 192.168.91.37

Figure 4.3: Experiment Setup
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Table 4.2: HDRN Shared Resources: Start and end times are those of critical sections

Resource Used by Start (μs) End (μs)

PDUsToSendFifo
IPPacketSendingTask 30 34

RLCPDUSendingTask 1 3

Queue
RLCPDUSendingTask 127 1624

TickObserverTask 16 142

TDMAStructure
DwellReceiverTask 65 67

TickObserverTask 4 6

CommMgtTask 109 111

RxDataBuffer
DwellReceiverTask 1 27

CommMgtTask 93 107

NextSlot
TickObserverTask 0 772

CommMgtTask 329 330

SlotProcessQueue
TickObserverTask 84 90

CommMgtTask 0 325

CommMgtTask 708 758

<<ClientServerPort>> <<RtUnit>>

No Icon
in MARTE

Figure 4.4: Applied GCM and HLAM Stereotypes

mation to be transformed into periodic task models for scheduling anlaysis. The extensions are
done with respect to the original models.

The following sections first present a high level software architecture model. This model is the
original MARTE model. Then a software and execution platform architecture model is exposed.
Afterwards the associations between the different entities are shown. The software and execution
platform architecture model, and the associations, represent the extension of the original model.
Finally the transformation to Cheddar is exposed.

4.2.1 High Level Software Architecture Model

The Generic Component Model (GCM) and High Level Application Model (HLAM) sub-profiles
of MARTE are used to model some high level software entities.

The GCM sub-profile fulfills designer needs to model abstract and generic components. HLAM
is a sub-profile that provides designers with facilities to represent high level entities such as set of
services. Figure 4.4 illustrates the stereotypes in the GCM and HLAM sub-profiles that are used.

Table 4.3 maps the different high level software architecture entities, of a software radio protocol,
to their stereotyped UML meta-classes in MARTE. As a reminder, the entities are those of an
architecture model and they are defined in Section 1.7.

As an example, Figure 4.5 gives a partial view of the high level software architecture of HDRN’s
MAC layer. For example BackBoneManagement is a component stereotyped <<RtUnit>>, and al-
locDbRxInput is a port stereotyped <<ClientServerPort>> with provInterface attribute tagging the
MACPDUReceiver interface class.
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Table 4.3: High Level Software Architecture Model in UML MARTE

Entity UML MARTE

Component Component stereotyped <<RtUnit>> from HLAM

Interface

Port stereotyped <<ClientServerPort>> from
GCM with provInterface or reqInterface attribute of
<<ClientServerPort>> tagging the interface that con-
tains services provided or required by the component.

Service Operation of the interface

Connector Connector from UML

Figure 4.5: MAC Layer Model: Rectangles are components; Squares are interfaces with services; Lines are
connectors; For readability, not all stereotypes are visible and stereotypes are shown by UML com-
ments
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No Icon
in MARTE

<<Scheduler>>

<<SwSchedulableResource>> <<HwProcessor>>

<<SwMutualExclusionResource>>

Figure 4.6: Applied GRM, SRM, and HRM Stereotypes

Table 4.4: Execution Platform Model in UML MARTE

Entity UML MARTE

Task
Component stereotyped <<SwSchedulableResource>> from
SRM. Task parameters are specified by the attributes of the
stereotype.

Memory Partition Component stereotyped <<MemoryPartition>> from SRM

Shared Resource
Component stereotyped <<SwMutualExclusionResource>>

from SRM. Shared resource access protocol are specified by the
attributes of the stereotype.

Scheduler Component stereotyped <<Scheduler>> from GRM. Schedul-
ing parameters are specified by the attributes of the stereotype.

Processor Component stereotyped <<HwProcessor>> from HRM

4.2.2 Software and Execution Platform Architecture Model

The General Resource Model (GRM), Software Resource Model (SRM), and Hardware Resource
Model (HRM) sub-profiles of MARTE are used to model some refined software and execution
platform entities.

The GRM sub-profile provides the foundations needed for a more refined modeling of both
software (SRM) and hardware (HRM). The SRM sub-profile offers support for modeling of software
entities such as tasks, shared resources and memory partitions. The HRM sub-profile provides
several stereotypes to model the platform hardware through three different views: a high-level
architectural view, a specialized view, and a detailed physical view. The model of this thesis stays
at a high-level architectural view, which contains enough information for the analysis methods of
the periodic task model. Figure 4.6 illustrates the GRM, SRM, and HRM stereotypes used in the
execution platform model.

Table 4.4 maps the different software and execution platform architecture entities, of a software
radio protocol, to their stereotyped UML meta-classes in MARTE. As a reminder, the entities are
presented in Section 3.2.1.

As an example, Figure 4.7 shows some software and execution platform entities of HDRN.
For example, CommunicationMgtTask is a task stereotyped <<SwSchedulableResource>>, Main-
Process is a memory partition stereotyped <<MemoryPartition>>, SlotProcessQueue is a shared
resource stereotyped <<SwMutualExclusionResource>>, HPFScheduler is a scheduler stereotyped
<<Scheduler>>, and CPU is a processor stereotyped <<HwProcessor>>.
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Figure 4.7: Spatial Distribution View: Dashed arrows are allocations; For readability, not all stereotypes are
visible and stereotypes are shown by UML comments

4.2.3 Associations Between Entities

UML associations, stereotyped with MARTE, are used to represent the relationships between the
entities. The associations are modeled in different views.

4.2.3.1 Spatial Distribution View

The spatial distribution view shows how entities are allocated. Through the allocation mecha-
nisms, the original MARTE model can be extended without any modifications to it.

An allocation is a abstraction association stereotyped <<Allocate>> from MARTE. The abstrac-
tion has a client and a supplier. The client is the entity to be allocated. The supplier is the the entity
on which the client is allocated on.

The different possible allocations are listed in Table 4.5. The spatial distribution view associates
high level software architecture components and interfaces (ports and operations) to tasks, tasks to
memory partitions, shared resources to memory partitions, and memory partitions to processors.

As an example, Figure 4.7 shows a spatial distribution view of HDRN. For example the PHYAb-
straction high level software component is allocated onto CommunicationMgtTask; the DwellReceiver
interface is allocated onto DwellReceiverTask; the DwellReceiverTask is allocated onto MainProcess; the
SlotProcessQueue is allocated onto MainProcess; the MainProcess is allocated onto CPU.

4.2.3.2 Shared Resource Usage View

The shared resource usage view shows how tasks use shared resources. A resource usage is a
usage association stereotyped <<ResourceUsage>> from the MARTE.

The usage has a client and a supplier. The client is the resource user, the supplier is the re-
source. Through the <<ResourceUsage>> stereotype, it is possible to specify the critical section.
A constraint, stereotyped <<TimedConstraint>> from the MARTE, is used to specify the critical
section’s length. The constraint constrains the usage.

As an example, Figure 4.8 shows the shared resource usages by tasks of HDRN. For example
TickObserverTask uses NextSlot.
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Table 4.5: Allocations

Client Supplier Description

Component Task The high level software component contains a task
released by events.

Interface Task
The services provided through the interface of a
high level software component, are handled by a
task released by calls to any of the services.

Service Task A specific service is handled by a task released by
a call to the service.

Task Memory Partition The memory partition contains the task.

Shared Resource Memory Partition The memory partition contains the shared resource.

Memory Partition Processor The tasks of the memory partition are allocated on
the processor.

Figure 4.8: Shared Resource Usage View: Dashed arrows are resource usages; For readability, not all stereo-
types are visible and stereotypes are shown by UML comments
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Table 4.6: Computed WCRTs of HDRN Tasks

Task WCRT (μs)

IPPacketSendingTask 1322

RLCPDUSendingTask 3047

CommMgtTask 1115

TickObserverTask 4737

DwellReceiverTask 2239

4.2.4 Transformation to Cheddar

The proposed architecture model contains enough information for scheduling analysis. To pro-
ceed with the analysis, the Cheddar real-time scheduling analysis tool is used. The periodic task
model and its analysis methods are implemented in the tool. Thus the model in MARTE is trans-
formed into a Cheddar-ADL model.

The transformation implementation is an update of the first MARTE to Cheddar transformation
[88], developed by Thales Research & Technology, for IBM’s RSA modeler. This update was neces-
sary to respect the current Cheddar meta-model and the MARTE model proposed in this thesis.

The MARTE to Cheddar transformation is implemented as an Eclipse plug-in. It supports models
conforming to the Eclipse implementation of UML. Such models can be created with the Papyrus
modeler which supports MARTE.

4.3 discussion on the analysis results

HDRN was modeled in MARTE by using the task parameters in Table 4.1. After HDRN was
modeled and transformed into a Cheddar-ADL model, the system is was analyzed with the schedu-
lability test in [64] for the periodic task model.

Each of the following sections discusses an analysis result: a software design mistake, a missed
deadline, an unbounded priority inversion, pessimistic WCRTs, and some characteristics of a gen-
eral software radio protocol that couldn’t be considered by the periodic task model.

4.3.1 Software Design Mistake

The WCRTs of tasks, computed by the test in [64], are shown in Table 4.6. To verify these values,
Figure 4.9 shows distribution of the measured response times of tasks.

Let us now focus on task TickObserverTask and CommunicationManagementTask to illustrate a soft-
ware design mistake. Comparison of the results in Table 4.6 and Figure 4.9 shows that the measured
response time of TickObserverTask exceeds its computed WCRT.

This inconsistency is due to a software design mistake. Indeed, the implementation of HDRN
is conform to its specification. The modeling, with the periodic task model, is also conform to the
specification. The computed WCRTs should then not be less than those that are measured. Other-
wise there is an inconsistent behavior during execution, which is not predicted by the specification.
There is then a software design mistake.

The inconsistent behavior is a task still locking a shared resource when it is inactive. The follow-
ing paragraphs describe the software design mistake, which will then be illustrated with a figure.

The CommunicationManagementTask is inactive when it waits for a message from the communica-
tion server (PC-3). During this time the other tasks with lower priority can run. But the Communica-
tionManagementTask still locks the SlotProcessQueue shared resource when it is inactive. This blocks
in turn the TickObserverTask when it asks for access the resource.
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Figure 4.9: Measured Response Times of HDRN Tasks: Each category represents an interval: 500 is (0; 500],
1000 is (500; 1000], etc.; Each bar represents the percentage of the corresponding task’s measured
response time in the category; Abbreviations are: CommMgt = CommunicationManagementTask,
DwellRx = DwellReceierTask, IPCS = IpPacketSendingTask, RLC = RLCPDUSendingTask, TickObs
= TickObserverTask

Since the time, during which the CommunicationManagementTask is inactive (equal more or less
to the CommunicationManagementTask’s 5000 μs period), is much longer than the execution time of
tasks, the TickObserverTask takes in average 5000 μs to complete.

As TickObserverTask cannot complete during the time the CommunicationManagementTask is inac-
tive, this latter task is blocked when it wants to access the NextSlot shared resource in its next job.
TickObserverTask thus impacts the response time of CommunicationManagementTask. This behavior is
not desired, nor predicted in the software specification documents.

To verify the described design mistake, the original model of HDRN is modified. A task should
not lock a shared resource when it is inactive as this behavior does not respect the constraints of a
test like the one in [64]. Therefore some modifications to the model are necessary, to represent this
behavior. The software design mistake, as well as the necessary modifications, are shown in Figure
4.10.

The modification consists in first setting the lowest priority to the TickObserverTask. This is not far
from reality since:

– TickObserverTask already has the lowest priority, along with DwellReceiverTask and RLCPDUSend-
ingTask.

– DwellReceiverTask should contribute to the response time of TickObserverTask in the analysis.
Indeed, TickObserverTask is more crucial for the functionality of the system.

– For the same reason RLCPDUSendingTask should contribute to the response time of TickOb-
serverTask in the analysis.

The second step consists in adding a new task, called SleepTask, that is of higher priority than
TickObserverTask but lower than the other tasks.

The SleepTask preempts the TickObserverTask when it wants to access the SlotProcessQueue. The pre-
emption lasts until the CommunicationManagementTask is released again. This preemption represents
the behavior where SlotProcessQueue is still locked during the time the CommunicationManagement-
Task is inactive.

The execution time of SleepTask is thus computed with the following equation:

CSleepTask = TCommMgtTask − rSleepTask (86)
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CommMgtTask, Priority = 40

IPPacketSendingTask, Priority = 20

RLCPDUSendingTask, Priority = 10

DwellReceiverTask, Priority = 10

SleepTask, Priority = 9

TickObserverTask, Priority = 8

Locks NextSlot

CSleepTask

rSleepTask

T CommMgtTask

Blocked by
SlotProcessQueue

Blocked by
NextSlot

Locks SlotProcessQueue

Figure 4.10: Software Design Mistake: Up arrows are task releases; Boxes are task executions; SleepTask only
used for analysis; Sizes in figure are not proportional to time values



4.3 discussion on the analysis results 101

Table 4.7: Simulated WCRTs of HDRN Tasks

Task WCRT (μs)

IPPacketSendingTask 1322

RLCPDUSendingTask 3964

CommMgtTask 3736

TickObserverTask 7619

DwellReceiverTask 2131

where Ci is the execution time of task i, Ti is the period of task i, and ri the first release time of
task i.

The first release time of SleepTask, rSleepTask, is computed with the folowing equation:

rSleepTask =

⎛
⎝ ∑

j∈hpSleepTask

Cj

⎞
⎠+ S(TickObserverTask, SlotProcessQueue) (87)

where hpi is the set of tasks with higher priority than task i, and S(i, R) is the time task i starts
using shared resource R in its execution time.

With the data in table 4.1 and 4.2, we have CSleepTask = 952 μs and rSleepTask = 4048 μs.
With this new model, it is not possible to apply the schedulability test in [64] because of the

different release times. Thus a scheduling simulation is done in a time interval of 2 slots, i.e.
10000 μs. The simulation is done with the Cheddar simulator engine.

Note that the modification only works for computing response times in a time interval of 2 slots.
TickObserverTask will start later in its second release, having been delayed by CommunicationManage-
mentTask, but SleepTask’s release time and capacity cannot be modified. Table 4.7 shows the WCRTs
given by the scheduling simulation.

By comparing table 4.7 with the measured response times distribution in Figure 4.9, we see
that the results given by simulation, with the modified model, are consistent. This validates the
assumption on the software design mistake.

In conclusion the periodic task model can be applied to the specification of HDRN but the imple-
mentation of HDRN has an inconsistent behavior not predicted by the specification. This inconsis-
tent behavior is due to a software design mistake, which was only detected after the periodic task
model was applied, and inconsistencies in analysis results were observed.

4.3.2 Missed Deadline

In the scheduling simulation in Cheddar, there is at least one case where the TickObserverTask
misses its 5000 μs deadline. This has also been observed in the application’s execution, where the
task’s maximum observed response time is 5387 μs, the average being 5058 μs.

In reality the system still works because as long as the CommunicationManagementTask’s response
time does not exceed 5000 μs, the system can operate. Furthermore not all tasks actually run at
their WCET, i.e. lateness in certain tasks may be compensated by tasks running less than their
WCET in the next slot.

4.3.3 Unbounded Priority Inversion

Another interesting result comes from the Cheddar priority inversion detection tool. Cheddar
detects that CommunicationManagementTask has an unbounded priority inversion from 5329 to 7950.
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CommMgtTask, Priority = 40

IPPacketSendingTask, Priority = 20

TickObserverTask, Priority = 8

Unbounded priority inversion

RLCPDUSendingTask, Priority = 10

Figure 4.11: Unbounded Priority Inversion: A high rectangle means the task is executing; A low rectangle that
it is preempted

This issue is illustrated in Figure 4.11. In the figure, IPPacketSendingTask and RLCPDUSendingTask
execute when CommunicationManagementTask is blocked, but they do not share a resource. The
execution traces show that this unbounded priority inversion does happen.

To verify the unbounded priority inversion, its time interval, from 5329 to 7950, is discussed.
5329 is the time at which CommunicationManagementTask asks for access to NextSlot. The priority
inversion lasts 7950− 5329 = 2621 which corresponds to:

CIPPacketSendingTask

+CRLCPDUSendingTask

+CTickObserverTask

− S(TickObserverTask, SlotProcessQueue)

= 2621 = 7950− 5329

(88)

As a reminder, in the modified task model TickObserverTask has the lowest priority, this is why it
is preempted by RLCPDUSendingTask too.

The unbounded priority inversion is not surprising as the shared resources are not protected by
some specific access protocol (e.g. PCP, PIP). The described blocking should not occur according
to specification documents, but it does because there is a software design mistake. The choice of
the execution platform thus needs to consider such shared resource access protocols.

4.3.4 Pessimistic WCRTs

Table 4.7 and Figure 4.9 show response times for the system with the software design mistake.
Again let us focus on the two tasks impacted by the software design mistake.

In Table 4.7, the WCRT of CommunicationManagementTask (resp. TickObserverTask) is 3736 (resp.
7619). In Figure 4.9, the observed response time of CommunicationManagementTask (resp. TickOb-
serverTask) is in majority less than 1500 (resp. less than 5500).

The computed WCRT of CommunicationManagementTask (resp. TickObserverTask) is 2.49 (resp. 1.38)
times higher than the upper-bound of the response time observed for the majority of the Communica-
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tionManagementTask (resp. TickObserverTask) executions. Thus the WCRT computed by the analysis
is greater than in reality. This is mostly due to the fact that tasks do not execute at their WCET
most of the time.

Let us now assume that the software design mistake is fixed. The test in [64] can then be used.
This test gives pessimistic results.

Indeed in a slot in Rx mode, tasks DwellReceiverTask, TickObserverTask, and CommunicationMan-
agementTask are released. CommunicationManagementTask executes during its WCET only when it is
released in a Tx slot.

In a Tx slot DwellReceiverTask is not released so the WCET of CommunicationManagementTask
should not contribute to the WCRT of DwellReceiverTask. Only the execution time of Communica-
tionManagementTask in a Rx slot (less than its WCET) should contribute to the WCRT of DwellRe-
ceiverTask. Again there is pessimism because tasks do not execute always at their WCET.

Therefore to get less pessimistic WCRTs, the individual job parameters of tasks must be consid-
ered, in the case of a software radio protocol.

4.3.5 Limits of the Periodic Task Model

The HDRN case-study is a simplified software radio protocol. Thus it does not represent a
general software radio protocol. Therefore some characteristics of a real software radio protocol at
Thales, were not considered for the experiment:

– TDMA release: This characteristic is not considered because tasks of HDRN are released in
periodic intervals. Indeed, slots have the same duration.

– Arbitrary deadline: This characteristic is not considered because tasks of HDRN have a dead-
line shorter or equal to their period.

– Precedence Dependency: To model a precedence dependency of synchronous tasks, the priority
assignment proposed in [5] is used for tasks of HDRN with precedence dependency. This
means priorities cannot be arbitrary.

– Shared Resource: A blocking time can be bounded if a specific access protocol is used [127]. The
blocking time is omitted since HDRN is supposed to be developed such that shared resource
blocking should never occur unless deadlines are missed. As shown by the experiment, there
are blocking times due to the software design mistake.

– Individual job parameter: This characteristic is not considered since the WCETs are considered
by the periodic task model analysis.

– Partitioned multiprocessor: This characteristic is not considered because HDRN does not have
security issues and thus execute on a uniprocessor.

The majority of the characteristics of a software radio protocol are thus not considered by the
periodic task model. This confirms that it is not adapted for the system to analyze.

4.3.6 Summary of the Analysis Results

To conclude the evaluation of the scheduling analysis results of HDRN, the experiment showed
that scheduling analysis, whether through schedulability tests or scheduling simulation, can help
detect design mistakes in a software radio protocol. Indeed, by applying scheduling analysis, a
software design mistake, missed deadline, and unbounded priority inversion were detected.

On the other hand, the schedulability results are pessimistic. The WCRTs are overestimated since
the periodic task model is not adapted to a software radio protocol. This pessimism is mostly due
to the variable task parameters from one job to another.

Finally the periodic task model could be applied to HDRN because it is a simplified software
radio protocol. It does not have all characteristics of a general software radio protocol developed at
Thales. Therefore a new task model needs to be proposed for the general case.
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4.4 conclusion

In this chapter an experiment was done by applying the fundamental periodic task model on a
simplified software radio protocol. The case-study is the HDRN developed at Thales. The approach
was to first model HDRN in UML MARTE. Then the MARTE model is transformed to the periodic
task model implemented in Cheddar. This approach respects the development cycle of a software
radio protocol at Thales, since the proposed MARTE model can be transformed to a MyCCM model
for code generation.

The evaluation of the scheduling analysis results, given by the schedulability test in [64], showed
that design mistakes of the architecture can be detected.

On the other hand, pessimism in WCRT computation limits the usefulness of the periodic task
model for a system like a software radio protocol that is based on TDMA. Furthermore it was
shown that the periodic task model is not applicable to a general software radio protocol since the
HDRN case-study is a simplified system that does not represent the general case.

Finally the experiment showed that the individual job parameters of tasks have the greatest
impact on the pessimism of computed WCRTs. Based on this observation, in the next chapter a
new task model is proposed.

publications The experiment described in this chapter is published in [82]. The high level
software architecture model in UML MARTE, described in this chapter, is published in [78, 113, 27].
The execution platform model in UML MARTE is published in [77, 113, 26].



Chapter 5

A TA S K M O D E L F O R S O F T WA R E R A D I O
P R O T O C O L S

The experiment in the last chapter showed that individual job parameters of tasks have an impact
on the pessimism of WCRTs computed to assess schedulability of a software radio protocol. In
this chapter, the GMF task model is extended to propose a task model called Dependent General
Multiframe (DGMF).

The following sections first define the DGMF task model. Then its analysis method is proposed.
A summary of the analysis method is presented at the end. Afterwards the implementation in
Cheddar is shown. Finally some experimental results and evaluation are exposed.

5.1 dependent general multiframe

Jobs with individual parameters is frequent in the multimedia domain. For example a video
decoder task of a multimedia system has a sequence of images to decode. The parameters of a job
of the task are constrained by the type of the image to decode.

The described task behavior also occurs in software radio protocols. Indeed a job of a task,
released by TDMA slots, may also have parameters constrained by the slot. The job parameters are
thus constrained by the sequence of slots of the TDMA frame.

A task model motivated by the described behavior is the GMF task model. As a reminder, a GMF
task is an ordered vector of frames representing its jobs. Each frame can have a different execution
time, deadline, and minimum separation time from the frame’s release to the next frame’s release.

Among task models that propose to model individual job parameters, GMF is sufficient for the
modeling of a sequence of task jobs, constrained by a sequence of slots. On the other hand, as
shown in Table 3.2, GMF is limited to uniprocessor systems, without task dependencies, and with
constrained deadlines. The GMF task model is thus extended to propose a task model called DGMF.

