E. Arronaxplus, ANR-11-EQPX-0004) operated by the French National Research Agency (ANR) within the program " Investissements d'Avenir

H. Qin, K. Liu, X. Chen, X. Hu, X. Ma et al., Theranostics of Malignant Melanoma with 64CuCl2, Journal of Nuclear Medicine, vol.55, issue.5, pp.812-817, 2014.
DOI : 10.2967/jnumed.113.133850

G. Miao, H. Ren, L. Liu, Z. Jiang, and . Cheng, Cu Labeled Affibody Protein, Bioconjugate Chemistry, vol.21, issue.5, pp.947-954, 2010.
DOI : 10.1021/bc900515p

L. Vavere, E. R. Butch, J. L. Dearling, A. B. Packard, F. Navid et al., 64Cu-p-NH2-Bn-DOTA-hu14.18K322A, a PET Radiotracer Targeting Neuroblastoma and Melanoma, Journal of Nuclear Medicine, vol.53, issue.11, pp.1772-1778, 2012.
DOI : 10.2967/jnumed.112.104208

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1026.8387

U. Pfeifer, J. Knigge, P. Mortensen, A. K. Oturai, A. Berthelsen et al., Clinical PET of Neuroendocrine Tumors Using 64Cu-DOTATATE: First-in-Humans Study, Journal of Nuclear Medicine, vol.53, issue.8, pp.1207-1215, 2012.
DOI : 10.2967/jnumed.111.101469

D. Liu, L. D. Overbey, C. J. Watkinson, S. Smith, T. J. Daibes-figueroa et al., Heat-Stable Enterotoxin Analogues for PET Imaging of Colorectal Cancer, Bioconjugate Chemistry, vol.21, issue.7, pp.1171-1176, 2010.
DOI : 10.1021/bc900513u

Z. Cai, C. Li, A. H. Huang, H. Shahinian, R. Wang et al., Expression, Bioconjugate Chemistry, vol.21, issue.8, pp.1417-1424, 2010.
DOI : 10.1021/bc900537f

URL : https://hal.archives-ouvertes.fr/hal-00088664

C. Kraeber-bodéré, C. Rousseau, C. Bodet-milin, F. Mathieu, E. Guérard et al., Tumor Immunotargeting Using Innovative Radionuclides, International Journal of Molecular Sciences, vol.16, issue.2, pp.3932-3954, 2015.
DOI : 10.3390/ijms16023932

H. Zhang, X. Cai, O. Lu, F. Muzik, and . Peng, Positron Emission Tomography of Human Hepatocellular Carcinoma Xenografts in Mice Using Copper (II)-64 Chloride as a Tracer, Academic Radiology, vol.18, issue.12, pp.1561-1568, 2011.
DOI : 10.1016/j.acra.2011.08.006

S. Lewis, R. Laforest, F. Dehdashti, P. W. Grigsby, M. J. Welch et al., An Imaging Comparison of 64Cu-ATSM and 60Cu-ATSM in Cancer of the Uterine Cervix, Journal of Nuclear Medicine, vol.49, issue.7, pp.1177-1182, 2008.
DOI : 10.2967/jnumed.108.051326

C. Grassi, G. Nanni, C. Cicoria, F. Blasi, E. Bunkheila et al., Usefulness of 64Cu-ATSM in Head and Neck Cancer, Clinical Nuclear Medicine, vol.39, issue.1, pp.59-63, 2014.
DOI : 10.1097/RLU.0b013e3182a756f0

J. Wadas, E. H. Wong, G. R. Weisman, and C. J. Anderson, Copper Chelation Chemistry and its Role in Copper Radiopharmaceuticals, Current Pharmaceutical Design, vol.13, issue.1, pp.3-16, 2007.
DOI : 10.2174/138161207779313768

J. Wadas, E. H. Wong, G. R. Weisman, and C. J. Anderson, Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease, Chemical Reviews, vol.110, issue.5, pp.2858-2902, 2010.
DOI : 10.1021/cr900325h

C. J. Shokeen and . Anderson, Molecular Imaging of Cancer with Copper-64 Radiopharmaceuticals and Positron Emission Tomography (PET), Accounts of Chemical Research, vol.42, issue.7, pp.832-841, 2009.
DOI : 10.1021/ar800255q

E. Mewis and S. J. Archibald, Biomedical applications of macrocyclic ligand complexes, Coordination Chemistry Reviews, vol.254, issue.15-16, pp.1686-1712, 2010.
DOI : 10.1016/j.ccr.2010.02.025

D. Silversides, R. Smith, and S. J. Archibald, Challenges in chelating positron emitting copper isotopes: tailored synthesis of unsymmetric chelators to form ultra stable complexes, Dalton Transactions, vol.32, issue.23, pp.6289-6297, 2011.
DOI : 10.1039/c0dt01395a

J. Stasiuk and N. J. Long, The ubiquitous DOTA and its derivatives: the impact of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid on biomedical imaging, Chemical Communications, vol.44, issue.Suppl. 1, pp.2732-2746, 2013.
DOI : 10.1039/c3cc38507h

N. Pandya, J. Y. Kim, J. C. Park, H. Lee, P. B. Phapale et al., Revival of TE2A; a better chelate for Cu(II) ions than TETA?, Chemical Communications, vol.11, issue.20, pp.3517-3519, 2010.
DOI : 10.1039/b925703a