The DGMF task model extends the GMF model with task dependencies. It is also applicable to
partitioned multiprocessor systems. The following sections first define the DGMF task model and
its properties. Then an example is shown. Finally the applicability of GMF analysis method on
DGMF is discussed.

5.1.1 DGMF Definitions and Properties

A DGMF task Gi is a vector composed of Ni frames F
j
i, with 1 � j � Ni. Each frame is a job of

the same task Gi. Frames have some parameters inherited from GMF:
– E

j
i is the WCET of Fji.

– D
j
i is the relative deadline of Fji.

– P
j
i is min-separation of Fji, defined as the minimum time separating the release of Fji and the

release of Fj+1
i .

105
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A DGMF task also has a GMF period [14] inherited from the original task model. For DGMF task
Gi with Ni frames, the GMF period Pi of Gi is:

Pi =

Ni∑
j=1

P
j
i (89)

Frames also have some parameters and notations specific to the DGMF task model:
– [U]ji is a set of (R, S, B) tuples denoting shared resource critical sections. F

j
i asks for access to

resource R after it has run S time units of its execution time, and then locks the resource during
the next S time units of its execution time.

– [Fqp]
j
i is a set of predecessor frames, i.e. frames from any other DGMF task that must complete

execution before F
j
i can be released. A predecessor frame is denoted by F

q
p. Frame F

q
p can

only be in [Fqp]
j
i if Gi and Gp have the same GMF period. When a frame F

y
x precedes F

j
i, the

precedence dependency is denoted F
y
x → F

j
i. We have ∀Fqp ∈ [Fqp]

j
i, F

q
p → F

j
i. But Fqp are not the

only frames that precede F
j
i. For example, any frame that precedes a F

q
p ∈ [Fqp]

j
i, also precedes

F
j
i. For j > 1, we have F

j−1
i → F

j
i.

– proc(Fji) is the processor on which F
j
i is allocated on. Critical section (R, S, B) can be in [U]ji

and [U]yx , with F
j
i �= F

y
x , only if proc(Fji) = proc(Fyx).

– prio(Fji) is the fixed priority of Fji (for FP scheduling).
– r

j
i is the first release time of Fji. For the first frame F1i , parameter r1i is arbitrary. For the next

frames, we have r
j
i = r1i +

j−1∑
h=1

Ph
i .

Frames are released cyclically [14]. Furthermore, the first frame to be released by a DGMF task
Gi is always the first frame in its vector, denoted by F1i . Parameter ri denotes the release time of Gi

and we have ri = r1i .
A DGMF tasks set may have the Unique Predecessor property:

Property 4 (Unique Predecessor). Let Fji be a frame of a task Gi, in a DGMF tasks set. Let [Fqp]
j
i be the

set of predecessor frames of Fji. F
j−1
i is the previous frame of Fji in the vector of Gi, with j > 1. The set of

predecessor frames of Fji is the set [Fqp]
j
i and F

j−1
i (with j > 1).

A DGMF tasks set is said to respect the Unique Predecessor property if, for all frames Fji, there is at most
one frame F

y
x , in a reduced set of predecessors of Fji, with a global deadline (i.e. r

y
x +D

y
x ) greater than or

equal to the release time of Fji. The reduced set of predecessors, of Fji, are predecessors that do not precede
another predecessor of Fji.

To formally define the Unique Predecessor property, the set of predecessor frames of F
j
i is denoted by

pred(Fji) such that:

pred(Fji) =

⎧⎨
⎩[Fqp]

j
i ∪ {Fj−1

i } with j > 1

[Fqp]
j
i otherwise.

(90)

Formally the Unique Predecessor property is then defined as follows:

∃�1F
y
x ∈ pred(Fji)

′, ryx + dy
x � max( max

Fh
l ∈pred(Fj

i)

(rhl + Eh
l ), r

j
i) (91)

where ∃�1 means "there exists at most one", and the set pred(Fji)
′ is defined as:

pred(Fji)
′ = pred(Fji) \ {F

y
x ∈ pred(Fji) | ∃Flk ∈ pred(Fji), F

y
x → Flk} (92)

A DGMF tasks set may also have the Cycle Separation property:
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Table 5.1: DGMF Task Set

E
j
i D

j
i P

j
i [U]ji [Fqp]

j
i prio(Fji) proc(Fji)

G1; r1 = 0

F11 1 4 1 F12 1 cpu1

F21 1 3 1 1 cpu2

F31 1 2 6 1 cpu1

F41 1 4 4 F22 1 cpu1

F51 4 8 8 (R, 1, 3) F32 1 cpu1

G2; r2 = 0

F12 1 4 8 2 cpu1

F22 1 4 4 2 cpu1

F32 1 4 4 2 cpu1

F42 2 4 4 (R, 0, 1) 2 cpu1

G3; r3 = 4

F13 1 2 2 F14 1 cpu1

F23 1 2 18 F24 1 cpu1

G4; r4 = 4

F14 1 2 2 2 cpu1

F24 1 2 18 2 cpu1

Property 5 (Cycle Separation). A DGMF task Gi is said to respect the Cycle Separation property if:

D
Ni
i <= ri + Pi (93)

The Unique Predecessor and Cycle Separation properties simplify the analysis method of DGMF so
both properties are assumed for a DGMF tasks set. Later in this chapter, experiments will show
that they have no impact on the ability to model a real software radio protocol, developed at Thales,
with DGMF.

To illustrate the task model defined in this section, the next section shows an example with some
DGMF tasks, the parameters of their frames, and a possible schedule of the tasks set.

5.1.2 DGMF Example

Consider the DGMF tasks set in Table 5.1, modeling tasks constrained by a TDMA frame. Frames
of G1 and G3 have a priority of 1. Frames of G2 and G4 have a priority of 2. All frames are allocated
on cpu1 except F21, which is allocated on cpu2. Frames F51 and F42 use a shared resource R.

Figure 5.1 shows an example of a schedule produced by the tasks set, over 20 time units. In the
figure, the TDMA frame has 1 S slot, 2 B slots, and 3 T slots. Task G2 is released at S and T slots. G2

releases G1 upon completion. G4 is released at B slots. G4 releases G3 upon completion. Release
time parameter ri allows us to specify at which slot a task is released for the first time. For example
task G4 is released at time 4, which is the start time of the first B slot. Notice that precedence
dependencies are respected and F24 is blocked by F51 during 1 time unit, due to a shared resource.
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Figure 5.1: Example of Schedule of DGMF Tasks: Up arrows are frame releases; Down arrows are frame
relative deadlines; Dashed arrows are precedence dependencies; Curved arrows are shared resource
critical sections where R is used; Crossed frame executes on a different processor
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Table 5.2: DGMF Example for GMF Test

E
j
i D

j
i P

j
i [U]ji [Fqp]

j
i prio(Fji) proc(Fji)

G1; r1 = 0

F11 3 5 5 F12 2 cpu1

F21 4 4 4 2 cpu2

G2; r2 = 0

F12 2 5 9 1 cpu1

0 3 6 9

G
1

F
1
1

0 3 6 9

G
2

F
2
1

F
1
2

Figure 5.2: Illustration of DGMF Example for GMF Test: Up arrows are frame releases; Down arrows are frame
relative deadlines; Dashed arrows are precedence dependencies

5.1.3 Applicability of GMF Analysis Methods on DGMF

Feasibility and schedulability tests exist for GMF tasks. In this section two tests are reminded
and their applicability to DGMF is discussed.

In [14] a demand-bound feasibility test for GMF tasks is proposed. The test is restricted to
independent tasks running on a uniprocessor system under a preemptive EDF scheduling policy.

In [138] a response time based schedulability test for GMF tasks is proposed. This test assumes
that tasks are independent and run on a uniprocessor system with a preemptive FP scheduling
policy. Furthermore the authors also assume that Property 3 (Frame Separation) holds: the relative
deadline of a frame is less than or equal to its min-separation.

Obviously these two tests cannot be applied to DGMF tasks for the following reasons:
– DGMF tasks have task dependencies
– DGMF frames can be allocated on different processors.
The following paragraphs present an example to illustrate the task dependency issue. The test in

[138] is applied to DGMF tasks with precedence dependencies.
Consider two DGMF tasks, G1 and G2. The parameters of these tasks are shown in Table 5.2 and

illustrated in Figure 5.2. This kind of tasks set, where a predecessor task has a lesser priority than
the successor task, can be found in input-output driver software.

If the test in [138] is applied, then the WCRT of G1 is 4, and the WCRT of G2 is 6. Both of these
values are incorrect.

The WCRT of G1 is underestimated: it should be E1
2 + E1

1 = 2+ 3 = 5 since F12 precedes F11. The
WCRT of G2 is overestimated: it should be E1

2 = 2 since F12 precedes F11, which itself precedes F21
because F21 is released after F11. Thus F21 can never preempt F11, unless the former misses its deadline.

Through this example, we see that a simple precedence dependency between two frames results
in both under and overestimated WCRTs. Generally speaking, in the original tests for GMF, frames
can be released simultaneously as long as they belong to different GMF tasks. This no longer holds
true when precedence dependencies exist between frames.
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The next section proposes a scheduling analysis method for DGMF by exploiting the transaction
model.

5.2 dgmf scheduling analysis using transactions

In the previous section it was shown that GMF analysis methods cannot be applied to DGMF
tasks because of task dependencies and the partitioned multiprocessor nature of the system. Two
choices are then available to solve this issue:

– Extend GMF schedulability tests
– Transform to another model where schedulability tests exist
The second approach is chosen: DGMF tasks scheduling analysis will be performed by trans-

forming them to transactions.The transaction model is chosen for the following reasons:
– Task dependencies (precedence and shared resource) are supported.
– Partitioned multiprocessor systems are considered.
– A independent GMF to transaction transformation is proposed in [116] for uniprocessor sys-

tems.
The transformation faces the issue of the difference in semantic between the two models. Indeed,

transactions represent tasks related by collectively performed functionalities and timing attributes
[143], not individual jobs of a task. The multiframe task models, on the other hand, express the
individual job parameters.

Furthermore a transaction is a group of tasks with an offset, and release jitter. The basic entity is
a task with some parameters. In the multiframe task models, the basic entity is a frame, a job of a
task with some parameters.

In the next sections, the transaction model is first reminded. Then the transformation algorithm in
[116] is extended for DGMF tasks. Afterwards the DGMF tasks set in Section 5.1.2 is transformed to
a transactions set. Finally schedulability tests for transactions are discussed to choose one suitable
for transactions resulting from DGMF transformation.

5.2.1 Transaction Reminder and New Definitions

As a reminder, a transaction is denoted by Γi and its tasks are denoted by τij. The periodic event
that releases a transaction occurs every Ti. The release time of the first job of Γi is denoted by ri.
Each task has parameters:

– Cij is the WCET of τij.
– Oij is the offset of τij. Value rij = ri +Oij is the absolute release time of the first job of τij.
– dij is the relative deadline of τij. Value Oij +dij is the global deadline of τij. Value ri +Oij +

dij is the absolute deadline of the first job of τij.
– Jij is the maximum jitter of τij.
– Bij is the WCBT of τij.
– prio(τij) is the fixed priority of τij.
– proc(τij) is the processor on which τij is allocated on.
– Rw

ij is the global WCRT of τij.
– Rb

ij is the global BCRT of τij.
As a reminder, a critical section is denoted by (τij, R, S, B). A precedence dependency between

two tasks is denoted by τip ≺ τij. Later sections will focus on tree-shaped transactions. In a tree-
shaped transaction a task τij has at most one immediate predecessor (denoted pred(τij)), but may
have several immediate successors (denoted succ(τij)).

The next section exposes the DGMF to transaction transformation algorithm.
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5.2.2 DGMF To Transaction

The DGMF to transaction transformation aims at expressing parameters and dependencies in the
DGMF task model as ones in the transaction model. The transformation has three major steps:

– Step 1: Transform independent DGMF to transaction, i.e. consider DGMF tasks independent
and transform them to transactions.

– Step 2: Express shared resource critical sections, i.e. model critical sections in the resulting
transaction set and compute WCBTs.

– Step 3: Express precedence dependencies, i.e. model precedence dependencies in the transac-
tion model.

In the following sections, each step is explained in detail.

5.2.2.1 Independent DGMF to Transaction

Step 1 consists in transforming each DGMF task to a transaction by considering DGMF tasks as
independent. Algorithm 5.1 shows the original algorithm proposed in [116] that is extended for
DGMF tasks.

The idea behind the algorithm is to transform frames F
j
i of a DGMF task Gi into tasks τij of a

transaction Γi. Parameters in the transaction model, like WCET (Cij), relative deadline (dij) and
priority (prio(τij)), are computed from parameters E

j
i, D

j
i and prio(Fji) from the DGMF model.

To transform the min-separation of a frame in the DGMF model, offsets (Oij) are used in the
transaction model. The offset of a task τij is computed by summing the Ph

i of frames Fhi preceding
F
j
i in the vector of Gi.

In the extension of the transformation, the release time ri of a DGMF task Gi is transformed into
the release time ri of a transaction Γi.

Algorithm 5.1 Independent DGMF to Transaction

1: for each DGMF task Gi do

2: Create transaction Γi
3:

4: Ti ←
Ni∑
j=1

P
j
i

5: Γi.ri ← Gi.ri
6:
7: for each F

j
i in Gi do

8: Create task τij in Γi
9:

10: Cij ← E
j
i

11: dij ← D
j
i

12: Jij ← 0

13: Bij ← 0

14: prio(τij)← prio(Fji)

15: proc(τij)← proc(Fji)

16: if j = 1 then

17: Oij ← 0

18: else

19: Oij ←
j−1∑
h=1

Phi

20: end if

21: end for

22: end for
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5.2.2.2 Express Shared Resource Critical Sections

In Step 2, the goal is to express critical sections of tasks τij and then compute their Bij. Step 2 is
thus divided into 2 sub-steps:

– Step 2.A: Express critical sections
– Step 2.B: Compute worst case blocking times
The following paragraphs focus on these two sub-steps.

2 .a , express critical sections In Step 2.A, if a critical section is defined for a frame, then
the task, corresponding to the frame after transformation, must also have the critical section. If
there is a critical section (R, S, B) in [U]ji, then a critical section (τij, R, S, B) must be specified in the
transaction set resulting from Step 1.

2 .b , compute worst case blocking times In Step 2.B, the goal is to compute Bij of a
task τij, assuming Bij of a task is bounded [127, 117]. Bij is computed by considering all shared
resource R accessed by τij. Then all other tasks τxy that may access R are considered too. Since
some other tasks τxy actually represent jobs of a same DGMF task, not all tasks τxy accessing R

must be considered for the computation of Bij. Otherwise the WCBT is pessimistic.
Consider a task τxy that share a resource R with task τij. Let (τxy, R, S, Bmax) denote the longest

critical section of τxy. Let SG(τxy, τij) denote the function that returns true if τxy and τij result
from frames that are part of a same DGMF task. Let βij,R be the set of tasks considered for the
computation of Bij for a given R. For a given R, set βij,R contains a task τxy if:

proc(τxy) = proc(τij)∧ (94)

¬SG(τxy, τij)∧ (95)

¬∃(τkl, R, S′, B′) | (SG(τkl, τij)∧B′ > Bmax) (96)

The three conditions have the following meaning:

1. Condition 1 (Equation 94) means that τxy must be on the same processor as τij.
2. Condition 2 (Equation 95) means that both tasks must not come from frames that are part of

a same DGMF task.
3. Finally for condition 3 (Equation 96), suppose that τxy results from a frame in a DGMF task

Gx. For a given R, τxy is only considered if it has the longest critical section of R, among all
tasks (with critical sections of R) that result from frames that are part of Gx.

Proof of Step 2.B. Frames represent jobs of a same DGMF task. Tasks resulting from frames of a
same DGMF cannot block each other since jobs of a same DGMF task do cannot block each other.
Furthermore tasks, resulting from frames of a same DGMF task, cannot all block another task, as if
they are individual tasks, since they represent jobs of a same DGMF task.

Equations for the computation of Bij are then adapted with the new set βij,R. Equation 1, for
the WCBT computation with PIP, becomes:

Bij =
∑
R

max
τxy∈βij,R

(Critical section duration of τxy) (97)

where R denotes a shared resource.
Equation 2, for the WCBT computation with PCP, becomes:

Bij = max
τxy∈βij,R,R

(
Dxy,R | prio(τxy) < prio(τij), C(R) � prio(τij)

)
(98)

where R denotes a shared resource, C(R) the ceiling priority of R, and Dxy,R the duration of the
longest critical section of task τxy using shared resource R.
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5.2.2.3 Express Precedence Dependencies

The goal of Step 3 is to model precedence dependencies in the transactions set, with respect to
how they are modeled in the transaction model with offsets. Step 3 is divided into three sub-steps:

– Step 3.A: Express precedence dependency, i.e. precedence dependencies between frames are
expressed as precedence dependencies between tasks.

– Step 3.B: Model precedence dependency in the transaction model, i.e. precedence dependen-
cies between tasks are modeled with offsets according to [105]. Precedence dependent tasks
must also be in a same transaction.

– Step 3.C: Reduce precedence dependencies, i.e. simplify the transactions set by reducing num-
ber of precedence dependencies.

The following paragraphs present each of these sub-steps.

3 .a , express precedence dependency Two kinds of precedence dependency are defined in
the DGMF model: intra-dependency and inter-dependency. A intra-dependency is a precedence
dependency that is implicitly expressed between frames of a same DGMF task. Indeed, frames
of a DGMF task execute in the order defined by the vector. An inter-dependency is a precedence
dependency between frames belonging to different DGMF tasks.

An intra-dependency in the DGMF set is expressed in the transaction set by a precedence depen-
dency between tasks, representing successive frames, if they are part of a same transaction Γi with
Ni tasks, resulting from Step 1: ∀j < Ni, τij ≺ τi(j+1).

This also ensures that these tasks are part of the same precedence dependency graph, which is
important for determining if the transaction is linear, tree-shaped or graph-shaped.

Inter dependencies must also be expressed in the transactions set resulting from Step 1. If a frame
F
q
p, corresponding to task τ

q
p, is in the set of predecessor frames [Fqp]

j
i of frame F

j
i, corresponding to

task τij, then a precedence dependency τpq ≺ τij is expressed.

Proof of Step 3.A. By definition frames of Gi are released in the order defined by the vector of Gi

so F
j
i precedes F

j+1
i (j < Ni). Task τij (resp. τi(j+1)) is the result of the transformation of Fji (resp.

F
j+1
i ), thus by construction we must have τij ≺ τi(j+1). The same proof is given for τpq ≺ τij,

resulting from the transformation of Fqp ∈ [Fqp]
j
i.

3 .b , model precedence dependency in the transaction model In the transaction
model, precedence dependencies should be modeled with offsets. This is done in Step 3.B with
three algorithms: (ALG1) Task Release Time Modification; (ALG2) Transaction Merge; and (ALG3)

Transaction Release Time Modification.

������ ��	
 ��
��	� ���� ����������� In ALG1 the release time rij of each task τij, in the
transactions set, is modified according to precedence dependencies. This enforces that the release
time of τij is later or equal to the latest completion time (rpq +Cpq) of a predecessor τpq of τij.

Task release times are changed by modifying offsets because rij = ri+Oij, where ri is the release
time of Γi. The release time modification algorithm is shown in Algorithm 5.2. Since the release
time of τpq may also be modified when the algorithm runs, release time modifications are made
until no more of them occur. Note that when the offset Oij of τij is increased, its relative deadline
(dij) is shortened and then compared to its WCET (Cij) to verify if the deadline is missed.

Proof of Algorithm 5.2. Let us assume τpq ≺ τij. The earliest release time of τij is rij. According to
[34], τpq ≺ τij ⇒ rpq +Cpq � rij is true. The implication is false if ¬(rpq +Cpq � rij), otherwise
said rpq +Cpq > rij. Therefore if we have τpq ≺ τij then we cannot have rpq +Cpq > rij. Thus,
for all τpq ≺ τij, release time rij must be modified to satisfy rpq + Cpq � rij, if τpq ≺ τij and
rpq +Cpq > rij. Since rij = ri +Oij, the offset Oij is increased to increase rij. Relative deadline
dij is relative to Oij, thus dij must be decreased by the amount Oij is increased.
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Algorithm 5.2 Task Release Time Modification
1: repeat

2: NoChanges← true

3:
4: for each τpq ≺ τij do

5: if rpq +Cpq > rij then

6: NoChanges← false

7:
8: diff← rpq +Cpq − rij
9: Oij ← Oij+ diff

10: dij ← dij− diff
11: rij ← ri +Oij

12:
13: if dij < Cij then

14: STOP (Deadline Missed)
15: end if

16: end if

17: end for

18: until NoChanges

������ ��	
�	�
��
 ����� Up until now, the transformation algorithm produces separate trans-
actions even if they contain tasks that have precedence dependencies with other tasks from other
transactions. This does not respect the modeling of precedence dependencies in [105]. Indeed two
tasks with a precedence dependency should be in the same transaction and they should be delayed
from same event that releases the transaction. Two transactions are thus merged into one single
transaction if there exists a task in one that has a precedence dependency with a task in the other:

∃τpq, τij | (Γi �= Γp)∧
(
τpq ≺ τij ∨ τij ≺ τpq

)
(99)

Merging two transactions consist in obtaining a final single transaction, containing the tasks of
both. Algorithm 5.3 merges transactions two by two until there are no more transactions to merge.

Algorithm 5.3 Transaction Merge

1: for each τpq ≺ τij do

2: if Γp �= Γi then

3: for each task τij in Γi do

4: Assign τij to Γp
5: end for

6: end if

7: end for

Proof of Algorithm 5.3. As a reminder, tasks of a transaction are related by precedence dependencies
and a task in a transaction is released after the periodic event that releases the transaction. Let us
consider two tasks τij and τpq, with τpq ≺ τij. Task τij (resp. τpq) is originally a frame F

j
i (resp.

F
q
p). We have F

q
p ∈ [Fqp]

j
i ⇒ Pi = Pp. Gi (resp. Gp) is transformed into Γi (resp. Γp) with period Ti

(resp. Tp). We then have Ti = Pi = Pp = Tp. Thus τij and τpq are released after periodic events
of period Ti = Tp. Since τpq ≺ τij, τij is released after τpq. Thus τij is released after the periodic
event after which τpq is released. Therefore τij and τpq are released after the same periodic event,
that releases transaction Γp. Both tasks then belong to Γp.

������ ��	
�	�
��
 ����	�� ���� ������	
��
 After merging two transactions into Γm, the
offset Oj

m of a task τ
j
m (originally denoted by τ

j
o and belonging to Γo) is still relative to the release
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time ro of Γo, no matter the precedence dependencies. In Γm, each offset must thus be set relatively
to rm, the release time of Γm. Release time rm is computed beforehand. This is done in Algorithm
5.4.

Algorithm 5.4 Transaction Release Time Modification

1: for each merged transaction Γm do

2: rm ← +∞
3: for each τ

j
m in Γm, originally in Γo do

4: rm ← min(rm, ro +O
j
m)

5: end for

6: for each τ
j
m in Γm, originally in Γo do

7: O
j
m ← ro +O

j
m − rm

8: end for

9: end for

Algorithm 5.4 starts by finding the earliest (minimum) task release time in a merged transaction
Γm (as a reminder, Oj

m is still relative to ro at this moment). The earliest task release time becomes
rm. The offset Oj

m of each task τ
j
m is then be modified to be relative to rm.

Note that when transactions are merged and all of them have at least one task released at time
t = 0, then Algorithm 5.4 produces the same merged transaction. This is the case for the transaction
resulting from the transformation of the DGMF tasks set example (Section 5.1.2), which was used
to model tasks constrained by a TDMA frame.

Proof of Algorithm 5.4. Let Γm be a merged transaction. Tasks in Γm were originally in Γo. The
event that releases Γm occurs at rm, which must be the earliest release time r

j
m of a task τ

j
m in

Γm, otherwise the definition of a transaction is contradicted. A task τ
j
m should be released at

r
j
m = ro +O

j
m. Once rm is computed, when task offsets have not been modified yet, it is possible

to have ro +O
j
m �= rm +O

j
m. If we assign r

j
m ← rm +O

j
m then τ

j
m may not be released at ro +O

j
m.

This contradicts the fact that τ
j
m should be released at r

j
m = ro +O

j
m. Therefore O

j
m must be

shortened to be relative to rm: Oj
m ← ro +O

j
m − rm. Since rm = min

τ
j
m∈Γm

(ro +O
j
m), the minimum

value of ro +O
j
m − rm is 0 and thus the assignment O

j
m ← ro +O

j
m − rm will never assign a

negative value to O
j
m.

3 .c , reduce precedence dependencies In Step 3.C, the transactions set can be simplified
by reducing the number of precedence dependencies expressed in Step 3.A. This could not be
done in Step 3.A, before Step 3.B, because we did not yet know the latest completion time of a
task’s predecessors. Now that offsets have been modified, some precedence dependencies can be
reduced. Reducing precedence dependencies has the effect of reducing the number of immediate
predecessors/successors of a task.

Algorithm 5.5 iterates through tasks with more than 1 predecessor. For a specific task τij, the
algorithm reduces predecessors τiq that have a global deadline (i.e. Oiq + diq) smaller than the
offset Oij of τij. This is the first precedence dependency reduction.

The algorithm also reduces redundant precedence dependencies, similar to a graph reduction
algorithm [68]. A precedence dependency is said redundant if it is already expressed by some
other precedence dependency. Redundancy is due to the transitivity of precedence dependency.
For example, if τiq ≺ τij and τ′iq ≺ τij were expressed previously, and we have τiq ≺ τ′iq due
to some other expressed precedence dependencies and the transitivity of precedence dependency,
then τiq ≺ τij is reduced.

Proof of Algorithm 5.5. Let us assume τiq ≺ τij and Oiq + diq < Oij. By definition t0 +Oij is the
earliest release time of a job of τij, corresponding to the job of Γi released at t0. For the job of
Γi released at t0, the absolute deadline of a corresponding job of τiq is t0 +Oiq + diq. The job
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Algorithm 5.5 Reduce Precedence Dependencies

1: for each task τij with multiple predecessors do

2: for each τiq ≺ τij do

3: if Oiq + diq < Oij

4: or ∃τ′iq | τ′iq ≺ τij ∧ τiq ≺ τ′iq then

5: Remove τiq ≺ τij
6: end if

7: if τij has only one predecessor then

8: break

9: end if

10: end for

11: end for

Table 5.3: Transaction from DGMF Transformation

Cij Oij dij Jij Bij prio(τij) proc(τij)

τ11 1 1 3 0 0 1 cpu1

τ12 1 2 2 0 0 1 cpu2

τ13 1 3 1 0 0 1 cpu1

τ14 1 9 3 0 0 1 cpu1

τ15 4 13 7 0 0 1 cpu1

τ21 1 1 4 0 0 2 cpu1

τ22 1 8 4 0 0 2 cpu1

τ23 1 12 4 0 0 2 cpu1

τ24 2 16 4 0 3 2 cpu1

τ31 1 5 1 0 0 1 cpu1

τ32 1 7 1 0 0 1 cpu1

τ41 1 4 2 0 0 2 cpu1

τ42 1 6 2 0 0 2 cpu1

Tick 0 0 +∞ 0 0 0 cpu3

Critical Sections

(τ13 R, 1, 3), (τ24 R, 0, 1)

of τiq must finish before t0 +Oiq + diq and τij is released at earliest after t0 +Oiq + diq since
Oiq + diq < Oij. Thus the precedence dependency constraint τiq ≺ τij is already encoded in the
relative deadline diq of τiq. Tasks in a transaction are related by precedence dependency so τij
must have at least one predecessor.

The next section shows an example of a DGMF to transaction transformation.

5.2.3 Transformation Example

The DGMF tasks set in Section 5.1.2 is transformed into a transaction Γ1 of period T1 = 20.
Tasks of transaction Γ1 are defined with parameters shown in Table 5.3. PCP [127] is assumed for
computation of Bij.

Tasks are allocated on cpu1 except τ12, which is allocated on cpu2. Task Tick represents a ghost
root task (Definition 55) added by the test in [118] for the analysis. In the specific example, Tick can
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Figure 5.3: Tasks Precedence Dependency Graph

0 5 10 15 20

S B B T T T

TDMA Frame

1
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Figure 5.4: Transaction from DGMF Tasks Transformation: Curved arrows are shared resource critical sections;
Tasks execute on same processor except the crossed task

represent the first TDMA tick that starts the whole TDMA frame. Therefore ghost root task ensures
that all tasks, constrained by the TDMA frame, are part of the same precedence dependency graph.

For completeness, parameters of Tick are also given in Table 5.3. Conform to its definition, Tick is
allocated alone on a processor (cpu3) modeled only for the analysis. It has an execution time of 0,
and offset of 0, an infinity deadline, no jitter, a blocking time of 0, and its priority does not matter
since it is allocated alone on a processor.

Figure 5.3 shows the precedence dependency graph of tasks. An example of a schedule over 20

time units is shown in Figure 5.4. Notice that the schedule of tasks in Figure 5.4 is the same as the
schedule of frames in in Figure 5.1.

The next section determines the characteristics of the transaction given by the transformation
example presented this section, and in the general case. A suitable schedulability test is also dis-
cussed.

5.2.4 Assessing Schedulability of Resulting Transactions

The task parameters in Table 5.3, the precedence dependency graph in Figure 5.3, and the sched-
ule in Figure 5.4 show that the transaction presented in the last section has the following character-
istics:

– Tree-shaped
– Tasks may be non-immediate as defined below.

Definition 58 (Non-Immediateness). A task τix and its immediate successor task τiy are said to be non-
immediate tasks if τix = pred(τiy)∧Oiy > Oix +Cb

ix. Task τix is called a non-immediate predecessor
and τiy a non-immediate successor.

A non-immediate task is thus one that is not necessarily immediately released by its predecessor.
It is released at an earliest time t if the predecessor completes before or at t, but immediately by
the predecessor if the predecessor completes after t.
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In the general case, tree-shaped transactions with non-immediate tasks are the results of the
DGMF to transaction transformation, if the DGMF tasks set has the Unique Predecessor property:

Theorem 18. A DGMF tasks set with the Unique Predecessor property (Property 4) is transformed into a
transaction set without tasks that have more than one predecessor.

Proof. Let a DGMF tasks set have the Unique Predecessor property. A frame F
j
i with inter and intra-

dependencies is transformed into a task τij with several immediate predecessors. Task τij has
several immediate predecessors that correspond to predecessor frames of Fji. Let τiy be an immedi-
ate predecessor of τij.

Algorithm 5.5 removes the precedence dependency τiy ≺ τij, if it is redundant, i.e. if τiy does
not result from a frame in the reduced set of predecessors (see Property 4) of F

j
i. From now on,

let us consider that redundant precedence dependencies have been removed. Otherwise said, only
frames of the reduced set of predecessors of F

j
i are considered, as well as tasks that result from

them.
At most one predecessor frame F

y
x of F

j
i can have a global deadline (i.e. r

y
x +D

y
x ) greater than

the release time r
j
i of Fji. By construction, at most one immediate predecessor τiy of τij (resulting

from F
y
x and assigned to the same transaction as τij) can have a global deadline greater than the

offset of τij (i.e. Oiy + diy � Oij). Algorithm 5.5 removes a precedence dependency τiy ≺ τij if
Oij > Oiy + diy. Since there is at most one immediate predecessor τiy of τij that has Oiy + diy �
Oij, all other immediate predecessors will be reduced until task τij has at most one immediate
predecessor.

This proves that tree-shaped transactions result from transformation of DGMF tasks respecting
the Unique Predecessor property. The transformation example in Section 5.2.3 showed that there is
at least one case where there are non-immediate tasks in the transactions set resulting from the
transformation.

To assess schedulability of transactions that are the result of the transformation, a schedulability
test applicable to tree-shaped transactions with non-immediate tasks must be applied.

Furthermore, without knowledge that the tasks represent frames initially, the schedulability test
considers that it is possible for job k of a task τi1 representing the first frame of a DGMF task Gi,
to interfere with job k− 1 of a task τiNi

representing the last frame of the same DGMF task Gi.
In reality this is not possible because job k of τi1 executes after job τiNi

because frames represent
jobs of a DGMF task. If the Cycle Separation property is respected, then job k of τi1 will only
interfere job k− 1 of τiNi

if τiNi
misses its deadline. This is why the Cycle Separation property is

assumed.
This chapter does not focus on proposing a schedulability test for tree-shaped transactions with

non-immediate tasks. The test will be the subject of the next chapter.
The following section sums up the proposed scheduling analysis method for DGMF tasks.

5.3 summary of dgmf analysis method

Figure 5.5 sums up the scheduling analysis method proposed for the DGMF task model.
The analysis method consists first in transforming the DGMF tasks set to a transactions set. Then

the analysis is performed on the transactions set.
The transformation first transforms independent GMF tasks with frames to transactions with

tasks. Then critical sections of frames are expressed as those of tasks that are the result of the
last step. The WCBTs of tasks are then computed without overestimating the blocking times since
some tasks originally represent frames of a same DGMF task. Precedence dependencies between
frames are then expressed as those between tasks, by respecting the semantics and constraints of
the transaction model.
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Figure 5.5: Summary of Analysis Method

After the transformation, the method proceeds to the schedulability analysis. Schedulability is
assessed by computing WCRTs of tasks with a schedulability test and RTA method adapted for
transactions that are the result of the transformation. This schedulability test is the subject of the
next chapter.

The following section shows how the DGMF and transaction models are implemented in the
Cheddar scheduling analysis tool.

5.4 implementation in cheddar

The DGMF scheduling analysis method is implemented in Cheddar. Therefore the DGMF and
GMF task models, transaction model, transformation of DGMF tasks to transactions, and some
schedulability tests for transactions are implemented 1.

In the following sections, the Cheddar framework is first presented. Afterwards the extension of
the framework is exposed. Finally advantages and drawbacks of the implementation solution are
discussed.

5.4.1 Cheddar

Figure 5.6 illustrates the Cheddar framework. Users first specify their architecture in Cheddar-
ADL. The GUI provided by Cheddar can be used to generate the Cheddar-ADL model. Model trans-
formation [125] can also be applied to produce an architecture in Cheddar-ADL from a standard
ADL (e.g. MARTE to Cheddar, AADL to Cheddar [45]). A scheduling analysis method provided
by the tool (schedulability test or simulator) then computes the analysis results (i.e. schedulability or
simulation trace).

A Cheddar-ADL model is conform to its Cheddar-ADL meta-model, which is specified in EXPRESS
[128, 111], a data modeling language. Cheddar-ADL is a language that is close to seminal schedul-
ing analysis methods [85, 64, 127]. For example, entities of tasks, processors and shared resources
are defined. Figure A.1 in Appendix A shows the complete Cheddar-ADL meta-model.

Through a model-driven process [111], the Cheddar-ADL meta-model is used to generate code of
Cheddar-ADL classes, a part of the Cheddar framework. This ensures that the code of the Cheddar-ADL
classes is always conform to the Cheddar-ADL meta-model. The Cheddar framework is composed of
generated code for Cheddar-ADL, and of manually written code in the schedulability tests library
and the schedulers library.

1. All sources available at http://beru.univ-brest.fr/svn/CHEDDAR/branches/shuaili/src/; Examples of use available
at http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project_examples/dgmf_sim/ and http://beru.univ-brest.fr/svn/

CHEDDAR/trunk/project_examples/wcdops+_nimp/
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Figure 5.6: Cheddar Framework

To extend Cheddar, the general approach is to extend the schedulability tests or schedulers libraries
of the framework. If necessary, the Cheddar-ADL meta-model is modified, and code of Cheddar-ADL
classes is generated. This is the approach used to implement the whole DGMF analysis method,
presented in the next section.

5.4.2 Implementation of DGMF and Transaction

To assess if Cheddar-ADL is sufficient to implement the DGMF and transaction models, let us
focus on a partial meta-model of Cheddar-ADL with task entities, in Figure 5.7.

5.4.2.1 Re-use of Existing Entities

A number of entities that already exist in Cheddar-ADL can be re-used to implement the DGMF
and transaction models.

A task entity in Cheddar is any entity that extends the Generic_Task entity. In Cheddar-ADL any
task entity can have a Critical_Section where it uses a Generic_Resource entity, representing a shared
resource. A task is allocated on a Generic_Processor entity. Through the Precedence_Dependency
entity, a precedence dependency can be specified between two tasks. Thus the approach chosen to
implement the DGMF and transaction models, is to re-use the task concept in Cheddar.

The Periodic_Task entity has attributes of a task in the transaction model so it can be re-used
directly. The concept of a frame in the DGMF model does not exist in Cheddar. A new Frame_Task
entity is thus proposed. By extending a Generic_Task, it is possible to express critical sections and
precedence dependencies of a frame.

The main entity in the DGMF and transaction models that cannot be modeled in the current
Cheddar-ADL, are the transaction and DGMF entities themselves.

5.4.2.2 New Task Group Entities

To model a transaction and a DGMF entity, a task group concept is introduced in the Cheddar-ADL
meta-model. A task group is modeled by the new entity Generic_Task_Group in Figure 5.7.
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Figure 5.7: Cheddar-ADL Partial Meta-Model: White boxes highlight extensions
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Figure 5.8: Transaction with Two Tasks

A Generic_Task_Group is a set of tasks. Like task entities, any task group entity inheriting from
Generic_Task_Group may have attributes. Task group attributes constrain attributes of tasks in the
task group. The type of tasks that can be in a task group are also constrained.

For example the Transaction entity in Figure 5.7 is used to model a transaction with period Ti
represented by its attribute period. A Transaction can only contain Periodic_Task entities. Figure 5.4
illustrates a simple transaction Γi with tasks τij and τik. This transaction is modeled in Cheddar-
ADL, in XML, with the new task group entities as shown in Figure 5.9.

With the extended meta-model, the next section presents what has been implemented in Cheddar.
The implementation choices are then discussed.

5.4.3 Discussion on Implementation

After extending the Cheddar-ADL meta-model with DGMF tasks and transactions, code for the
Cheddar-ADL classes was generated. In total, about 1800 lines of code were generated for the new
task group entities and the Frame_Task entity. No extra entities or structures were added to the
framework.

The DGMF to transaction transformation, and several tests for transactions in [5, 143, 106, 118],
were implemented using the generated code. The following sections discuss some implementation
choices and issues.
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<transaction id="tdma_tasks">
 <name>TDMA_Tasks</name>
 <task_list>
  <periodic_task ref="tau_ij"/>
  <periodic_task ref="tau_ik"/>
 </task_list>
 <period>8</period>
</transaction>

<periodic_task id="tau_ik">
 <name>tau_ik</name>
 <capacity>2</capacity>
 <offsets>
  <offset_type>
   <offset_value>4</offset_value>
   <activation>0</activation>
  </offset_type>
 </offsets>
 <jitter>3</jitter>
 <deadline>10</deadline>
 <blocking_time>0</blocking_time>
 <priority>1</priority>
 <period>8</period>
</periodic_task>

<periodic_task id="tau_ij">
 <name>tau_ij</name>
 <capacity>1</capacity>
 <offsets>
  <offset_type>
   <offset_value>2</offset_value>
   <activation>0</activation>
  </offset_type>
 </offsets>
 <jitter>2</jitter>
 <deadline>10</deadline>
 <blocking_time>0</blocking_time>
 <priority>1</priority>
 <period>8</period>
</periodic_task>

Figure 5.9: Task Group Example

5.4.3.1 Advantages of Implementation Solution

The solution proposed to model transactions, introduces the task group entities but re-uses most
of the Cheddar-ADL mechanism for tasks. This has an advantage in terms of meta-model and code
maintenance.

The Transaction (resp. Multiframe) entity that was introduced, is generic enough to model any
type of transaction (resp. multiframe task).

For transactions, the main difference between different types of transactions is their release pat-
tern, i.e. tasks can have more or less immediate successors and predecessors [106, 118, 66]. Since the
Precedence_Dependency entity in Cheddar-ADL is used to determine precedence between tasks, the
order in which tasks are grouped in a Transaction does not determine their precedence dependencies.
Any task precedence dependency can be represented with the Precedence_Dependency entity.

For multiframe tasks, a multiframe task is just a vector of frames and the Multiframe is a list of
Frame_Tasks, which can be extended.

5.4.3.2 Drawbacks of Implementation Solution

The main issue of the implementation choice is the time performance of operations that handle
precedence dependency. For example consider the Transaction entity. With the Precedence_Dependency
entity, they are enough to represent any type of transaction. On the other hand, these entities may
not be the best structure to represent some types of transaction.

For example, consider the operation to get the immediate successors/predecessors of a task in a
transaction. A linear transaction, where tasks have at most one immediate successor/predecessor,
is best represented with a table. A table reduces considerably the complexity of the operation to
get the successor/predecessor of a task in a linear transaction. Indeed, with a table, the operation
is O(1) while in the current implementation, we have to iterate through all entries in the set of
Precedence_Dependency, so the operation to get a successor/predecessor is O(n).

The general solution to the complexity problem is to implement each type of transaction with
the best adapted data structure. Then the Cheddar-ADL architecture model is transformed to the
best adapted data structure for the analysis. The optimization of the implementation of schedu-
lability tests for transactions [89] is not the purpose of this thesis. Therefore the solution to the
complexity problem is not implemented. However experimental results will show that the current
implementation stays scalable to a real software radio protocol.

The following section shows some experiments that evaluate the DGMF modeling and the trans-
formation of DGMF tasks to transactions.
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Table 5.4: DGMF Generator Constraints and Assumptions: GA-R are constraints; GA-H are assumptions

Ref. Description

GA-R1 Frames have a WCET not less than 1.

GA-R2 A DGMF task has at least one frame.

GA-R3 No violation of the desired GMF period for synced DGMF tasks

GA-R4 Precedence dependencies are unique.

GA-R4 No deadlocks due to precedence dependencies

GA-H1 Synced DGMF tasks are ordered arbitrarily and F
j
i can only have F

q
p as

a predecessor if p < i.

GA-H2 The required number of frames is respected "as best as possible"

GA-H3 The required number of precedence dependencies is respected "as best
as possible"

5.5 experiment and evaluation

Three aspects of the DGMF to transaction transformation are evaluated through experiments.
The following sections first evaluates the transformation correctness, then the transformation time
performance, and finally the DGMF modeling and transformation scalability, when it is applied to
a real case-study.

5.5.1 Transformation Correctness

The transformation correctness is evaluated by scheduling simulation performed on randomly
generated system architecture models. Cheddar provides a function that is able to generate ran-
dom architecture models. To randomly simulate scheduling of DGMF tasks and transactions, the
generator is extended for these models.

5.5.1.1 Generator Update

The generator is updated so DGMF tasks can be produced. The generator respects some param-
eters defined by the user:

– Number of processors
– Scheduling policy (for all processors)
– Number of DGMF tasks
– Number of frames in total
– GMF period for synced DGMF tasks.
– Sync ratio, which is the ratio of DGMF tasks, with the same GMF period, by the total num-

ber of DGMF tasks. DGMF tasks with the same GMF period are called synced tasks in the
experiments.

– Number of shared resources
– Number of critical sections
– Number of precedence dependencies between frames of different DGMF tasks
Besides constraints inherited from the DGMF task model, the generator respects some other

constraints. Some assumptions are also made to ease the generation. Constraints and assumptions,
enforced during generation, are described in Table 5.4.

The generator produces five kinds of entities through several steps:
– Processors
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– DGMF tasks
– Frames of DGMF tasks
– Shared resources and critical sections
– Precedence dependencies
The following paragraphs show the details of each step of the generation.

generate processors This step is straightforward as the required number of processors,
scheduled by the required policy, are simply added to the system architecture model.

generate dgmf tasks Again this step is straightforward as the required number of DGMF
tasks (task groups) are simply added to the system architecture model.

generate frames of dgmf tasks The algorithm to generate frames of DGMF tasks proceeds
in 3 steps:

– Step 1: Add a first frame to each DGMF task.
– Step 2: Distribute frames randomly among DGMF tasks and compute the frame parameters.
– Step 3: Verify that synced DGMF tasks have the same GMF period.
In Step 1, DGMF tasks are iterated through and a frame is added to each.
In Step 2, if the required number of frames hasn’t been reached, the remaining number of frames

are distributed randomly among DGMF tasks. When adding a frame F
Ni+1
i to a DGMF task Gi

with Ni frames, if Gi is a synced, a random P
Ni+1
i is computed as a random value in [1;Pi − P

Ni
i ]

If Pi − P
Ni
i < 0, then P

Ni+1
i = 0. The WCET E

Ni+1
i of FNi+1

i is computed as:

E
Ni+1
i = rand

(⌊
Pi
2

⌋)
(100)

where rand(x) computes a random integer in [1; x].
In Step 3, each synced DGMF task’s last frame F

Ni
i has its P

Ni
i increased, if necessary, so the

GMF period of the synced DGMF tasks is respected.

generate shared resources and critical sections In this step, the the required num-
ber of shared resources are added to the system architecture model. A random resource is used in
each critical section. The required number of critical sections is added by choosing a random frame
each time a critical section is added.

generate precedence dependencies The main issue with adding precedence dependen-
cies is deadlock. To avoid deadlocks, a F

j
i frame can only have F

q
p as a predecessor frame, if p < i,

with DGMF tasks ordered arbitrarily. Gi and Gp are synced due to the definition of DGMF tasks.
The algorithm to add frames to DGMF tasks proceeds in 2 steps:
– Step 1 Compute a number of precedence dependencies with guarantee of no deadlocks.
– Step 2 Add precedence dependencies randomly among frames of synced DGMF tasks.
In Step 1, a number of precedence dependencies, with guarantee of no deadlocks occurring, is

computed:

n−1∑
i=1

⎛
⎝Ni ×

⎛
⎝ n∑

j=i+1

Nj

⎞
⎠
⎞
⎠ (101)

If the required number of precedence dependencies is greater than the value computed in Equa-
tion 101, then the required number of precedence dependencies is set to this value. Consider Figure
5.10. In such a system, a number of precedence dependencies of 26, guarantees no deadlocks.
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Figure 5.10: Maximum Precedence Dependencies: Arrows on timeline are releases; Boxes are frames; Arrows
between boxes are precedence dependencies

In Step 2, two random synced DGMF tasks Gi and Gp are chosen, with p < i. A random frame
in each is chosen (Fji and F

q
p) and F

q
p is added to the set of predecessor frames of F

j
i only if it is

not already present and adding it won’t create a deadlock. Step 2 is repeated until the number of
precedence dependencies has reached the expected number of precedence dependencies.

5.5.1.2 Experimental Parameters

By using the architecture generator, DGMF tasks sets are randomly generated with the following
constant parameters:

– 1 processor
– Preemptive FP scheduling
– Sync ratio of 0.5 (50% synced DGMF tasks)
The varying parameters of the generator are:
– Between 2 and 5 DGMF tasks (increase by 1)
– Between 2 and 10 frames (increase by 1)
– Between 1 and 3 shared resources (increase by 1)
– A number of critical sections equal to the number of frames
– A GMF period between 10 and 50 (increase by 10)
– A number of precedence dependencies equal to the number of frames

5.5.1.3 Results

From these parameters, 540 DGMF architecture models are generated. Each of them is trans-
formed to an architecture model with transactions. Both DGMF and transaction models are then
simulated in the time interval proposed in [36]. Schedules are then compared. Each DGMF sched-
ule is strictly similar to the corresponding transaction schedule.

The number of tasks, critical sections, and precedence dependencies in the transaction models
are equal to the number of frames, critical sections, and precedence dependencies in the DGMF
models. The number of Cheddar task groups in the transaction models is less than the number of
Cheddar task groups in the DGMF models, since some transactions were merged into a same one,
during the transformation.

Along with the proofs in Section 5.2.2, this experiment enforces the transformation correctness
and its implementation correctness in Cheddar.
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Figure 5.11: Transformation Duration by Number of Frames

5.5.2 Transformation Time Performance

In the Cheddar implementation, the time complexity of the transformation algorithm depends
on two parameters: nF the number of frames, and nD the number of task dependencies (both
precedence and shared resource). The complexity of the transformation is O(n2

D +nF). When nF is
the varying parameter, the complexity of the algorithm should be O(nF). When nD is the varying
parameter, the complexity of the algorithm should be O(n2

D) due to Algorithm 5.2, which has the
same complexity as the algorithm in [34].

The experiment in this section checks that the duration of the transformation, implemented in
Cheddar, is consistent with these time complexities. Measurements presented below are taken on a
Intel Core i5 @ 2.40 GHz processor.

Figure 5.11 shows the transformation duration by the number of frames. The number of prece-
dence dependencies is set to 0 (i.e. no intra-dependencies either).

Figure 5.11 shows that the duration is polynomial when the number of frames varies. One can
think that this result is inconsistent with the time complexity of the algorithm, which should be
O(nF) when nF is the varying parameter. In practice, the implementation in Cheddar introduces a
loop to verify that a task is not already present in the system’s tasks set. Thus the time complexity
of the implementation is O(n2

F).
Figure 5.12 shows the transformation duration by the number of precedence dependencies. The

number of frames is set to 1000, the number of DGMF tasks to 100, and the number of shared
resources to 0. In the Cheddar implementation it does not matter which dependency parameter
(precedence or shared resource) varies to verify the impact of nD. Indeed, all dependencies are it-
erated through once and precedence dependency has more impact on the transformation duration.
Since there are 1000 frames and 100 DGMF tasks, the minimum number of precedence dependen-
cies starts at 900, due to intra-dependencies.

The transformation duration should be polynomial when the number of precedence dependen-
cies vary but this is not apparent in Figure 5.12 due to the scale of the figure. Indeed, there is
already a high minimum number of precedence dependencies starting at 900. The local minimum
of the polynomial curve is at 0, like in Figure 5.11. The curve is a polynomial curve and the result
is consistent with the complexity, which is O(n2

D) when nD is the varying parameter.
Overall a system with no dependency, 1000 frames, and 100 DGMF tasks, takes about 120 ms

to be transformed on the computer used for the experiment. A system with 1100 precedence
dependencies, 1000 frames, and 100 DGMF tasks, takes less than 160 ms to be transformed. The
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Figure 5.12: Transformation Duration by Number of Precedence Dependencies

transformation duration is acceptable for Thales. Indeed, a typical Thales system has 10 tasks and
a TDMA frame of 14 slots (1 S, 5 B, 8 T). There would be a maximum of 140 frames (14 × 10),
and 256 precedence dependencies (10× 14− 10+ 9× 14) if all tasks are part of a same precedence
dependency graph, where a task releases at most one task, and a first task is released at each slot.

5.5.3 Case-Study Modeling with DGMF

The scalability of the DGMF task model, and its transformation to transaction, is assessed by
applying DGMF for the modeling of a real software radio protocol developed at Thales.

The case-study is implemented with 8 POSIX threads (threads) [28] on a processor called GPP1,
and 4 threads on a processor called GPP2. The threads are scheduled by the SCHED_FIFO scheduler
of Linux (preemptive FP policy).

The threads have precedence dependencies, whether they are on the same processor or not. For
example threads on GPP1 may make blocking calls to functions handled by threads on GPP2. When
a thread makes a blocking call to a function, it has to wait for the return of the function, before
continuing execution. There is one thread on GPP2 dedicated to each thread on GPP1 that may
make a blocking call.

The TDMA frame of the case-study has 1 S slot, 5 B slots, and 8 T slots. The threads are released
at different slots. The release logic is a thread dedicated to reception is released at a Rx slot, while
a thread dedicated to transmission is released so its deadline coincides with the start of a Tx slot.

In total, there are 36 jobs from 8 threads on GPP1, and 4 threads on GPP2. The threads, their
precedence dependencies, and the time parameters of their jobs are illustrated in Figure 5.13.

The case-study is modeled with a DGMF task model of 43 frames. There are more frames than
the 36 jobs because some jobs that make a blocking call to a function, are divided into several
frames. After the transformation, a transaction of 44 tasks is the result. The extra task, compared to
the 43 frames, is a ghost root task added by a test like [118]. The transaction is illustrated in Figure
5.14.

Notice that different jobs of a thread, released at different slots, become non-immediate tasks in
the transaction, related by precedence dependency (e.g. RS_B1 ≺ RS_B2). Furthermore, a thread
that makes a blocking call, to a function handled by a thread on GPP2, is divided into several
frames, and then several tasks (e.g. Frame_Cycle becomes FC_S1_1 ≺ FC_S1_2 ≺ FC_S1_3).

Notice also it seems that some tasks should have two predecessors. For example we should have
AB_B1_1 ≺ AB_B2_1 because these two tasks represent two jobs of a same thread. We should also
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Figure 5.13: TDMA Frame and Threads of Real Case-Study: Line = Instances of a thread; Down arrow =
Deadline; Dashed arrow = Precedence; Black = Exec on GPP1; Gray = Exec on GPP2; 36 jobs in
total from 8 threads on GPP1 and 4 threads on GPP2; Sizes not proportional to time values

Figure 5.14: Tree-Shaped Transaction of Real Case-Study: Black tasks on GPP1, gray tasks on GPP2, Tick task
is ghost root task; Task nomenclature is [Name]_[Slot]_[Part (Optional)]; Abbreviated names are
RM = Request_Msg, BT = Build_TSlot, BB = Build_BSlot, BS = Build_SSlot, FC = Frame_Cycle, RS =
Rx_Slot, AB = Analyse_Beacon, AD = Analyse_Data
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have Rx_Slot_B2 ≺ AB_B2_1 since these two tasks represent jobs of two threads with a precedence
dependency. But since the offset of AB_B2_1 is strictly greater than the deadline of Rx_Slot_B2, the
precedence dependency RS_B2 ≺ AB_B2_1 is reduced by the DGMF transformation. Other cases
of tasks with multiple predecessors are due to the same kind of precedence dependencies as the
example. Multiple predecessors are thus reduced to one in the same way as the example, by the
transformation. In the end the resulting transaction is tree-shaped.

In general, the more jobs of a thread there are, the more frames there are. Similarly, the more
there are blocking calls to functions allocated on other processors, the more frames there are.

Notice that the DGMF task model has 43 frames to represent the 12 threads of case-study. The
DGMF tasks set should thus be produced automatically from an architecture model.

5.6 conclusion

In this chapter a task model was proposed for characteristics of a software radio protocol im-
plementing the TDMA channel access method. The proposed task model is called DGMF and it
extends the GMF task model with task dependencies (shared resource and precedence). DGMF is
applicable to partitioned multiprocessor systems.

The DGMF analysis method is divided into two parts. This chapter focused on the first part,
which consists in transforming a system with DGMF tasks to one with transactions. The correctness
of the transformation was proven and verified through simulation. The time performance of the
transformation was also evaluated and deemed acceptable for a Thales case-study.

Indeed, experimental results showed that the implementation of the transformation algorithm in
Cheddar is polynomial in practice. It was also observed that less than 160 ms are taken to transform
a system with more frames and dependencies than a system developed at Thales.

After transforming DGMF tasks to transactions, characteristics of the resulting transactions were
determined. These transactions are tree-shaped and they have non-immediate tasks. These tasks
are not necessarily released immediately by their predecessor. A schedulability test for this type of
transaction is proposed in the next chapter.

publications The DGMF task model and its analysis method are published in [84, 81].





Chapter 6

S C H E D U L A B I L I T Y A N A LY S I S O F
T R E E - S H A P E D T R A N S A C T I O N S W I T H
N O N - I M M E D I AT E TA S K S

Previously it was shown that DGMF tasks can be transformed into transactions for schedulability
analysis. The transactions that are the result of this transformation are tree-shaped and they have
non-immediate tasks that are not necessarily released immediately by their predecessor.

Schedulability tests for tree-shaped transactions have been proposed [118] but they do not han-
dle non-immediate tasks. Such tasks have a consequence on the schedulability analysis results.
In this chapter a schedulability test is proposed for tree-shaped transactions with non-immediate
tasks. The test is called WCDOPS+NIM and it extends the WCDOPS+ test proposed in [118]. The
proposed test completes the general DGMF analysis method presented in the previous chapter.

In the following sections, first the consequence of non-immediateness is shown. Then the exten-
sion of the WCDOPS+ test in [118] is exposed. Finally experiments first show some simulations
that compare the WCDOPS+ test to the WCDOPS+NIM test. The proposed test is then applied to
real case-studies from Thales. This chapter uses notations of the transaction model, presented in
Section 2.4.1.

6.1 applicability of wcdops+ on non-immediate tasks

To evaluate the applicability of WCDOPS+ on non-immediate tasks, consider the example in
Figure 6.1. The figure shows an example of tasks in two software radio protocol layers arbitrarily
named L2 and L3. There is a TDMA frame with two slots. Transaction Γ1 is used to model tasks
constrained by the TDMA frame. Clearly Γ1 is a tree-shaped transaction.

Task IO1 is released at slot 1. IO1 then leads to the releases of other tasks. Task PR22 cannot
be released earlier than slot 2 and it can only be released if PR21 has completed execution. Tasks
IO1 and IO2 have lower priorities than all other tasks. IO1 and IO2 are input-output tasks and they
must not preempt the processing tasks, which are PR1, PR21, PR22, PR3, and PR4.

Transaction Γ2 has a single task, called MGT, that is released periodically. This kind of task has
a period greater or equal to the TDMA frame duration, and it must not be delayed by more than
a TDMA frame duration. For this reason, MGT has a priority higher than IO1 and IO2, to ensure
that MGT won’t be preempted too long after its release.

Consider WCDOPS+ applied directly to the system in Figure 6.1. It is assumed that each task
of Γi has a WCET of 1. Then we have PR22 a non-immediate successor of PR21, because PR22 is
released at earliest at t = 4 and PR21 can complete execution as early as t = 3.

If WCDOPS+ is applied directly for the analysis of MGT, since non-immediateness is not handled
by WCDOPS+, the test considers that PR22 can only execute with at most PR1 and PR21 in the same
MGT busy period. This is not true as shown by one possible schedule in Figure 6.2. If, for example,
PR3 has a WCET equal to 2 instead, the interference of Γ1 to MGT is underestimated.

131
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Figure 6.1: Tree-Shaped Transaction with Non-Immediate Tasks: Black circles are high-priority tasks; Gray
circles are mid-priority tasks; White circles are low-priority tasks; TDMA slots have a duration of 4
time units; Slot "1: (S, Rx)" is of type Service (S), mode Reception (Rx); Slot "2: (T, Tx)" is of type
Traffic (T), mode Transmission (Tx)
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IO1 PR1 PR21 IO2 PR3 PR4 PR22 MGT

MGT busy period

Figure 6.2: Underestimation due to Non-Immediateness: PR3, PR4, and PR22 in same MGT busy period

A possible solution to have the correct combinations of tasks that can interfere, is to model the
non-immediateness between two tasks by ghost intermediate tasks. Before defining a ghost inter-
mediate task, the terminology of tree-shaped transaction entities must first be modified, due to
non-immediate tasks.

Definition 59 (Direct Predecessor and Direct Successors of Tree-shaped Transaction). A task τij
is said to have one direct predecessor, denoted by pred(τij), and a set of direct successors, denoted by
succ(τij). A task τix is pred(τij) (resp. in succ(τij)) if there is no task τiy such that τix ≺ τiy ≺ τij
(resp. τij ≺ τiy ≺ τix). For the root task of a tree-shaped transaction, pred(τi1) is undefined.

The concept of ghost tasks is introduced in [118] (Definition 55). The concept of intermediate
tasks is proposed in [52]. An intermediate task represents some extra execution time or message
transmission time. A ghost intermediate task can be defined as follows:

Definition 60 (Ghost Intermediate Task). A ghost intermediate task τixy is a task between τix and
its non-immediate direct successor τiy (τix ≺ τiy). Precedence dependency τix ≺ τiy is replaced by
τix ≺ τixy ≺ τiy. Ghost intermediate task τixy is allocated alone on a processor, modeled only for the ghost
intermediate task. Parameters of task τixy are formally defined as follows:

Cixy = Cb
ixy = Oiy − (Oix +Cb

ix

Oixy = Oix +Cb
ix

Jixy = Rw
ix −Oixy

Dixy = ∞
Bixy = 0

prio(τixy) = 1

∀τkl, proc(τixy) �= proc(τkl)

(102)
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Figure 6.3: Non-Immediateness and Jitter: RwPR21 increases due to MGT (CMGT = 1) preempting IO1. RwPR21
is not longer than OPR22 therefore JPR22 does not increase.
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Figure 6.4: Non-Immediateness and Interference: PR22 experiences jitter, since RwPR21 is longer than OPR22,
due to the preemption of IO1 by MGT (CMGT = 4). PR22 is then released immediately by PR21.
Therefore IO2 cannot execute between PR21 and PR22, and only after PR22 completes execution.
PR3 and PR4 are released by IO2 so they execute after the busy period of PR22. Thus PR3 and PR4
cannot interfere PR22.

Adding ghost intermediate tasks introduces pessimism to WCRT computation. For example if
a ghost intermediate tasks is added between PR21 and PR22, any increase in Rw

PR21 will increase
JPR22 and thus Rw

PR22. This is not always the case, as shown by a possible schedule in Figure 6.3,
so Rw

PR22 can be overestimated.
Furthermore, with a ghost intermediate task, the test considers that PR3 and PR4 can interfere

PR22 even if PR22 experiences jitter, since IO2 is allowed to execute during the execution of the
ghost intermediate task on another processor. Then both JPR22 and interference from PR3 and PR4,
contribute to Rw

PR22. This is not possible as shown by the schedule in Figure 6.4, so Rw
PR22 can again

be overestimated.
In summary, two problems are observed when applying WCDOPS+ to transactions with non-

immediate tasks. First, if applied directly, tasks interference may be underestimated. Second,
by modeling non-immediate tasks with ghost intermediate tasks, jitter and task interference can
both be overestimated. In conclusion one problem leads to underestimated WCRTs and the other
to overestimated WCRTs. In the following section a test proposes to solve these problems by
considering the effects of non-immediateness directly.

6.2 a schedulability test for non-immediate tasks

To consider the effects of non-immediateness directly, this thesis proposes the Worst Case Dy-
namic Offset with Priority Schemes Plus for Non-Immediate tasks (WCDOPS+NIM) schedulability
test, which extends the original WCDOPS+ test.

6.2.1 Overview of the RTA Method

The general approach of the WCDOPS+NIM algorithm is the same as the WCDOPS+ algorithm,
presented in Section 2.4.4, and illustrated with Figure 2.7. The system to analyze has some transac-
tions Γi. It is assumed that the WCRT of τab, belonging to Γa, is computed.
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The WCDOPS+ algorithm first defines some tasks sets to help the analysis of τab (Op0). Then
the WCRT of τab is computed for each scenario where a τac starts the τab busy period (Op1).
Within a scenario, the algorithm computes the WCRT of each job pab of τab, released in the τab
busy period of length w. To compute the WCRT of job pab of τab, various interferences, from
transactions in the system, are computed (Op2). The WCRT of τab is then the maximum of WCRTs
of each job pab of each scenario (Op3).

The algorithm has several key operations that need some adaptations for non-immediate tasks.
In the following sections each key operation is explained, focusing on their difference with the
original WCDOPS+ algorithm.

6.2.2 Op0: Task Sets and Execution Conflicts

Op0 consists in defining some tasks sets to help the analysis of τab when resolving execution
conflicts.

As a reminder, two sets of tasks are defined in [118]. An H segment is a set of tasks that must all
execute within a same τab busy period. Two tasks in hpi belong to the same H segment if there is
no other task that is not in hpi that precedes one but not the other. An H section is a set of tasks
that may execute in the same τab busy period. Two tasks in hpi belong to the same H section if
there is no other task in lpi that precedes one but not the other.

These sets are adapted for non-immediate tasks. An H segment is re-defined by modifying its
conditions: there is also no non-immediate predecessor that precedes one of the task but not the
other, and there is no non-immediate predecessor that is a direct predecessor of both tasks. Formally,
the new definition of an H segment is then:

H
seg
ij (τab) = {τim | τim ∈ hpi(τab)∧

(¬∃τil ∈ ΓijΔΓim | τil /∈ hpi(τab)

∨¬(τil = τi1 ∨Oil > Opred(τil) +Cpred(τil)))}

(103)

The definition of an H section does not need any modification since a non-immediate successor
may belong to the same busy period as its predecessor (both in hpi).

Consider the system in Figure 6.1, assuming MGT is under analysis. Sets {PR1, PR21}, {PR3, PR4},
and {PR22} are H segments. Set {PR1, PR21, PR22} is an H section.

6.2.3 Op1: Worst Case Scenario

Op1 consists in creating a scenario where τik ∈ Γi (resp. τac ∈ Γa) starts the τab busy period
at tc. Two modifications are necessary for Op1. First the set of tasks, that may start the τab
busy period, must be modified. When a task starts the τab busy period, its jitter may also need
modification. The following sections describe these modifications.

6.2.3.1 Modifications to XPi

In [118], tasks in Γi that may start the busy period are in a set XPi(τab), which is the set of tasks
that come first in their respective H segments.
XPi must re-defined due to non-immediate tasks. It is a set that contains tasks in hpi whose

predecessors are not in hpi, but the set also tasks in hpi that are non-immediate successors.

XPi(τab) = {τif ∈ hpi(τab) |pred(τif) /∈ hpi(τab)∨

¬(τil = τif ∨Oif > Opred(τif) +Cpred(τif)))}
(104)

For example in Figure 6.1, PR1, PR22, PR3 and PR4 are in XPi(MGT).
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6.2.3.2 Jitter Canceling

Consider that a task τik ∈ XPi starts a τab busy period. If τik is not an immediate successor,
then it may not be able to start the τab busy period, if τik is released immediately by pred(τik).
For example, a non-immediate successor τik cannot start the τab busy period if it is released
immediately by its direct predecessor in hpi. Therefore the following theorem applies if τik starts
the τab busy period:

Theorem 19. Let τik be a task in XPi that starts a τab busy period. If τik is a non-immediate successor,
and pred(τik) ∈ hpi, then τik must not experience jitter to be released at tc. If pred(τik) /∈ hpi, the
scenario where τik experiences enough jitter to be released at tc must also be analyzed.

Proof. Assume that τik ∈ XPi is a non-immediate successor that starts the τab busy period. If
τik experiences jitter in a scenario, then it means that the response time of pred(τik) is greater
than the offset of τik. τik is then released immediately after pred(τik) completes execution. If
pred(τik) ∈ hpi(τab) then, according to Lemma 5-1 in [106], τik cannot start the busy period,
which contradicts the initial assumption. The case where τik experiences jitter is analyzed in the
scenario where the H segment of pred(τik) starts the τab busy period.

If pred(τik) /∈ hpi(τab) then there is no predecessor H segment that may start the busy period
with τik experiencing jitter. This is why, in this case, the scenario where τik starts the busy period,
after having experienced Jik, is also analyzed.

For example in Figure 6.1, if PR22 starts the MGT busy period, then the jitter of PR22 is canceled.
To create a scenario where τij is released at tc without experiencing jitter, Jij is set to 0. This is

what is called jitter canceling. In this case, we say that Jij is canceled.

Definition 61 (Jitter Canceling). Jitter canceling is the operation of setting the jitter Jij of a task τij to 0,
for the purpose of some analysis.

To integrate jitter canceling in the schedulability test, whenever the algorithm iterates through
τik tasks in XPi to create scenarios, it memorizes the original value of Jik, sets Jik to 0, compute
interference for the scenario, and afterwards resets Jik to the memorized value. It also creates the
scenario where Jik is not canceled if pred(τik) /∈ hpi, so interference for both scenarios can be
compared.

6.2.4 Op2: Worst Case Interference

Op2 consists in computing the interference from transactions to job pab of τab. Like WCDOPS+,
the WCDOPS+NIM test computes two kinds of interference for a transaction: blocking and non-
blocking. As a reminder, the existence of blocking interference is due to execution conflicts. Only
one blocking interference from any transaction in the system, can contribute to the τab busy period.
If a transaction’s blocking interference is not chosen to contribute, then its non-blocking interference
contributes to the τab busy period.

The following sections show how to compute interference of jobs of a transaction Γi and Γa before
or at tc, then jobs after tc, and finally the total interference. In these sections, it is assumed that
task τik from XPi starts the τab busy period, of length w, at tc = 0.

6.2.4.1 Jobs before or at tc (p � 0)

Blocking interference and non-blocking interference are computed for jobs p � 0 of Γi similarly
to the original test in [118] but some differences exist due to non-immediate tasks.

Before computing the interferences of a job p of Γi, the WCDOPS+NIM test checks which non-
immediate successors τij, at job p, are released immediately in the scenario where τik starts the
τab busy period.
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Theorem 20. A non-immediate successor task τij ∈ hpi is released immediately by pred(τij), at job p,
when τik starts the τab busy period, if τij is released before tc = 0:

ϕijk + (p− 1)× Ti < 0 (105)

Proof. Let τij ∈ hpi be a non-immediate successor. Value ϕijk + (p− 1)× Ti is the release time of
τij at job p, when τik starts the τab busy period. If τij is released before tc = 0, τij needs to have
experienced enough jitter to be released at tc [106]. If τij experiences jitter, then τij is immediately
released by pred(τij).

For example, in Figure 6.4, if PR1 starts a busy period after having experienced JPR1 = 4, PR22
is released at t = −1 and experiences a jitter of 1 to be released at tc. PR22 is thus released
immediately by PR21 and belongs the same H segment as PR21.

Thus, checking if a non-immediate successor τij ∈ hpi is to be considered immediately released
by pred(τij) ∈ hpi also determines to which H segment τij belongs to in the given scenario: either
the H segment of τij or the H segment of pred(τij). This has an effect on blocking interference
computation. Therefore when computing the interference of job p of Γi, in the scenario where τik
starts the τab busy period, the definition of an H segment is the following:

H
seg′
ij (τab, p, τik) = {τim | τim ∈ hpi(τab)∧

(¬∃τil ∈ ΓijΔΓim | τil /∈ hpi(τab)

∨¬(τil = τi1 ∨ (Oil > Opred(τil) +Cpred(τil) ∧ϕilk + (p− 1)× Ti � 0)))}

(106)

Like in [118], the blocking interference and the non-blocking interference of a particular job p of
Γi are computed by exploring the tree representing the transaction. This gives the combination of
H segments, that gives the highest blocking and non-blocking interferences for job p.

Since the definition of an H segment is different for WCDOPS+NIM, the test does not give the
same combination of H segments. There are more H segments that can interfere together. This
can be explained as if a ghost intermediate task is defined between a task and its non-immediate
predecessor. Therefore there are more non-blocking H segments that are not in blocking conflict.

Like in [118], some H segments cannot interfere together because they are in blocking or prece-
dence conflict. Since there are non-immediate tasks, there is a new precedence conflict due to the
following theorem:

Theorem 21. Let τik be a non-immediate successor that starts the τab busy period at tc, with Jik canceled.
A job p of a task τij ∈ hpi(τab), that precedes τik, does not contribute to the τab busy period, if p � p

seg
0,ikk.

Proof. Assume that τik ∈ XPi is a non-immediate successor that starts the τab busy period, and
Jik is canceled. Task τik does not experience jitter and is released at tc. If any job of a task that
precedes τik, earlier than or same as pseg0,ikk, executes in the τab busy period, then the task executes
after tc. If a preceding task executes after tc, then τik is not released at tc. This contradicts the
assumption that τik is released at tc.

For jobs p � 0 of Γa, the blocking and non-blocking interferences computation does not need
more modifications than the Γi case.

The computation of interferences of jobs p � 0 of Γi and Γa is performed with three functions
that are described in a later Section 6.2.5.4.
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6.2.4.2 Jobs after tc (p > 0)

For jobs p > 0, the original test does not need any modification. Indeed, jobs p > 0 of τij can
only interfere τab if τij belongs to the first H section of Γi, and the first H segment is not a blocking
segment. For Γa, jobs p > 0 of task τaj can only interfere τab if τaj at least belongs to the first H
section of Γa and the first H segment is not a blocking segment.

If a non-immediate successor τij ∈ hpi, of pred(τij) ∈ hpi, is in the first H section, we do not
need to check if τij belongs to its own H segment or the H segment of pred(τij), because both H
segments belong to the first H section. The same applies for a non-immediate successor τaj ∈ hpa.

6.2.4.3 Total interference

No other modifications are necessary for the computation of the total interference from all trans-
actions Γi and Γa.

6.2.5 Op2 cont.: Worst Case Interference Algorithms

The previous sections showed that interference must be computed for jobs p � 0 of transactions
Γi and transaction Γa. Interference must also be computed for jobs p > 0 of Γi and Γa. No mod-
ifications are necessary for jobs p > 0. This section shows how modifications for jobs p � 0 are
introduced into the algorithms that compute interferences of jobs p � 0.

As a reminder, the interferences of jobs p � 0 of Γi are computed with three functions that have
the following objectives:

– (f1) Compare/sum interference of each job p � 0 of Γi
– (f2) Compute interference of a particular job p of Γi
– (f3) Compute interference of a particular task of job p of Γi
Before presenting the modifications to these functions, the definition of non-immediateness (Def-

inition 58) is integrated into a IM function in Algorithm 6.1. The IM function is used by the in-
terference computation functions. This function checks if the direct successor τij of a task τip is
immediate.

Algorithm 6.1 Immediate Function

1: function IM(τip, τij)
2: return τip = undefined ∨Oij > Oip +Cip ∨ IS_IMMEDIATE(τij)
3: end function

IS_IMMEDIATE(τij) returns true for a non-immediate task τij, when the interference of a job
of τij is computed within a scenario, and the job of τij must be released immediately by the
predecessor of the τij (Theorem 20). Otherwise IS_IMMEDIATE(τij) returns false. Without loose
of generality, this will simplify explanations of algorithms.

In the following paragraphs, the three interference computation functions are modified to take
into account non-immediate tasks.

6.2.5.1 (f1) TransactionInterference

As a reminder, interference from jobs before or at tc is computed by the TransactionInterference
function. This function returns a transaction’s blocking and non-blocking interference. It iterates
through each pending job p of Γi, released before or at tc, that may interfere. Assuming tasks
are ordered by increasing offsets in Γi, the first pending job of Γi that may interfere is the first
pending job of its last task’s H segment: p

seg
0,iNk(τab) [118] computed by Equation 37 applied to

the first task of Hseg
iN , with τiN being the last task of Γi. Algorithm 6.2 shows the modification of

TransactionInterference for WCDOPS+NIM.
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Algorithm 6.2 Modified TransactionInterference Function

1: function TransactionInterference(τab, τik, w, τac)
2: Add ghost root task τi0 as predecessor to τi1
3:
4: for p in p

seg
0,iNk(τab)..0 do

5: for τij ∈ Γi do

6: if τij ∈ hpi(τab)∧¬IM(pred(τij), τij)∧ (ϕijk + (p− 1)× Ti) < 0 then

7: Make IS_IMMEDIATE(τij) return true

8: end if

9: end for

10:
11: [jobI, jobDelta]← BranchInterference(τab, τik, τi0, w, p, τac)
12: transI_NoB← transI_NoB + jobI
13: transDelta← max(transDelta, jobDelta)
14:
15: for τij ∈ Γi do

16: Make IS_IMMEDIATE(τij) return false

17: end for

18: end for

19:
20: transI_B← transI_NoB + transDelta
21: return [transI_NoB, transI_B]
22: end function

At line 5 to 9, the algorithm checks which non-immediate successors τij, at job p, are released im-
mediately in the scenario where τik starts the τab busy period. This is done according to Theorem
20.

6.2.5.2 (f2) BranchInterference

As a reminder, to compute the interference of a particular job p � 0 of Γi, since the transaction
is tree-shaped, the tree is explored by a depth-first search algorithm in the BranchInterference

function. The tree is explored by branches defined by tasks denoted by τiB. The general idea is
to compute interference of a branch and compare/sum it with interference from sub-branches SB

(branches that arrive after it in the tree). Algorithm 6.3 shows the modification of BranchInterference
for WCDOPS+NIM.

In Algorithm 6.3, the modified definition of a branch-defining task τiB is:

τiB /∈ hpi ∨¬IM(pred(τiB), τiB) (107)

For example, in Figure 6.1, IO1, IO2, and PR22 define branches, when analyzing MGT.
Compared to [118], sub-branches of τiB (SB) can now contain hpi tasks. For example, in Figure

6.1, IO2 and PR22 are in SB of the branch defined by IO1.
Due to the existence of non-immediate tasks, the exploration and computation of interference

need some modifications at lines 3, 10, and 22. These modifications model the existence ghost
intermediate task between a task τij and its non-immediate predecessor pred(τij), so correct values
are returned by the function. Their details are given below.

At line 3, to see if τiB precedes immediately an H segment, the BranchInterference function
checks if there is a task τim in succ(τiB) such that τim ∈ hpi. We have to add the condition that
τim is released immediately by τiB because direct successors of τiB are not necessarily immediate
and interference is only computed if τiB precedes immediately an H segment.

At line 10, since τiB can be in hpi, after the interference of the H section it precedes (sectionI) is
computed, we need to add interference of τiB itself if τiB ∈ hpi.
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Algorithm 6.3 Modified BranchInterference Function

1: function BranchInterference(τab, τik, τiB, w, p, τac)
2: SB← succ(τiB)

3: if ∃τim ∈ SB | τim ∈ hpi(τab)∧ IM(τiB, τim) then

4: S← {τil ∈ Him(τab) | τiB ≺ τil}

5: sectionI← ∑
τij∈S

TaskInterference(τab, τik, τij, w, p, τac)

6: SB← {SB∪ succ(Hseg
im (τab))} \ {succ(τiB)∩Hseg

im (τab)}

7: end if

8:
9: if τiB ∈ hpi(τab) then

10: sectionI← sectionI + TaskInterference(τab, τik, τiB, w, p, τac)
11: end if

12:
13: for τiS ∈ SB do

14: [bI, bD]← BranchInterference(τab, τik, τiS, w, p, τac)
15: subBranchesI← subBranchesI + bI
16: subBDelta← max(subBDelta, bD)
17: end for

18:
19: if τiB ∈ lpi(τab) then

20: branchI← subBranchesI
21: branchDelta← max(sectionI - subBranchesI, subBDelta)
22: if ¬IM(pred(τiB), τiB) then

23: branchDelta← max(branchDelta, 0)
24: end if;
25: else

26: branchI← max(sectionI, subBranchesI)
27: branchDelta← max(subBranchesI + subBDelta - branchI, 0)
28: end if

29:
30: return [branchI, branchDelta]
31: end function
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branchI = max(sectionI, subBranchesI)

= max(0, subBranchesI)

= subBranchesI

branchDelta = max(subBranchesI + subBDelta - branchI, 0)

= max(subBranchesI + subBDelta - subBranchesI, 0)

= max(subBDelta, 0)
�

Figure 6.5: Interference returned by τG: subBranchesI computed as branchI of τiB and subBranchesI computed
as branchDelta of τiB

Finally at line 22, when BranchInterference computes branchI and branchDelta, if τiB ∈ lpi we
have to check if pred(τiB) releases immediately τiB. If not, then branchDelta gets the value of
max(branchDelta, 0) because interference cannot be negative. No changes are needed for branchI.
When τiB /∈ lpi, no changes are needed for both values. To illustrate these statements, let τiB be a
non-immediate successor. Let us assume that a ghost intermediate task is between pred(τiB) and
τiB. Let us call this task τG. The values of [branchI, branchDelta], returned by the ghost intermediate
task to pred(τiB), are shown in Figure 6.5.

6.2.5.3 (f3) TaskInterference

As a reminder, the TaskInterference function computes the interference of a particular job p � 0

of τij. This function returns the task’s WCET if it can interfere. A task can interfere if it is released
in [0,w) and if it passes a number of reduction rules that eliminate execution conflicts due to tasks
that must be in the τab busy period, given the scenario.

A new reduction rule is added to the original ones in [118] due to Theorem 21. The new reduction
rule is formally defined as:

τij ≺ τik ∧ p < p
seg
0,ikk ∧ ¬IM(pred(τik), τik) ∧ Jik = 0 (108)

For example, in Figure 6.2, let us assume that PR22 starts a busy period with JPR22 canceled.
PR22 is released at tc so tasks PR1 and PR21 must have completed execution before tc or PR22 is
not released at tc.

The complete TaskInterference function is in Algorithm 6.4. The new reduction rule is at line 9.

Algorithm 6.4 Modified TaskInterference Function

1: function TaskInterference(τab, τik, τij, w, p, τac)
2: if p � p

seg
0,ijk ∧w > ϕ

seg
ijk + (p− 1)Ti then

3: taskI← Cij

4: end if

5: if p � p
seg
0,ikk ∧H

seg
ik ≺ τij ∧Hik �= Hij

6: or pred(Hseg
ik ) ∈ lpi ∧ pred(Hseg

ij ) ∈ lpi ∧ (Hseg
ik �= H

seg
ij ∨ p �= p

seg
0,ikk)

7: or pred(Hseg
ab ) ∈ lpi ∧ pred(Hseg

ij ) ∈ lpi

8: or pred(Hseg
ac ) ∈ lpi ∧ pred(Hseg

ij ) ∈ lpi

9: or τij ≺ τik ∧ p < p
seg
0,ikk ∧¬IM(pred(τik), τik)∧ Jik = Jclk then

10: taskI← 0

11: end if � Reduction rules 1 to 5

12: return taskI
13: end function
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6.2.5.4 Modifications for Interference of Γa

As a reminder, for jobs p � 0 of Γa the interference computation is similar to the Γi case. The
only difference is the addition of a new reduction rule in the TaskInterference function for Γa.

The new reduction rule (Equation 108), presented in the previous paragraph, is added to the
TaskInterference function for Γa. This is done by replacing τaj for τij and τac for τik in the rule.

6.2.6 Op3: Worst Case Response Time

Op3 consists in computing the WCRT of τab from the WCRTs computed for each scenario τac.
The modifications introduced to the general algorithm, has a consequence on the contribution of

jitter to a WCRT computed for a scenario. When the scenario τac = τab is created, if τab is a non-
immediate successor, Jab is canceled. Then Jab does not contribute to the WCRT of τab, computed
for the scenario τac = τab. Otherwise the WCRT computed for τac = τab is overestimated.

The WCDOPS+NIM test completes the scheduling analysis method for DGMF tasks. The follow-
ing section shows some experiments and results.

6.3 experiment and evaluation

The WCDOPS+NIM test is implemented in Cheddar. This section presents some experiments
done to evaluate the analysis results of the test.

A first experiment evaluates the WCDOPS+NIM test by simulation, while the second applies it
to real case-studies from Thales. The following sections present these experiments. In each section
the experimental setup is exposed, then experimental results are presented and discussed.

6.3.1 WCDOPS+NIM Evaluation

The WCDOPS+NIM test is compared to the original WCDOPS+ test by simulation. This experi-
ment evaluates the pessimism of the original test when it is applied to transactions where there are
non-immediate tasks. Afterwards the complexity of the WCDOPS+NIM test is discussed.

6.3.1.1 Simulations

In order to compare WCDOPS+NIM with WCDOPS+, the tests are applied to randomly gen-
erated system architecture models. The models are generated according to the same parameters
as the WCDOPS+ simulations in [118] so both tests can be compared. The Cheddar generator is
updated for the simulations.

generator update The generator produces system architecture models composed of a num-
ber of processors all with the same scheduling policy. The scheduling policies are the same because
WCDOPS+ and WCDOPS+NIM are only applicable to a partitioned multiprocessor systems with
a preemptive FP scheduling on all processors. A processor has a utilization factor, which can be
defined by the user.

A model also has a number of transactions with a number of tasks per transaction. A transaction
has a period between a minimum value and a maximum value.

Initially a task has the same priority, and is allocated on the same processor, as its direct prede-
cessor in the transaction. The direct predecessor is chosen randomly. Both priority and processor
parameters can vary. If a parameter varies, a random priority (resp. a random processor) is chosen
for a task.
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Table 6.1: Transaction Generator Constraints and Assumptions: GB-R are constraints; GB-H are assumptions

Ref. Description

GB-R1 Tasks have a WCET not less than 1.

GB-R2 A processor utilization must be respected.

GB-R3 The range of a task’s priority is 1 to 255.

GB-H1 Task WCET and period are positive integers.

GB-H2 Tasks have a WCET equal to their BCET.

GB-H3 Tasks on a same processor have the same WCET.

GB-H4 Parameters minimum period and maximum period are respected "as
best as possible".

Tasks are immediate initially. When its offset is computed, a generated task can become non-
immediate randomly. if a task becomes non-immediate, its offset is increased by a a random value.

The generator’s parameters, that can be defined by the user, are then:
– Number of processors
– Scheduling policy (for all processors)
– Processor utilization (same value for all processors)
– Number of transactions
– Number of tasks per transaction
– Potential minimum period of transactions
– Potential maximum period of transactions
– Probability to choose a random priority for a task
– Probability to choose a random processor to allocate a task on
– Probability to increase the offset of a task
– Maximum increase to a task’s offset
Besides constraints inherited from the transaction model definition, the generator respects some

other constraints. Some assumptions are also made to ease the generation. Constraints and assump-
tions, enforced during generation, are described in Table 6.1.

The generator produces three kinds of entities through several steps:
– Processors
– Transactions
– Tasks of transactions
The following paragraphs show the details of each step of the generation.

�������� ���	�

��
 This step is straightforward as the required number of processors, scheduled
by the policy defined by the user parameter, are simply added to the system architecture model.

�������� ����
�	����
 Again this step is straightforward as the required number of transactions
are simply added to the system architecture model.

�������� ��
�
 �
 ����
�	����
 The algorithm to generate tasks of transactions proceeds in 5 steps:
– Step 1: Add tasks to each transaction, and at each addition, choose a random task in a transac-

tion to be the predecessor of the added task.
– Step 2: Compute a random period for each transaction, making sure that tasks won’t need to

have a WCET less than 1 to respect the desired utilization of each processor.
– Step 3: Scale WCETs of tasks, on each processor, to achieve the utilization of each processor,

while respecting the assumption that tasks on a same processor have the same WCET but not
necessarily the same period.
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– Step 4: Priorities of tasks, in each transaction, are set inversely proportional to their period,
with the possibility to choose a random priority.

– Step 5: Offsets of a transaction’s tasks are computed (since WCETs have been computed)
by exploring the precedence dependency graph of the tree-shaped transaction, with a depth-
search first approach.

In Step 1, the required number of tasks per transaction are added to each transaction Γi. The root
task τi1 of a transaction is allocated on a random processor. The next tasks τij added to the same
transaction gets a predecessor pred(τij) as a random task that already exists in the transaction. The
proc(τij) is first set to proc(pred(τij)). Then proc(τij) can vary randomly. If it varies, a random
processor is chosen for proc(τij), in order to allocate τij on random processor.

In Step 2, a minimum period Tcpu allowed for any task on a processor cpu is computed. This
minimum period is computed in such a way that if tasks on the processor all have a WCET of 1,
the required processor utilization is achieved by setting tasks with this minimum period value. As
a reminder, tasks on a same processor are assumed to have the same WCET, and not less than 1.

Assume that there are Ncpu tasks on a processor cpu of a utilization denoted by Cpu_Utilization.
If all tasks have a WCET of 1, then the minimum period allowed for any task on cpu is:

Tcpu =

⌈
Ncpu × 1

Cpu_Utilization

⌉
(109)

Transactions are then iterated through to compute each of their period Ti. A transaction contains
tasks on different processors. When a transaction is being processed, first its maximum allowed
period, denoted by Tmax

i,cpu, is computed. Value Tmax
i,cpu is computed by comparing the Tcpu of each

processor, on which the transaction’s tasks are allocated on. Afterwards the user defined minimum
period and maximum period are set to Tmax

i,cpu if these are less than Tmax
i,cpu.

After the minimum and maximum period are computed, the period of the transaction can be com-
puted as a random value in an interval. Let Min_Period denote minimum period and Max_Period
the maximum period. Ti is then computed as follows:

Ti = rand(Min_Period,Max_Period) (110)

where rand(x, y) returns a random integer in [x;y].
While iterating through transactions to compute their periods, the maximum Tmax

i of periods Ti
is also computed:

Tmax
i = max

∀Γi
(Ti) (111)

In Step 3, the goal is to respect the utilization factor of each processor. As a reminder, the
utilization factor is

∑
∀τij

Cij

Ti
. Each transaction’s period Ti is already computed. Therefore the goal

of Step 3 is to compute the WCET of tasks.
As a reminder, a task is allocated on a processor cpu, with a required utilization, and all tasks on

cpu have the same WCET. Let Ccpu denote the WCET of tasks allocated on cpu, which allows to
achieve the required utilization. Value Ccpu is computed as follows:

Ccpu =
Cpu_Utilization∑

Γi

N
cpu
i
Ti

(112)

where N
cpu
i is the number of tasks in Γi allocated on cpu. Each task allocated on cpu then has its

WCET set to Ccpu.



144 schedulability analysis of tree-shaped transactions with non-immediate tasks

Figure 6.6: Comparison between WCDOPS+ and WCDOPS+NIM by Processor Utilization and Offset Increase
Probability: Nim_Prob denotes the probability to increase a task’s offset

In Step 4, priorities of tasks are set inversely proportional to their period:

prio(τij) =
Tmax
i

Ti
(113)

A priority cannot be higher than 255. After a priority is set, the priority can vary randomly. When
a task’s priority varies, it is set to a random priority between 1 and 255.

Finally in Step 5, offsets of tasks can be computed since their WCET are set. Offsets are set
according to a depth-search first. Each time a task’s offset is set, it has a probability, of a certain
value, to be increased by a random value between 1 and the maximum offset increase defined by
the user.

experimental parameters The system architecture models are generated with the following
parameters:

– 10 transactions
– 10 tasks per transaction
– 4 processors
– Preemptive FP scheduling policy
– Processor utilization between 10% and 70%
– Potential minimum period of 0
– Potential maximum period of 100000
– Probability of 0.0, 0.25, and 0.50 to choose a random priority for a task, after its default priority

is set.
– Probability of 0.25 to choose a random processor for a task, after its default processor is set.
– Probability of 0.25 and 0.50 to increase a task’s offset, after its default offset is set.
– Maximum increase of 1000 to a task’s offset
WCDOPS+ is applied with ghost intermediate tasks added to model non-immediateness.

results Two simulations are conducted by making different parameters of the generator vary.
For each set of parameters of the generator, 5 system architecture models are generated and the
response times are computed for each model. For a set of generator parameters, the average ratio
between WCRTs given by WCDOPS+ and WCDOPS+NIM is computed.

Figure 6.6 shows results of the first simulation where the processor utilization varies between
10% and 70%. The probability to choose a random processor and a random priority remains at 0.25.
The evolution of the ratio is shown for a probability of 0.25 and 0.5 to increase offsets.

Figure 6.7 shows results of the second simulation where the processor utilization varies between
10% and 70%. The probability to choose a random processor and to increase offsets remains both
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Figure 6.7: Comparison between WCDOPS+ and WCDOPS+NIM by Processor Utilization and Random Prior-
ity Probability: Prio_Prob denotes the probability to choose a random priority

at 0.25. The evolution of the ratio is shown for a probability of 0.0, 0.25 and 0.5 to choose a random
priority for a task.

These simulation results show that results vary according to the processor utilization. The WC-
DOPS+NIM test gives less pessimistic WCRTs for lower and higher processor utilizations. The
highest average ratio between a response-time given by WCDOPS+ and WCDOPS+NIM is 1.43.
Like in [118], due to the nature of the experiment, the simulation becomes unfeasible for a high
processor utilization. In the experiment the threshold is 70%.

In conclusion the WCRTs computed by WCDOPS+NIM are more than 40% less than WCRTs
computed by the original test, for a processor utilization of 70%. Furthermore, the higher the
processor utilization is, the less pessimistic the WCRTs given by WCDOPS+NIM are, compared to
WCDOPS+.

6.3.1.2 Complexity

Although WCDOPS+NIM gives less pessimistic WCRTs, its time complexity needs to be dis-
cussed. The general algorithm is pseudo-polynomial [143, 105, 118]. In the WCDOPS+NIM test,
two algorithms may increase the complexity of the general algorithm: jitter canceling and checking
immediateness. Each of these algorithms is a loop.

Jitter canceling adds a scenario to create, if τik is non-immediate and pred(τik) /∈ hpi. Let nτ be
the number of tasks, nΓ the number of transactions. The maximum number of extra scenarios that
are created is (nτ −nΓ )/2. The complexity is then O(nτ −nΓ ). The complexity of jitter canceling is
thus linear.

Checking immediateness is done by iterating through tasks of a transaction. It is done each time
a transaction’s interference is computed. Thus checking immediateness depends on the number of
tasks in the system and so the algorithm is also linear.

In conclusion both jitter canceling and checking immediateness do not add a significant increase
in time complexity, since they are both linear algorithms and the general algorithm is pseudo-
polynomial.

6.3.2 Experimentation on Software Radio Protocol

As a reminder, the WCDOPS+NIM test is proposed for tree-shaped transactions that have non-
immediate tasks. Such transactions may be the result of DGMF transformation. The test is thus
applied by first modeling the system with DGMF. To assess the gain of applying WCDOPS+NIM on
a real software radio protocol, the test is compared to current practices at Thales. In the following
sections, case-studies are used to evaluate the proposed analysis method.
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Figure 6.8: Partial Software Radio Protocol Case-Study: Circles are tasks; Arrows are precedence dependencies

Table 6.2: Case-Study 1 Task Set: Time values in ms

DGMF or GMF

E
j
i D

j
i P

j
i [Fqp]

j
i

F11 955 4000 4000 F13G1, prio(G1) = 1
F21 1874 8000 8000 F23

G2, prio(G2) = 2 F12 5722 12000 12000 F11

F13 986 4000 4000
G3, prio(G3) = 3

F23 986 8000 8000

Periodic Model

Ci di Ti priority

G1 1874 4000 4000 1

G2 5722 12000 12000 2

G3 986 4000 4000 3

The first case-study is a simpler case-study that is tuned to emphasize the advantages of WC-
DOPS+NIM, when applied to a software radio protocol, compared to tests for other task models.

The second case-study is a complete system from Thales. Besides evaluating the advantages of
the proposed analysis method, this case-study also determines its scalability.

6.3.2.1 Case-Study 1

description of case-study In the first case-study, a partial software radio protocol is mod-
eled in DGMF so the WCDOPS+NIM test can be applied. The results given by WCDOPS+NIM are
compared to results given by GMF WCRT analysis in [138] and periodic task WCRT analysis in [64].
The case-study is illustrated in Figure 6.8.

In the system there are three tasks: G1, G2 and G3. Task G3 is released at the beginning of each
slot. After it finishes execution, it releases G1. G1 releases G2 at the first B slot but not at the T slot.
G3 and G1, when released at a slot, must finish before the end time of the slot. G2 when released
at the B slot, must finish before the end time of slot T.

Tasks are scheduled by a preemptive FP policy and they execute on a uniprocessor. PCP protects
shared resources. Tasks have parameters shown in Table 6.2. Task priorities are in highest priority
first order (e.g. a priority level 3 task has a higher priority than a priority level 1 task). Execution
times come from a real software radio protocol. Time units are in μs.

To compare the DGMF analysis method, through WCDOPS+NIM, with the GMF WCRT analysis
and the periodic task WCRT analysis, these tasks are also modeled in the GMF and periodic task
models. The parameters of each task model are also shown in Table 6.2.
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Table 6.3: Case-Study 1 WCRTs: A WCRT with "/" means a missed deadline; Time values in ms

DGMF GMF Periodic

WCRT WCRT WCRT

F11 1941 /
/G1

F21 6523 /

G2 F12 8649 7694 7694

F13 986 986
986G3

F23 986 986

Since shared resources cannot be modeled in the GMF task model, they are not considered. If the
GMF WCRT analysis is still more pessimistic without shared resources, then pessimism will not be
improved with shared resources.

As for the periodic model, the DGMF tasks are modeled as periodic. Their longest frame execu-
tion time is taken as their WCET. Their smallest min-separation time between two frames is taken
as their period.

analysis evaluation Computed WCRTs are shown in Table 6.3. The computed WCRTs show
that no deadlines are missed by DGMF analysis, through the WCDOPS+NIM test. This is not the
case for the two other task models.

For G2, GMF and periodic WCRT analysis gives a lower WCRT than the WCDOPS+NIM test
but the values, computed for the GMF and periodic task models, are underestimated. Indeed GMF
WCRT analysis considers that F12 is only interfered by F13 and F23, without considering the fact that F12
is released after F11. Similarly, the periodic task model does not consider the precedence dependency
between G1 ≺ G2.

In conclusion DGMF analysis, through WCDOPS+NIM, determines a schedulable system. Prece-
dence dependencies are also considered by the analysis, in order to not underestimate WCRTs.

6.3.2.2 Case-Study 2

description of case-study The second case-study is the real software radio protocol that
was presented in Section 5.5.3.

As a reminder, the case-study is implemented with 8 POSIX threads on a processor called GPP1,
and 4 threads on a processor called GPP2. Both processors are scheduled by the SCHED_FIFO
scheduler of Linux (preemptive FP policy). The threads have precedence dependencies and they
are released at the start of different slots of a TDMA frame of 14 slots.

The case-study, modeled with DGMF, is transformed to a tree-shaped transaction of 44 tasks with
non-immediate tasks, that is shown in Figure 5.14 of Section 5.5.3. The task parameters are in Table
B.1 of Appendix B.

analysis evaluation Currently the analysis approach used at Thales is similar to the ap-
proach of the Joseph & Pandya test in [64] (abbreviated as the "J&P test" in the following para-
graphs). To assess the advantage of applying WCDOPS+NIM to the real software radio protocol,
WCRTs given by WCDOPS+NIM are compared with those computed by the J&P test. This test was
used in Chapter 4 for the initial experiment presented in this thesis. As a reminder, it was shown
that the test gives pessimistic WCRTs.

The J&P test cannot be applied directly to the case-study for the following reasons:
– Precedence dependency between tasks that may be on different processors
– Constraint of deadline less than or equal to period, assumed by the J&P test
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Table 6.4: Task WCRTs of MAC Layer Case-Study: RRM is WCRT given by [64]; RWCDOPS+NIM is WCRT
(global WCRT minus offset) given by WCDOPS+NIM; : Time values in ms

Task RRM RWCDOPS+NIM

FC_S1_3 33405 573

AB_B1_3 6505 1241

AB_B2_3 6505 1241

AB_B3_3 6505 1241

AB_B4_3 6505 741

AD_T2_1 3955 651

AD_T4_1 3955 651

AD_T6_1 3955 651

AD_T8_1 3955 651

BT_T1_1 1915 463

BT_T3_1 1915 463

BT_T5_1 1915 463

BT_T7_1 1915 463

BB_B5_3 16859 3313

BS_S1_3 16959 3634

For the problem of precedence dependency between tasks on different processors, in the case-
study, the priority assignment in [5] is first used when analyzing a particular task: a task has a
priority lower than its predecessor’s priority. All tasks are then allocated to a same processor and a
synchronous system is assumed for the J&P test.

The J&P test assumes a task deadline less or equal to its period. Therefore the test only computes
the WCRT of the first job of a task. The constraint on deadlines is not respected by the case-study
tasks, so the response time of the first job is not sufficient to determine schedulability. On the other
hand, as we will see with the results in the following paragraph, even the response time of the first
job is overestimated by the J&P test, compared to a WCRT computed by WCDOPS+NIM.

Only the WCRTs of tasks, without any successor, are compared. These tasks represent the com-
pletion of some service, thus their response time is of interest to determine if the service misses
some deadline. For example in the service represented the precedence dependency chain RM_S1 ≺
BB_S1_1 ≺ BB_S1_2 ≺ BB_S1_3, only the WCRT of BB_S1_3 is of interest to determine if the service
misses its deadline, i.e. if the deadline of BB_S1_3 is missed.

When applying WCDOPS+NIM on the case-study, the convergence of response times takes 7

seconds on a Intel Core i5 @ 2.40 GHz. The computed WCRTs are shown in Table 6.4.
For each analyzed task, the WCRT computed by the J&P test is denoted by RRM, and the

WCRT computed by WCDOPS+NIM is denoted RWCDOPS+NIM. From results in Table 6.4, a
ratio of response times, given by both tests, is computed for each task. This ratio is denoted
RRM/RWCDOPS+NIM

.
In average this ratio is 8.89 so in average the J&P test gives a WCRT almost 9 times higher than

WCDOPS+NIM. This result shows that considering TDMA task releases reduces the pessimism of
WCRTs.

The WCDOPS+ test was also applied to the case-study by modeling non-immediateness with
ghost intermediate tasks. The ratio of WCRTs computed by WCDOPS+, compared to WCRTs
computed by WCDOPS+NIM, is 1.08. The pessimism of WCRTs computed by WCDOPS+ is thus
negligible.
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This result is explained by the fact that the processor utilization of the case-study is low since the
duration of slots is high compared to the WCETs of tasks. As shown by the simulations in Section
6.3.1.1, for low a processor utilization, WCDOPS+ does not give significantly more pessimistic
WCRTs than WCDOPS+NIM.

The slot durations are high because the initial TDMA configuration is not necessarily optimized.
Furthermore some processor time must be dedicated to execution of other applications than the
software radio protocol. Later specifications may decrease the slot durations, which means an
increase in processor utilization.

6.4 conclusion

This chapter proposed a schedulability test called WCDOPS+NIM, an extension of the WCDOPS+
test. The new test is applicable to tree-shaped transactions with non-immediate tasks.

Simulation results showed that WCRTs computed by WCDOPS+NIM are more than 40% less
than WCRTs computed by the original test, for a processor utilization of 70%. As a matter of fact,
the higher the processor utilization is, the less pessimistic the WCRTs given by WCDOPS+NIM are,
compared to WCDOPS+.

Since the WCDOPS+NIM completes the DGMF analysis method, it was applied to two real case-
studies from Thales. This experiment showed not only that the original GMF task model computes
underestimated response times, but also overestimated ones. The experiment also showed that
WCRTs computed by DGMF, through WCDOPS+NIM, are more than 9 times less than those com-
puted by the periodic task model, through the test in [64].

In conclusion, the WCDOPS+NIM test gives less pessimistic results, through lower WCRTs, than
the WCDOPS+ test in [118], the periodic task model test in [64], and the GMF task model test in
[138]. For engineers, the reduced pessimism may offer more design choices. System resources (e.g.
processors) may also be less over-dimensioned, which may lead to a reduction in costs. Finally, the
cost to redesign systems, considered by previous tests as unschedulable, is also lessened.

Models with DGMF tasks or transactions must be produced from an architecture model of the
system, for automatic scheduling analysis. In the next chapter, the architecture model in Chapter 4
is extended so it can be transformed and exploited by the DGMF scheduling analysis method.

publications The WCDOPS+NIM schedulability test is published in [83]. The implementation
work of WCDOPS+NIM is published in [80].





Chapter 7

A N A R C H I T E C T U R E M O D E L F O R
A U T O M AT I C S C H E D U L I N G A N A LY S I S

In Chapter 4 an architecture model of a software radio protocol was proposed in UML MARTE,
then transformed to a Cheddar-ADL model, so automatic scheduling analysis could be performed
with the periodic task model. This chapter shows a similar experiment for DGMF.

The previously proposed architecture model only contains UML structural entities (see Section
1.7.1.1). Behavioral entities of UML are not present in the model so it does not contain enough
information to exploit a task model like DGMF. Indeed, one of the purpose of DGMF is to model
tasks with different parameters at each job, due to different behaviors.

This chapter shows an example of modeling Thales specification documents in UML MARTE, in
order to transform the specification to a set of DGMF tasks, and then a set of transactions.

This chapter thus presents an extension of the original UML MARTE model. Some entities of
the proposed UML model are described with behavioral diagrams of UML. The UML MARTE
model can be transformed to a Cheddar-ADL model, where the DGMF and transaction models are
implemented. This way the tool can perform the scheduling analysis automatically.

The following sections first present a Thales specification document. Then the extended UML
MARTE model is exposed. Afterwards its transformation to a Cheddar-ADL model is shown.
Finally some experiments are done to evaluate the approach.

7.1 exploiting specification documents

Since the original UML MARTE model in Chapter 4 was proposed only for the periodic task
model, it does not necessarily contain enough information for another task model such as DGMF
or transaction. Some information that the original model lacks are:

– Precedence dependency: In the original model, there is no entity to represent a precedence
dependency.

– Individual job parameter: In the original model, a task is modeled with a single WCET, period,
and deadline.

The UML MARTE model thus needs to be extended. To be integrated into the development cycle
at Thales, the model uses some information that are available in some Thales specification docu-
ments. These information are not described in MyCCM development models for code generation.

The specification documents describe services. A service is defined in Definition 37, i.e. a set of
functionalities. In some Thales specification documents, the functions of a service are represented.
In the documents, a function is a sequence of instructions executed by a task, in order to fulfill
the functionalities of the service. A task, called a thread in the specification documents, executes
on a processor. A function has a WCET, may have shared resource critical sections, and may have
precedence dependencies between them.

A service is released by some events. In the context of the Thales specification documents, an
event is the occurrence of some incoming data or message, or some interrupt and signaling mecha-
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Figure 7.1: Thales Specification Document Figure: Rectangles are processors; Circles are functions; Arrows are
precedence dependencies between functions

nism of the OS. Sometimes these events may be associated with some information, indicating the
nature of the event. For example a TDMA tick is an event, and the tick may be associated with
the type the slot it starts. Depending on the nature of the event, some functions are executed, and
others are not.

Figure 7.1 shows a figure in a Thales specification document 1 of a real system. The figure
of the specification document illustrates a service. Figure 7.1 thus shows a service implemented
on some processors, e.g. a processor called processeur 1 and a processor called processeur 2. The
service has some functions to execute. Each function has a WCET and may use shared resources.
For example function TR2 uses shared resource SHM_A_Tx. The functions are also related by
precedence dependency.

The extended UML MARTE model is based on information illustrated in Figure 7.1. This kind of
figure typically contains information on precedence dependency. It is also possible to define several
sequences of execution, and thus different parameters of jobs.

On the other hand, the figure alone is ambiguous, i.e. it is complemented by textual descriptions
in the specification document. For example Figure 7.1 is ambiguous because there are two possible
next functions after function ES A, i.e. either TR1 or Ressource A Rx. To enable automatic scheduling
analysis with DGMF, the ambiguities must be leveraged.

The next section proposes to represent the information of Thales specification documents, de-
scribed in this section, in a UML MARTE model.

7.2 new model for scheduling analysis : service model

The model that exploits the behavioral information, contained in specification documents, is
called the Service Model. It extends the model of Chapter 4. The Service Model is described with
some views (Definition 40).

In the following sections, some entities of the model are first briefly introduced. Then three
representative views of the model are exposed. In the description of each view, the meta-model
of its entities is presented, their mapping to UML and MARTE is shown, and an example is given.
The full description of each view, diagram palette, entity, attribute, and mapping to UML MARTE
concepts, is in Appendix C.

7.2.1 Service Model Overview

Figure 7.2 shows some entities of the Service Model, and how they are related to each other. The
follwing paragraphs describe these entities and their relationships.

1. The document is in French.
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Figure 7.2: Service Model Overview: Rectangles are entities; Arrows represent relationships; "Impl." is abbre-
viation for "Implementation"

In the Service Model, some software and execution platform entities, of the original model in
Chapter 4, are re-used: threads, shared resources, memory partitions, schedulers, and processors. Some
software and execution platform entities are extended with the introduction of the concept of imple-
mentation. This concept is related to threads, shared resources, schedulers, and processors.

An implementation of an entity is is an instance of that entity. For example, consider an input-
output thread. It can be implemented several times, with different parameters. There are then
several instances of the input-output thread. An implementation of a thread is called a thread
implementation. There are also implementations of shared resource, scheduler and processor in
the model. Implementations of thread and shared resource are allocated in memory partitions.

The new entities of the Service Model are services, event generators and TDMA frames. The idea is
to model services and how they are released, through the modeling of event generators and TDMA
frames. Event generators produce events that release the services.

An event generator is an entity of the model that represents any source of events in the system,
for example some interrupt mechanism of the OS. The events are generated following a pattern
defined by the event generator. For example an event generator can generate periodic events to
release a service.

A service has several functions that are represented by entities called steps in the Service Model.
A step thus have the parameters and dependencies of a function, as described in Section 7.1. Each
release of a step is called an instance of the step.

The steps of a service may use some shared resource implementations. The steps of a service
are allocated on thread implementations. A thread implementation is scheduled by a scheduler
implementation. The scheduler implementation schedules threads on a processor implementation.

The entities of the Service Model are described in several views of the model. These views are of
two types: structural and behavioral views of UML. In the next sections, one behavioral view and
two structural views are presented.

7.2.2 Service Behavior View

The service behavior view is a UML activity diagram. Steps of a service are modeled in this view.
The following sections first present the entities of the service behavior view, then their mapping to
UML MARTE concepts, and finally an example.
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Figure 7.3: Service Behavior View Meta-Model

7.2.2.1 Entities

Figure 7.3 shows the meta-model of entities in relation to the service behavior view. A service is
released at one or several entities called sources. These sources are released by event generators. Once
released, a service has several steps to execute.

Steps are related by precedence dependency through transitions. A transition is a directed relation-
ship that indicates that one step is released after the completion of the preceding one. The release
of a step also depends on some conditions of its incoming transition. For example, to determine if
the step is released, a transition may test some value of some variable. A blocking call between two
steps S1 and S2 means that instance k of S2 must have finished before instance k+ 1 of S1 can be
released.

Steps may use shared resources through resource acquisition steps that represent critical sections. A
step may also have a deadline.

7.2.2.2 Mapping to UML MARTE

The Time, GQAM, and SAM sub-profiles of MARTE are used in the service behavior view. The
Time sub-profile is used to represent time constraints. The GQAM sub-profile is dedicated to
generic quantitative analysis models, while the SAM sub-profile is dedicated to scheduling analysis
models.

Table 7.1 shows how each entity is mapped to a concept in UML MARTE. The UML meta-classes
are described in Section 1.7.1.1.

7.2.2.3 Example

Figure 7.4 shows an example of the service behavior view, where a service is modeled. The
service is part of the MAC layer of a software radio protocol. Once the service is released, the
service may end with step ACK_A_Tx or step ACK_B_Tx. The ACK_A_Tx step is the service in
MAC transmitting data to the RLC layer, while ACK_B_Tx is the service transmitting data to the
PHY layer.

Step PR1 has a resource acquisition step (critical section), where it uses the SHM_B_Rx shared
resource. The IB_ACK_Deadline is an example of a deadline of the IB_ACK step.

A service is released by events generated by entities described in the event generator view. The
next section presents this view.
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Table 7.1: Service Behavior Mapping

Entity MARTE Model

Service Activity stereotyped <<GaWorkloadBehavior>>

Source InitialNode stereotyped <<GaWorkloadEvent>>

Step Action stereotyped <<SaStep>>

Deadline Constraint stereotyped <<TimedConstraint>>

Resource Acquisition Step Constraint stereotyped <<GaAcqStep>>

Transition ControlFlow with no stereotype

Blocking Call ControlFlow stereotyped <<SaCommStep>>

Sink ActivityFinal

Figure 7.4: Service Behavior View Example: White boxes are steps; Deadlines and resource acquisition steps
are represented by UML comments; Arrows are transitions; Filled black circle is source; Circle with
dot is sink
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Figure 7.5: Event Generator Profile: Black filled arrows are UML extensions

7.2.3 Event Generator View

The event generator view is a UML class diagram. This view is used to model event generators,
TDMA frames, and the events they generate. An event may also be associated with some variables
having values. These variables represent the information with which the event is associated with.
The variable values can be tested by the transitions between steps of a service.

The following sections first present the entities of the event generator view, then their mapping
to UML MARTE concepts, and finally an example.

7.2.3.1 Entities

Figure 7.5 shows the event generator UML profile proposed to model event generators. The UML
profile proposed to model a TDMA frame is shown in Figure 7.6. In the event generator view, the
user may use either profile to model an entity that releases a service.

For example, a periodic event generator will generate events periodically. A TDMA frame is also an
event generator that will generate events, representing TDMA ticks indicating the start of TDMA
slots. A sporadic event generator can be described with the same period parameter as the periodic event
generator.

Events may have variables. For example a periodic event generator can generate two events periodi-
cally with different variables. The variables may have different values according to their variable type.
A variable can be an integer, a boolean, a string, or a double.

In the case of a TDMA frame, an event is a TDMA slot. A TDMA slot has a TDMA slot type, a
TDMA slot mode, and a duration.

By default all event generators generate one event without any variable. This event is generated for
the first time at 0 and then according the pattern defined by the event generator.
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Figure 7.6: TDMA Profile: Black filled arrows are UML extensions

Table 7.2: Event Generator Mapping

Entity MARTE Model

Event Property stereotyped <<Event>>

Variable Property stereotyped <<Variable>>

Event Generator Component stereotyped <<ClockResource>> from
MARTE and <<EventGenerator>>

Periodic Event Generator Component stereotyped <<ClockResource>> from
MARTE and <<PeriodicEventGenerator>>

Sporadic Event Generator Component stereotyped <<ClockResource>> from
MARTE and <<SporadicEventGenerator>>

TDMA Frame Component stereotyped <<ClockResource>> from
MARTE and <<TDMAFrame>>

TDMA Slot Property stereotyped <<TDMASlot>>

In case the user models several events for an event generator, then the first release time of these
events may also be modeled. For example a periodic event generator may generate two events: one
event for the first time at 0, then another event for the first time at 5. If the period is 10, then the next
two events occur at 10 and 15 respectively.

7.2.3.2 Mapping to UML MARTE

Table 7.2 shows how each entity is mapped to a concept in UML MARTE and one of the two
profiles presented in the previous section.

7.2.3.3 Example

Figure 7.7 shows an example of the event generator view. The entity called IO_A_TDMAFrame is
a TDMA frame that contains several slots. For example BSlot1 is a slot.

The entity called IO_B_Generator is a periodic event generator, with two events: ev_tr3_sa and
ev_tr3_sb. The events have some variables called var_sa and var_sb.

Events release services with steps that are allocated on thread implementations. Threads are
described in the threads implementation view. The next section presents this view.
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Figure 7.7: Event Generator View Example

Figure 7.8: Thread Implementation View Meta-Model

7.2.4 Thread Implementation View

Steps are allocated on thread implementations. The thread implementation view offers the possi-
bility to model threads and their implementations. The view is a UML composite structure diagram.

The following sections first present the entities of the view, then their mapping to UML MARTE
concepts, and finally an example.

7.2.4.1 Entities

Figure 7.8 shows the meta-model of entities in relation to the thread implementation view. A
thread implementation either has its own parameters, or those of the thread that types it. A thread
implementation is allocated in a memory partition. Threads and their implementations are scheduled
by a scheduler implementation.

7.2.4.2 Mapping to UML MARTE

The SRM sub-profile of MARTE is used to model entities of the shared resource implementation
view. The SRM sub-profile is dedicated to design models of the software. Table 7.3 shows how each
entity and is mapped to a concept in UML MARTE.

Table 7.3: Thread Implementation Mapping

Entity MARTE Model

Memory Partition Component stereotyped <<MemoryPartition>>

Thread Component stereotyped <<SwSchedulableResource>>

Thread Implementation Property, stereotyped <<SwSchedulableResource>>, of
a partition, and typed by a thread
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Figure 7.9: Thread Implementation View Example

7.2.4.3 Example

Figure 7.9 shows an example of the thread implementation view. Threads called IO_Task, PR_Task,
and ACK_Task are POSIX threads, modeled by the entity called PThread. The implementation of
these threads are allocated in the memory partition called MainPartition. The thread implementa-
tions are IO_A, IO_B, PR, and ACK.

The next section shows how the Service Model is transformed into a Cheddar-ADL model.

7.3 service to cheddar

In the previous section the Service Model was described. This section shows how the Service
Model is transformed into a Cheddar-ADL model for automatic scheduling analysis with the DGMF
analysis method 2.

The transformation is called Service to Cheddar (S2C). The transformation takes as input a
Service Model, then transforms it to a DGMF model. Afterwards the S2C transformation uses
the DGMF to transaction transformation to produce the final transaction model for schedulability
analysis. For readability, this section only presents the final result of the S2C transformation, which
is a set of transactions in Cheddar-ADL.

The following section first gives the overview of the transformation. Then the transformation
algorithm is presented. The complete explanation of the S2C transformation algorithm is given in
Appendix D.

7.3.1 Overview of the Transformation

The transformation is summed up in Figure 7.10. The figure represents a service of two steps,
step 1 and step 2. The service is released by an event generator that produces 2 events. After the
transformation, we get a transaction of 4 tasks: task 11, task 12, task 21, and task 22.

Each instance of a step is transformed to a Cheddar-ADL task entity. The number of instances of
a step depend on the events that release the service. For example, two instances of Step 1 in Figure
7.10 are transformed to two Cheddar-ADL tasks Task 11 and Task 12.

2. Demo video available at beru.univ-brest.fr/svn/CHEDDAR/trunk/contribs/examples_of_use/s2c/demo_s2c.zip
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Figure 7.10: Service to Cheddar Overview: Dashed arrows show transformation

The allocation of a step on a thread implementation determines some parameters of the Cheddar-
ADL task. The allocation of the thread implementation in a memory partition, and the scheduler
that schedules the thread implementation on a processor, also determines some parameters of the
Cheddar-ADL task.

Cheddar-ADL tasks that represent step instances released by events of a same event generator,
will belong to a same transaction at the end of the transformation. Otherwise said, all Cheddar-
ADL tasks resulting from the same event generator are in the same transaction. Indeed, an event
generator’s events are related in time, thus the tasks are related in time and therefore they are in
the same transaction [143].

Tasks in a transaction are preceded by a ghost root task (Definition 55) modeled by the schedu-
lability test for transactions [118]. For example in Figure 7.10, the ghost root task represents the first
event produced by the event generator.

The next section shows how the overview of the transformation, presented in this section, is
implemented by the transformation algorithm.

7.3.2 Algorithm Overview

The transformation algorithm takes as input a Service Model. It transforms all services of the
model. A service is transformed by exploring it with a depth-first search approach. The exploration
starts at each source of the service. When handling a source, all events releasing the source are
considered.

A crucial part of the transformation is to transform a step. Like stated in Section 7.3.1, a step
instance results in a Cheddar-ADL task. The parameters of the Cheddar-ADL task are set by
transforming the thread implementation on which the step is allocated on.

When transforming a thread implementation, the memory partition that contains it, the scheduler
that schedules it, and the processor that hosts it, are also transformed to equivalent entities in the
Cheddar-ADL model.

Finally when transforming a step with resource acquisitions, all resource acquisitions result in
critical sections of Cheddar-ADL. When a resource acquisition is transformed, the shared resource
associated with the resource acquisition is also transformed.

Appendix D presents the detailed algorithms of the transformations described in this section.

The next section exposes some experiments to evaluate the S2C transformation.
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7.4 experiment and evaluation

The S2C transformation is implemented as an Eclipse plug-in to be applied on a UML model
created with Papyrus. The performance of the transformation is evaluated by simulation. The
evaluation determines the scalability of the modeling and transformation approach.

The metrics of the evaluation are the time performance, which is measured through the transfor-
mation time, and the memory usage, which is measured through the number of Cheddar-ADL tasks
produced by the transformation. Each Cheddar-ADL task takes some memory space. Therefore the
more there are Cheddar-ADL tasks, the higher the memory usage is.

In the following sections, the case-study and simulation setups are first exposed. In particular,
the choice of the simulation parameters is justified. Afterwards the results of the simulation are
shown and discussed.

7.4.1 Simulation Setup

The simulation consists in transforming a model with the service shown in Figure 7.4, presented
in Section 7.2.2.3. The service is part of the MAC layer of a software radio protocol, so it is released
by TDMA ticks.

Since it is released by TDMA ticks, the experiment consists in releasing the service by simulating
a TDMA frame. This is done with a random event generator, which is an event generator only used
for the experiment.

The random event generator produces events between 0 and end, which is a parameter equal to
the chosen duration of the TDMA frame. Otherwise said, the time interval [0; end] is filled with
slots and the interval corresponds to a TDMA frame.

A slot duration is chosen by a parameter called maxInterOccr. A slot duration is a random value
in the interval [0; maxInterOccr]. Therefore slots of different durations are also simulated.

Below, two simulation setups are presented. The first simulation aims at evaluating some average
values of transformation time and memory usage. The second simulation evaluates the growth of
the transformation time and memory usage. The simulations run on an Intel Core2Duo processor
@ 2.53 Ghz.

7.4.1.1 Simulation to Evaluate Average Values

With the end parameter, TDMA frames of duration 6000 ms, 33000 ms, and 60000 ms are simu-
lated. The 6000 ms duration is typical of software radios developed at Thales, while the other two
durations are meant to study the scalability of the transformation.

For each TDMA frame duration, events are generated with a maxInterOccr equal to end divided
by 10, 50, and 100. For example maxInterOccr = end/10 means 10 slots in average. These values
of maxInterOccr are chosen because they represent a realistic number of slots in a TDMA frame
specified at Thales.

For each combination of parameters end and maxInterOccr, 10 event generators are created. Each
event generator releases the service in Figure 7.4. The service is thus transformed 10 times.

After a transformation, the number of produced Cheddar-ADL tasks, and the transformation
time are computed. For the 10 transformations, the average number of Cheddar-ADL tasks and the
average transformation time are then computed.

7.4.1.2 Simulation to Evaluate Growths

In the second simulation, the duration of the TDMA frame is kept at 60000 ms. Events are
generated with a maxInterOccr equal to end divided by 10 to 100, by increments of 10.
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Figure 7.11: Transformation Time for TDMA Frame Durations of 6000 ms, 33000 ms and 60000 ms

Figure 7.12: Number of Cheddar-ADL Tasks for TDMA Frame Durations of 6000 ms, 33000 ms and 60000 ms

For each maxInterOccr, 10 random event generators are created. The average number of Cheddar-
ADL tasks and the average transformation time are then computed like in the first simulation in
Section 7.4.1.1.

7.4.2 Results

The following sections present the results of both simulations, and a discussion on the results.

7.4.2.1 Results for Average Values

Figure 7.11 (resp. 7.12) shows the transformation time for three values of the maxInterOccr pa-
rameter, expressed as a division of the TDMA frame duration.

The difference between the longest transformation time and the shortest is about 128 s. The
difference between the greatest number of Cheddar-ADL tasks and the smallest is 1265.

7.4.2.2 Results for Growths

Figure 7.13 (resp. 7.14) shows the growth of the transformation time (resp. number of Cheddar-
ADL tasks) by the maxInterOccr parameter, expressed as a division of the TDMA frame duration.

Figure 7.13 shows that the transformation time is exponential. Figure 7.14 shows that the growth
of the number of Cheddar-ADL tasks is linear.

7.4.2.3 Evaluation of the Results

The results of both simulations show that the transformation time and memory usage depend on
the number of events that release the service.



7.4 experiment and evaluation 163

Figure 7.13: Transformation Time Growth

Figure 7.14: Number of Tasks Growth

transformation time The growth of the transformation time seems exponential. The expo-
nential growth is due to a procedure called reduceJobPrecs, shown in Algorithm D.2 in Appendix D.
The procedure is a graph reduction algorithm [68], i.e. it reduces edges in a graph. Without going
into the details of the procedure, let us see how it impacts the transformation time.

During the transformation, precedence dependencies are specified between Cheddar-ADL tasks
that represent different instances of a same step. These precedence dependencies are called job
precedence dependencies. There are some redundant precedence dependencies when there are more
than two instances of a same step. As a reminder, a precedence dependency is said redundant, if
it is already expressed by some other precedence dependency, due to the transitivity of precedence
dependency. For example a precedence dependency S11 ≺ S13 is unnecessary if we have S11 ≺
S12 ≺ S13. The reduceJobPrecs procedure removes these unnecessary dependencies.

The procedure has two nested loops that iterate through the number of job precedence depen-
dencies. Let njp denote the number of job precedence dependencies. The complexity of Algorithm
D.2 is thus O(n2

jp).
Parameter njp is the number of job precedence dependencies so it can be expressed as njp = nne

s ,
with ns the maximum number of steps explored at each release of the service, and ne the number

of release events. The complexity of the transformation algorithm is then O(n
n2

e
s ).

Parameter ns is fixed because it does not evolve according to the number of events. Thus the
complexity is exponential. For example in Figure 7.4, we have ns = 7 and the complexity is O(7n

2
e).

For a high number of events, the transformation faces an issue of scalability. For example, for a
high number of events like about 100, the transformation time is 128 seconds. On the other hand,
the TDMA frame of the real case-study, analyzed in Section 6.3.2, has 14 slots and thus 14 events.
The time taken to transform 14 events is between 173 ms (10 events in Figure 7.13) and 857 ms (20
events in 7.13).
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memory usage The growth of the number of Cheddar-ADL tasks, that are produced, is linear.
This result is consistent, considering that when a service is released, it is explored like a tree. When
a service is explored, its steps result in Cheddar-ADL task creations. Thus the more there are events
that release the service, the more there are Cheddar-ADL tasks.

For a high number of events, the transformation faces again an issue of scalability. For example,
for a high number of events like about 100, the number of produced Cheddar-ADL tasks is 1394.
On the other hand, the TDMA frame of the real case-study, analyzed previously, has 14 slots and
thus 14 events. The number of produced Cheddar-ADL tasks, to transform 14 events, is between
137 (10 events in Figure 7.14) and 270 (20 events in Figure 7.14).

conclusion on evaluation of results Besides services released by TDMA ticks, the other
kinds of services in a software radio protocol are released by a sporadic or periodic event. Their
transformation does not depend on the number of release events.

In conclusion, it takes less than 1 second to automatically perform scheduling analysis of a soft-
ware radio protocol, with the proposed UML MARTE model and S2C transformation.

7.5 conclusion

In this chapter, an experiment was done to assess the possibility of automatic scheduling analysis
of a software radio protocol with the DGMF task model and its analysis method. To enable auto-
matic scheduling analysis, an extension of the UML MARTE model in Chapter 4 was proposed so
the DGMF analysis method can be used.

The proposed UML MARTE model, called Service Model, is based on specification documents
from Thales. The Service Model re-uses some entities of the original UML MARTE model, and
extends it with new entities. These new entities are services, which are are some functions, released
by some events, generated by some event generators.

The Service Model is transformed to a Cheddar-ADL model by a transformation called S2C. One
of the metric to evaluate the transformation, is its memory usage. Experimental results showed that
the memory usage evolves linearly. Furthermore, results also showed that when a real software ra-
dio protocol system is modeled, the number of Cheddar-ADL tasks produced by the transformation
is adapted to the Cheddar tool.

Another metric to evaluate the transformation is its transformation time. Experimental results
showed that the transformation time is exponential and it can take up to 2 minutes to transform a
service released by about 100 events. However, in a the case of a real TDMA frame, there are about
10 to 20 events, which takes between 173 ms to 857 ms to transform.

In conclusion, the experiment in this chapter showed that automatic scheduling analysis of a
real software radio protocol, with the DGMF task model and its analysis method, is possible by
exploiting an architecture model in UML MARTE.

The experiment focused on software radio protocols. The proposed approach can be extended to
other domains. Indeed, MARTE is a generic ADL for RTES. Even at Thales, the analysis method
can be adapted for other applications than radio protocols. For example, automatic scheduling
analysis of security applications is also studied at Thales Communications & Security. The MARTE
architecture model thus needs to be formalized and generalized.

publications The experimental modeling with MARTE is described in [26].
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summary

The work presented in this thesis contributed to scheduling analysis of RTES. This thesis focused
on communication systems using TDMA to access the shared communication medium. Systems
called software radio protocols were analyzed. Such systems are developed at Thales Communica-
tions & Security.

Software radio protocols have some characteristics to consider for scheduling analysis. Among
these characteristics, the system has tasks released by TDMA ticks, and the tasks have an execution
time and a deadline that depend on the TDMA slots. The tasks are also dependent, through prece-
dence dependency and shared resource. They execute on a partitioned multiprocessor execution
platform, with preemptive fixed priority scheduling.

Scheduling analysis is to be performed automatically, so the analysis can be integrated into the
development cycle of a software radio protocol. Architecture models of the system are thus to be
exploited for the analysis.

For scheduling analysis of a software radio protocol, several issues are solved in this thesis. First,
existing task models in the literature are not applicable to all characteristics of a software radio
protocol. Second, some task models, considered for extension, are not implemented in existing
scheduling analysis tools. Finally, since scheduling analysis is to be applied automatically, a soft-
ware radio protocol must be modeled in an adapted ADL and transformed to a task model, so the
analysis can be performed by a scheduling analysis tool.

The solution to these problems, proposed in this thesis, is to first model the architecture of a
software radio protocol in UML MARTE. The proposed model is called Service Model. It contains
behavioral views and structural views of UML. The behavioral views are used to describe some
services in the system, while the structural views are used to describe some software and execution
platform entities.

The UML MARTE architecture model is transformed into the DGMF task model, proposed in this
thesis. This task model considers characteristics of a software radio protocol for scheduling analysis.
It models individual jobs of a task, called DGMF frames. DGMF extends the GMF task model
with task dependencies and the proposed task model is applicable to a partitioned multiprocessor
execution platform.

To analyze DGMF tasks, they are transformed to a transaction model. Then an adapted schedu-
lability test, proposed in this thesis, is applied to the transactions. The adapted schedulability test
is called WCDOPS+NIM, and it extends the WCDOPS+ test. The proposed test is applicable to
tree-shaped transactions with non-immediate tasks.

DGMF, transactions, and their analysis methods are implemented in the Cheddar scheduling
analysis tool. Scheduling analysis, with DGMF, can then be applied automatically to a software
radio protocol architecture, modeled in UML MARTE.

The proposed solution was evaluated through several experiments. These experiments are either
simulations, or they applied of the propositions to a real case-study from Thales.

The transformation of the Service Model in UML MARTE, into a set of DGMF tasks implemented
in Cheddar, was evaluated by simulation. A TDMA frame of 14 slots was simulated, since this
configuration is typical at Thales. Simulation results showed that the transformation time is between
173 ms and 857 ms. The number of Cheddar-ADL entities, produced by the transformation, is
between 137 and 270.
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The modeling and transformation of DGMF tasks to transactions was evaluated both by simula-
tion, and its application to a real case-study. Simulation results showed that the implementation of
the transformation is polynomial, when the number of DGMF frames increases, or the number of
precedence dependencies increases. For a model of 100 DGMF tasks, 1000 DGMF frames, and 1100

precedence dependencies, simulation results showed that the transformation time takes about 160
ms.

DGMF was then applied for the modeling of a real case-study from Thales. This experiment
showed that a real system has much less tasks, frames and precedence dependencies. Indeed, the
case-study was modeled with 8 DGMF tasks, 43 frames and 14 precedence dependencies. Thus a
real case-study takes less than 160 ms to be transformed.

The DGMF model representing the real case-study was transformed into a transaction model. The
WCDOPS+NIM test was then applied. Experimental results showed that WCDOPS+NIM computes
WCRTs almost 9 times lower in average than the fundamental periodic task model. The approach of
the periodic task model analysis is used for some systems at Thales. Simulation results also showed
that WCDOPS+NIM gives less pessimistic response times than WCDOPS+, as processor utilization
increases. For a processor utilization of a 70%, WCDOPS+NIM gives up to 40% less pessimistic
WCRTs.

In conclusion the proposed solution solves the issues faced by automatic scheduling analysis of
a software radio protocol. Experimental results also show that the solution is scalable to systems
developed at Thales Communications & Security.

future works

Among the future works of this thesis, some work can be done on the proposed analysis method,
the UML MARTE model, some specific execution platforms, and some methodology issues.

Analysis Method

The WCDOPS+NIM schedulability test can be extended so some properties on DGMF tasks do
not need to hold anymore.

The analysis method assumes that DGMF tasks respect the Cycle Separation property. This means
that the deadline of job p of FNi

i is less than the release of job p+ 1 of F1i . By assuming this property,
the first frame F1i should not interfere the last frame F

Ni
i , unless the last frame misses a deadline. To

analyze DGMF tasks that do not respect the Cycle Separation property, the WCDOPS+NIM schedula-
bility test needs to consider this behavior. When each DGMF task is transformed into a transaction,
job p+ 1 of a transaction Γa can simply be forbidden to interfere any job p < p+ 1 of the same trans-
action. A possible solution is to add reduction rules and adapt equations for interference of jobs
p > 0. But when several DGMF tasks are transformed into a merged transaction, some parameter
must indicate that some tasks were originally frames part of a same DGMF task.

Another possible extension of the test concerns the operation that checks which non-immediate
tasks are to be considered immediate, for a given scenario created during the analysis. The con-
dition is that a non-immediate task released before tc is necessarily immediately released by its
predecessor, if it contributes to the busy period. In some cases, tasks released after tc, and within
the busy period, are also released immediately by their predecessor. The goal of extending the
condition is to compute less pessimistic WCRTs.

Finally the WCDOPS+NIM test is applicable to tree-shaped transactions. There exists an exten-
sion of WCDOPS+ for graph-shaped transactions in [66]. In the future, the WCDOPS+NIM test can
be adapted for graph-shaped transactions with non-immediate tasks.
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Service Model in UML MARTE

The experiment on modeling UML structural and behavioral views to describe a software radio
protocol, consisted in defining the Service Model and mapping it to MARTE concepts. The Service
Model was not formalized. A formalization work consists in defining all of the constraints of the
Service Model. Once formalized, the model can be compared to other similar approaches.

Specific Execution Platform

In this thesis the execution platform has some assumptions described in Section 3.2.1. Although
the described execution platform is one that hosts a number of software radio protocols, there are
others that have specific characteristics.

For example in the PikeOS [65] operating system, the implemented POSIX scheduler has a fair
play feature. This feature allows a task to call a yield() instruction in its code. By calling this
instruction, the task informs the scheduler that it wants to be rescheduled and put at the tail of the
scheduling queue. This behavior must be considered by scheduling analysis.

Some execution platforms of Thales products also have middlewares to ease communication
between different tasks on heterogeneous platforms. A middleware lies between the application
and the OS. A middlesware has software buses, handling messages exchanged between tasks. The
software buses may have a specific real-time behavior [123]. Middlewares are implemented in some
products of Thales Communications & Security. In the future, these entities should be considered
for the analysis of a software radio protocol. Some issues to solve are the modeling of middleware
components and the description of their interaction with the rest of the system.

Finally some execution platforms offer the possibility to vary the frequency of the processor, or
to turn the processor off. This capability is called Dynamic Voltage and Frequency Scaling (DVFS)
[6, 79] It exploits the fact that jobs of tasks in a system do not always run at their WCET. A job may
then have slack time, which is the difference between the task’s WCET, and the actual execution
time of the job. In the future, DVFS is to be integrated into Thales products because it offers energy
consumption gains [6]. For this reason, DVFS mechanisms should be described in the UML MARTE
architecture models [2]. The service behavior view, of the Service Model, can also be exploited to
estimate some initial energy consumption performance of the system.

Scheduling Simulation

Due to some characteristics, like specific execution platform characteristics, there may not exist
a task model and a scheduling analysis method applicable to the system. In this case scheduling
simulation can be used to get a first estimation of tasks scheduling. Scheduling simulation may not
assess schedulability, but it can assess non-schedulability. Furthermore there is an interest at Thales
for scheduling simulation among development teams.

Cheddar has a scheduling simulator. Works on scheduling simulation have been done as re-
quested by Thales. The scheduling simulation exploits the Service Model and the transaction model.
It also considers some execution platform characteristics like the possibility to call yield().

Some problems had to be solved because of the difference in semantic between the Service Model
and the Cheddar-ADL model. The difference in semantic has no impact on the results of schedula-
bility analysis, but during simulation some behaviors do not respect the reality. This issue has been
solved but scheduling simulation should be investigated further.
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Methodology Issues

Currently the scheduling analysis method, proposed in this thesis, requires various information.
It needs the services in a system, their release pattern, release jitters (if not negligible), execution
times, critical sections, deadlines, threads, shared resources, scheduling policies, and processors.

A recent survey was conducted at Thales Communications & Security to assess the availability
of these information. The survey took a sample of engineers who worked at different steps of the
development cycle. The outcome of the survey was that basic information for scheduling analysis,
such as the scheduling policy, were not necessarily available at some steps. Therefore the applicabil-
ity of the analysis method, at different steps of the V-model development cycle of a software radio
protocol, should be investigated.

For example, the impact of the WCET value should be investigated. At earlier steps of the devel-
opment cycle, the WCET can be specified as an allowed budget. At later steps of the development
cycle, a more accurate WCET can be computed or estimated. It is proposed in [149] that future
works on scheduling analysis should be combined with works on WCET analysis. This issue is
being investigated by Thales through several European collaborative projects (e.g. PRESTO [26]).
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Appendix A

C H E D D A R - A D L

Figure A.1: Original Cheddar-ADL Meta-Model
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Appendix B

C O M P L E T E S O F T WA R E R A D I O P R O T O C O L
C A S E - S T U D Y

Table B.1: Task Parameters of Real Case-Study
Task Cij Oij Oij +dij Jij Bij prio(τij) proc(τij)

Tick 0 0 +∞ 0 0 1 NoCPU

FC_S1_1 1050 0 30000 0 0 10 GPP1

FC_S1_2 1100 1050 30000 0 0 10 GPP2

FC_S1_3 573 2150 30000 0 0 10 GPP1

RS_B1_1 144 6157 7357 0 0 60 GPP1

AB_B1_1 500 6301 18301 0 0 30 GPP1

AB_B1_2 1500 6801 18301 0 0 30 GPP2

AB_B1_3 597 8301 18301 0 0 30 GPP1

RS_B2_1 144 7467 8667 0 0 60 GPP1

AB_B2_1 500 8898 20898 0 0 30 GPP1

AB_B2_2 1500 9398 20898 0 0 30 GPP2

AB_B2_3 597 10898 20898 0 0 30 GPP1

RS_B3_1 144 8777 9977 0 0 60 GPP1

AB_B3_1 500 11495 23495 0 0 30 GPP1

AB_B3_2 1500 11995 23495 0 0 30 GPP2

AB_B3_3 597 13495 20777 0 0 30 GPP1

RS_B4_1 144 10087 11287 0 0 60 GPP1

AB_B4_1 500 14092 26092 0 0 30 GPP1

AB_B4_2 1500 14592 26092 0 0 30 GPP2

AB_B4_3 597 16092 26092 0 0 30 GPP1

RS_T2_1 144 18864 20064 0 0 60 GPP1

AD_T2_1 651 19008 26364 0 0 40 GPP1

RS_T4_1 144 31178 32378 0 0 60 GPP1

AD_T4_1 651 31322 38678 0 0 40 GPP1

RS_T6_1 144 43492 44692 0 0 60 GPP1

AD_T6_1 651 43636 50992 0 0 40 GPP1

RS_T8_1 144 55806 57006 0 0 60 GPP1

AD_T8_1 651 55950 63306 0 0 40 GPP1

RM_T1_1 50 5507 6707 0 0 60 GPP1

BT_T1_1 463 5651 11651 0 0 50 GPP1

RM_T3_1 50 17821 19021 0 0 60 GPP1

BT_T3_1 463 17965 23965 0 0 50 GPP1

RM_T5_1 50 30135 31335 0 0 60 GPP1

BT_T5_1 463 30279 36279 0 0 50 GPP1

RM_S1_1 50 35763 36963 0 0 60 GPP1

BS_S1_1 7193 35813 60813 0 0 20 GPP1

BS_S1_2 6000 43006 60813 0 0 20 GPP2

BS_S1_3 663 49006 60813 0 0 20 GPP1

RM_T7_1 50 42449 43649 0 0 60 GPP1

BT_T7_1 463 42593 48449 0 0 50 GPP1

RM_B5_1 50 47160 36963 0 0 60 GPP1

BB_B5_1 1017 47210 72210 0 0 20 GPP1

BB_B5_2 1100 48227 72210 0 0 20 GPP2

BB_B5_3 563 49327 72210 0 0 20 GPP1
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S E RV I C E M O D E L

c.1 service analysis view

c.1.1 Entities

Table C.1 lists and describes the entities that are created in the service analysis view.

c.1.2 Mapping to MARTE

The GQAM sub-profile of MARTE is used in the service analysis view.
Table C.2 shows how each entity and attribute is mapped to a concept in UML MARTE.

c.1.3 Diagram Palette

In Papyrus, the service analysis view is represented by a class diagram. Table C.3 shows the
diagram palette of the service analysis view.

c.2 service behavior view

c.2.1 Entities

Table C.4 lists and describes the entities that are created in the service behavior view.

c.2.2 Mapping to MARTE

The Time, GQAM, and SAM sub-profiles of MARTE are used in the service behavior view. The
GQAM and SAM sub-profiles are dedicated to analysis models. The Time sub-profile is used to
represent time constraints.

Table C.5 shows how each entity and attribute is mapped to a concept in UML MARTE.

Table C.1: Service Analysis Entities: Grey rows are entities; White rows are attributes
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Table C.2: Service Analysis Mapping: Grey rows are entities; White rows are attributes

Table C.3: Service Analysis Palette: Grey rows are entities; White rows are attributes

Table C.4: Service Behavior Entities: Grey rows are entities; White rows are attributes
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Table C.5: Service Behavior Mapping: Grey rows are entities; White rows are attributes; If an attribute can be a
LiteralInteger or a LiteralString, and it is a LiteralString, then it is interpreted during transformation
to get an integer at the end
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Table C.6: Service Behavior Palette: Grey rows are entities; White rows are attributes

c.2.3 Diagram Palette

In Papyrus, the service behavior view is represented by an activity diagram. Table C.6 shows the
diagram palette of the service behavior view.

c.3 event generator view

c.3.0.1 Entities

Table C.7 lists and describes the entities that are created in the event generator view.

c.3.0.2 Mapping to Event Generator Profile

Table C.8 shows how each entity and attribute is mapped to a concept in UML MARTE.

c.3.0.3 Diagram Palette

In Papyrus, the event generator view is represented by a class diagram. Table C.9 shows the
diagram palette of the event generator view.

c.4 thread implementation view

c.4.1 Entities

Table C.10 lists and describes the entities that are created in the thread implementation view.
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Table C.7: Event Generator Entities: Grey rows are entities; White rows are attributes; RandomEventGenerator
is only used for experiments
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Table C.8: Event Generator Mapping: Grey rows are entities; White rows are attributes

Table C.9: Event Generator Palette: Grey rows are entities; White rows are attributes
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Table C.10: Thread Implementation Entities: Grey rows are entities; White rows are attributes

Table C.11: Thread Implementation Mapping: Grey rows are entities; White rows are attributes

c.4.2 Mapping to MARTE

The sub-profiles SRM of MARTE are used to model entities of the shared resource implementa-
tion view. The SRM sub-profile is dedicated to design models of the software.

Table C.11 shows how each entity and attribute is mapped to a concept in UML MARTE.

c.4.3 Diagram Palette

In Papyrus, the service analysis view is represented by a composite structure diagram. Table C.12
shows the diagram palette of the service analysis view.
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Table C.12: Thread Implementation Palette: Grey rows are entities; White rows are attributes

Table C.13: Shared Resource Implementation Entities: Grey rows are entities; White rows are attributes

c.5 shared resource implementation view

c.5.1 Entities

Table C.13 lists and describes the entities that are created in the shared resource implementation
view.

c.5.2 Mapping to MARTE

The sub-profile SRM of MARTE is used to model entities of the shared resource implementation
view. The SRM sub-profile is dedicated to design models of the software.

Table C.14 shows how each entity and attribute is mapped to a concept in UML MARTE.

c.5.3 Diagram Palette

In Papyrus, the shared resource implementation view is represented by a composite structure
diagram. Table C.15 shows the diagram palette of the shared resource implementation view.
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Table C.14: Shared Resource Implementation Mapping: Grey rows are entities; White rows are attributes

Table C.15: Shared Resource Implementation Palette: Grey rows are entities; White rows are attributes
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Table C.16: Operating System Implementation Entities: Grey rows are entities; White rows are attributes

c.6 operating system implementation view

c.6.1 Entities

Table C.16 lists and describes the entities that are created in the operating system implementation
view.

c.6.2 Mapping to MARTE

The sub-profiles GQAM and GRM of MARTE are used to model entities of the operating system
implementation view. GQAM is used to model the operating system itself, while GRM is used to
model the schedulers.

Table C.17 shows how each entity and attribute is mapped to a concept in UML MARTE.

c.6.3 Diagram Palette

In Papyrus, the operating system implementation view is represented by a composite structure
diagram. Table C.18 shows the diagram palette of the operating system implementation view.

c.7 hardware implementation view

c.7.1 Entities

Table C.19 lists and describes the entities that are created in the hardware implementation view.

c.7.2 Mapping to MARTE

The sub-profiles GQAM and HRM of MARTE are used to model entities of the shared resource
implementation view. GQAM is used to model the hardware itself, while HRM is used to model
the processors.

Table C.20 shows how each entity and attribute is mapped to a concept in UML MARTE.
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Table C.17: Operating System Implementation Mapping: Grey rows are entities; White rows are attributes

Table C.18: Operating System Implementation Palette: Grey rows are entities; White rows are attributes

Table C.19: Hardware Implementation Entities: Grey rows are entities; White rows are attributes

Table C.20: Hardware Implementation Mapping: Grey rows are entities; White rows are attributes
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Table C.21: Hardware Implementation Palette: Grey rows are entities; White rows are attributes

c.7.3 Diagram Palette

In Papyrus, the hardware implementation view is represented by a composite structure diagram.
Table C.21 shows the diagram palette of the hardware implementation view.
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S E RV I C E T O C H E D D A R

d.1 main program

Algorithm D.1 is the S2C main program.

Algorithm D.1 Service to Cheddar
1: existingEvtGens : Map<EventGenerator, Transaction>
2: cModel : Cheddar_Model
3: for each sac : ServiceAnalysisContext in model do

4: Clear cModel
5: Clear existingEvtGens
6: for each serv in sac.services do

7: for each src in serv.sources do

8: evtGen← src.eventGenerator
9: trans : Transaction

10: if any <key, val> in existingEvtGens has key = evtGen then

11: trans← val
12: else

13: trans.period← processEventGenerator(evtGen) � Compute period
14: Put <evtGen, trans> in existingEvtGens
15: Add trans to cModel
16: end if

17: prevTaskStepMap : Map<Step, Generic_Task>
18: sortByTimeAsc(evtGen.events) � Sort by ascending event time
19: for each evt in evtGen.events do

20: Affect evt.variables
21: currTaskStepMap : Map<Step, Periodic_Task>
22: jobPrecs : List<Precedence_Dependency>
23: processNode(src, evt.time, null, trans, currTaskStepMap, prevTaskStepMap, jobPrecs)
24: reduceJobPrecs(jobPrecs)
25: Add each prec in jobPrecs to cModel
26: end for

27: end for

28: end for

29: end for

Like stated previously, Algorithm D.1 will transform the model for each service analysis context
and service. A service is explored by source and event. Event variables are assigned in memory, for
transition guard assertion, before the exploration.

As a reminder, a transaction corresponds to an event generator so their mapping is done with
the existingEvtGens map. At line 13, the transaction period is computed according to the event
generator. If the event generator is periodic or sporadic, the period attribute is the transaction’s
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period. If the event generator is a TDMA frame, the duration of the TDMA frame is taken as period
of the transaction.

The maps prevTaskStepMap and currTaskStepMap are used during step processing to create job
precedence dependency in jobPrecs. Remember that a task is created for each step during the
exploration of the service. An exploration is done for each event releasing the source. A job
precedence dependency is one that exists between tasks that represent steps released by a same
event generator at a same source, but by different events (i.e. different instances of the step). For
example in Figure 7.10, Task11 precedes Task12 because Task11 is created for Step1 released by the
first event and Task12 is created for Step1 released by the second event.

At line 24, job precedence dependencies are reduced. Indeed, during the processing of the service,
some redundant precedence dependencies are created. For example, consider a task where job
1 precedes directly job 2, job 2 precedes directly job 3, and job 1 precedes directly job 3. The
precedence dependency from job 1 to job 3 should be removed. This is done with the following
rule; consider two precedence dependencies: τi ≺ τj and τp ≺ τq. The precedence dependency
τi ≺ τj is removed if:

(τi = τp ∨ τi ≺ τp)∧ (τj = τq ∨ τq ≺ τj) (114)

This reduction is done in the procedure in Algorithm D.2.

Algorithm D.2 ReduceJobPrecs Procedure

1: procedure ReduceJobPrecs(jobPrecs : List<Precedence_Dependency>)
2: k← 0

3: while k < jobPrecs.length do

4: τi ← jobPrecs[k].predecessor
5: τj ← jobPrecs[k].successor
6: m← 0

7: removed← false

8: while m < jobPrecs.length and not removed do

9: if jobPrecs[m] �= jobPrecs[m] then

10: τp ← jobPrecs[m].predecessor
11: τq ← jobPrecs[m].successor
12: if (τi = τp ∨ τi ≺ τp)∧ (τj = τq ∨ τq ≺ τj) then

13: Remove jobPrecs[k] from jobPrecs
14: k← k− 1

15: removed← true

16: end if

17: end if

18: m← m+ 1

19: end while

20: k← k+ 1

21: end while

22: end procedure

d.2 node processing

Algorithm D.3 is the recursive procedure that explores a service by nodes. A node is either a
source, step or sink.

The basic idea behind Algorithm D.3 is to do an exploration by depth-first search. When a node
is a step, it is processed (line 3), i.e. a task is created. The created task is added to the transaction
corresponding to the event generator that released the step (line (line 4). Before moving on to the
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Algorithm D.3 ProcessNode Procedure

1: procedure ProcessNode(node : Node, offset : Integer, pred : Periodic_Task, trans : Transaction, cur-
rTaskStepMap : Map<Step, Periodic_Task>, prevTaskStepMap : Map<Step, Periodic_Task>, jobPrecs :
List<Precedence_Dependency>)

2: if node is Step then

3: tsk← processStep(node, offset, pred, trans, currTaskStepMap, prevTaskStepMap, jobPrecs) �

Returns a Periodic_Task with filled parameters
4: Add tsk to trans
5: offset← offset + tsk.capacity
6: pred← tsk
7: end if

8: transitions← outgoing Transitions of node
9: if transitions is not empty then

10: for each transition in transitions do

11: if transition.guard is true then

12: Assign variables of transition.guard
13: nextNode← target of transition
14: processNode(nextNode, offset, pred, trans, currTaskStepMap, prevTaskStepMap, jobPrecs)
15: end if

16: end for

17: end if

18: end procedure

next node, offset and predecessor tasks are updated (lines 5 and 6. The next nodes are connected to
the current one by outgoing transitions (line 8). In a transition, the current node is the source and
the next node is the target. The exploration moves to a target node (line 14) if the transition guard
assertion gives true (line 11).

d.3 step processing

Algorithm D.4 is the procedure that processes a step by creating its corresponding task and
setting its parameters.

Setting most parameters of the task (corresponding to a step) is straightforward. Some parame-
ters like priority, address space name, and cpu name are set by first processing the thread on which
the step is allocated on (line 8). Shared resource and their critical sections are created by processing
resource acquisitions of the step (line D.8).

Between lines 15 and 25, blocking calls are handled. As a reminder, a blocking call going from
step S2 to S1 means that instance k of S2 must finish before instance (k+ 1) of S1 can be released.
If task τ2k corresponds to instance k of S2 and τ1(k+1) to instance (k + 1) of S1, then we have
τ2k ≺ τ1(k+1).

Finally between lines 26 and 30 job precedence dependencies are added to jobPrecs. Both block-
ing calls and job precedence dependencies can be created through the maps currTaskStepMap and
prevTaskStepMap.

d.4 thread processing

Algorithm D.5 is the procedure that processes a thread implementation on which a step is allo-
cated on.

Besides setting task parameters for the task that corresponds to the step, the procedure also
processes and creates processor and address space entities in the Cheddar model. The processor is
created by processing the scheduler by which the thread is scheduled (line 3).
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Algorithm D.4 ProcessStep Function

1: function ProcessStep(step : Step, offset : Integer, pred : Periodic_Task, trans : Transaction, cur-
rTaskStepMap : Map<Step, Periodic_Task>, prevTaskStepMap : Map<Step, Periodic_Task>, jobPrecs :
List<Precedence_Dependency>)

2: tsk : Periodic_Task
3: Add tsk to cModel � cModel is global
4: tsk.name← <unique identifier>
5: tsk.capacity← step.wcet
6: tsk.deadline← step.deadline.value
7: tsk.offset← offset
8: processThread(step.thread, tsk) � Fills priority, cpu_name, address_space_name parameters of tsk and

creates processor and scheduler in cModel
9: for each resAcq in step.resourceAcquisitions do

10: processCriticalSection(resAcq, tsk) � Fills critical_sections list of tsk and creates resources in
cModel

11: end for

12: if pred �= null then

13: Add Precedence_Dependency pred ≺ tsk to cModel
14: end if

15: blockingCalls← incoming BlockingCalls of step
16: if blockingCalls is not empty then

17: for each blockingCall in blockingCalls do

18: sourceStep← source of blockingCall
19: for each <kTask, vStep> in prevTaskStepMap in DESC order do

20: if vStep = sourceStep then

21: Add Precedence_Dependency kTask ≺ tsk to jobPrecs
22: end if

23: end for

24: end for

25: end if

26: for each <kTask, vStep> in prevTaskStepMap do

27: if vStep = step then

28: Add Precedence_Dependency kTask ≺ tsk to jobPrecs
29: end if

30: end for

31: return tsk
32: end function

Algorithm D.5 ProcessThread Procedure

1: procedure ProcessThread(thread : ThreadImplementation, tsk : Periodic_Task)
2: tsk.priority← thread.priority
3: cpu← processScheduler(thread.scheduledBy) � Returns a Generic_Processor and creates processor

and scheduler entities in cModel
4: tsk.cpu_name← cpu.name
5: addr← processPartition(thread, cpu) � Returns a Address_Space and creates address space entity in

cModel
6: tsk.addr_space_name← addr.name
7: end procedure
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d.5 scheduler and processor processing

Algorithm D.6 is the function that processes a scheduler and the processor that hosts it. The
function returns the processor that was created.

Algorithm D.6 ProcessScheduler Function

1: function ProcessScheduler(sched : SchedulerImplementation)
2: sched_params : Scheduling_Parameters
3: sched_params.preemptive_type← sched.preemptive
4: sched_params.scheduler_type← sched.policy
5: cpu : Mono_Core_Processor
6: cpu← searchCpuByName(cModel, sched.host.name) � Returns a Mono_Core_Processor with

matching name, if found
7: if cpu = null then

8: cpu.name← sched.host.name
9: cpu.scheduling← sched_params

10: Add cpu to cModel
11: end if

12: return cpu
13: end function

The parameters of the scheduler are processed and a scheduling parameter entity in Cheddar is
created. A monocore processor is then created and the scheduling parameters of the processor are
set.

d.6 partition processing

Algorithm D.6 is the function that processes a thread or shared resource implementation to deter-
mine their partition, and thus the address space to create in Cheddar. After doing some consistency
checks, the function returns the created address space.

Algorithm D.7 ProcessPartition Function

1: function ProcessPartition(elt : <ThreadImplementation or SharedResourceImplementation>, cpu :
Generic_Processor)

2: part← Partition containing elt
3: addr : Address_Space
4: addr.name← part.name
5: addr.cpu_name← cpu.name
6: for each _addr in cModel do

7: if _addr.name = addr.name then

8: if _addr.cpu_name �= addr.name then

9: Raise Exception
10: else

11: return _addr
12: end if

13: end if

14: end for

15: Add addr to cModel
16: return addr
17: end function

The main operation of importance in this function is the verification at line 8. When an entity
(thread or shared resource implementation) allocated on a processor is processed, the function
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verifies that a Cheddar address space for the partition, containing the entity, does not already exists.
If the address space already exists, it was already allocated on a processor. The processor of the
existing address space and the processor of the entity must match.

d.7 resource acquisition processing

Algorithm D.8 is the procedure that processes a resource acquisition step of a step for which a
task was created.

Algorithm D.8 ProcessResAcq Procedure

1: procedure ProcessResAcq(resAcq : ResourceAcquisitionStep, tsk : Periodic_Task)
2: critSec : Critical_Section
3: critSec.start← resAcq.acquisitionTime
4: critSec.end← resAcq.acquisitionTime + lockingTime
5: critSec.task_name← tsk.name
6: res← processSharedResource(resAcq.resource) � Creates, adds, and returns a Cheddar resource with

filled parameters
7: Add critSec to res.critical_sections
8: end procedure

The procedure sets start and end parameters of a Cheddar critical section according to attributes
acquisitionTime and lockingTime of the resource acquisition step. The task_name parameter of the
critical section is set by the tsk parameter fed to the function. The tsk parameter is the task that was
created for the step that has a resource acquisition step. Afterwards the critical section is added to
the shared resource which may need to be processed beforehand (line 6).

d.8 shared resource processing

Algorithm D.9 is the function that processes a shared resource and creates the corresponding
resource entity in the Cheddar model.

Algorithm D.9 ProcessSharedResource Function

1: function ProcessSharedResource(sr : SharedResource)
2: cpu← processScheduler(sr.host)
3: addr← processPartition(sr, cpu) � These two steps are done before anything else because their

functions checks that the cpu/addr pair is consistent with existing addrs in cModel
4: for each _res in cModel.resources do

5: if _res.name = sr.name then

6: return _res
7: end if

8: end for

9: res : Generic_Resource
10: res.name← sr.name
11: res.protocol← sr.protocol
12: res.address_space_name← addr.name
13: res.cpu_name← cpu.name
14: Add res to cModel.resources
15: return res
16: end function

Since a shared resource is allocated on a processor (through the scheduler) and contained by
a partition, these entities are first processed to create their Cheddar entities (lines 2 and 3). If
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the processors and partitions were already processed, the call to their processing function is still
important for consistency checks. Afterwards the shared resource’s parameters are set and its
Cheddar entity is created.
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