H. Wong, G. R. Weisman, D. C. Hill, D. P. Reed, M. E. Rogers et al., Synthesis and Characterization of Cross-Bridged Cyclams and Pendant-Armed Derivatives and Structural Studies of Their Copper(II) Complexes, Journal of the American Chemical Society, vol.122, issue.43, pp.10561-10572, 2000.
DOI : 10.1021/ja001295j

M. Comba, J. Kubeil, H. Pietzsch, H. Rudolf, K. Stephan et al., Cu PET Imaging, Inorganic Chemistry, vol.53, issue.13, pp.6698-6707, 2014.
DOI : 10.1021/ic500476u

R. I. Bevilacqua, W. B. Gelb, L. J. Hebard, and . Zompa, Equilibrium and thermodynamic study of the aqueous complexation of 1,4,7-triazacyclononane-N,N',N''-triacetic acid with protons, alkaline-earth-metal cations, and copper(II), Inorganic Chemistry, vol.26, issue.16, pp.2699-2706, 1987.
DOI : 10.1021/ic00263a029

R. Gahan and J. M. Harrow?eld, Sepulchrate: Four decades on, Polyhedron, vol.94, pp.1-51, 2015.
DOI : 10.1016/j.poly.2015.03.036

M. Sargeson, The potential for the cage complexes in biology, Coordination Chemistry Reviews, vol.151, pp.89-114, 1996.
DOI : 10.1016/S0010-8545(96)90197-6

D. Bartolo, A. M. Sargeson, and S. V. Smith, New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage, SarAr, Organic & Biomolecular Chemistry, vol.72, issue.4, pp.3350-3357, 2006.
DOI : 10.1039/b605615f

M. P. Lima, Z. Halime, R. Marion, N. Camus, R. Delgado et al., Monopicolinate Cross-Bridged Cyclam Combining Very Fast Complexation with Very High Stability and Inertness of Its Copper(II) Complex, Inorganic Chemistry, vol.53, issue.10, pp.5269-5279, 2014.
DOI : 10.1021/ic500491c

M. Rodríguez-rodríguez, D. Regueiro-figueroa, R. Esteban-gómez, G. Tripier, F. K. Tircsó et al., Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties, Inorganic Chemistry, vol.55, issue.5, pp.2227-2239, 2016.
DOI : 10.1021/acs.inorgchem.5b02627

D. Rodríguez-rodríguez, R. Esteban-gómez, G. Tripier, Z. Tircsó, I. Garda et al., Lanthanide(III) Complexes with a Reinforced Cyclam Ligand Show Unprecedented Kinetic Inertness, Journal of the American Chemical Society, vol.136, issue.52, pp.17954-17957, 2014.
DOI : 10.1021/ja511331n

M. Lima, M. Beyler, R. Delgado, C. Platas-iglesias, and R. Tripier, Pair with Dipicolinate Cyclen Ligands, Inorganic Chemistry, vol.54, issue.14, pp.7045-7057, 2015.
DOI : 10.1021/acs.inorgchem.5b01079

Z. Rodríguez-rodríguez, E. Garda, D. Ruscsák, A. Esteban-gómez, T. De-blas et al., complexes with cyclen-based ligands functionalized with picolinate pendant arms, Dalton Trans., vol.105, issue.11, pp.5017-5031, 2015.
DOI : 10.1039/C4DT02985B

M. Lima, M. Beyler, F. Oukhatar, P. L. Saec, A. Faivre-chauvet et al., complexation for potential ??-radioimmunotherapy applications, Chem. Commun., vol.101, issue.2, pp.12371-12374, 2014.
DOI : 10.1039/C4CC05529B

C. Tripier, L. Platas-iglesias, M. Lima, and . Beyler, Chelates of Lead(II) and Bismuth(III) Based on Trans-Di-N-Picolinate Tetraazacycloalkanes, 2016.

A. Benchimol, S. Fuks, N. Jothy, K. Beauchemin, C. P. Shirota et al., Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule, Cell, vol.57, issue.2, pp.327-334, 1989.
DOI : 10.1016/0092-8674(89)90970-7

M. S. Cooper, K. Ma, K. P. Sunassee, J. D. Shaw, R. L. Williams et al., Stability, Bioconjugate Chemistry, vol.23, issue.5, pp.1029-1039, 2012.
DOI : 10.1021/bc300037w

URL : https://hal.archives-ouvertes.fr/hal-01496624

C. S. Wu, I. Kang, S. Sin, D. Ren, V. C. Liu et al., Promising bifunctional chelators for copper 64-PET imaging: practical 64Cu radiolabeling and high in vitro and in vivo complex stability, JBIC Journal of Biological Inorganic Chemistry, vol.3, issue.2, pp.177-184, 2015.
DOI : 10.1007/s00775-015-1318-7

S. D. Voss, S. V. Smith, L. J. Dibartolo, E. M. Mcintosh, A. A. Cyr et al., Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates, Proceedings of the National Academy of Sciences, vol.104, issue.44, pp.17489-17493, 2007.
DOI : 10.1073/pnas.0708436104

J. Ober, C. G. Radu, V. Ghetie, and E. S. Ward, Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies, International Immunology, vol.13, issue.12, pp.1551-1559, 2001.
DOI : 10.1093/intimm/13.12.1551

N. Bryan, F. Jia, H. Mohsin, G. Sivaguru, W. H. Miller et al., Comparative uptakes and biodistributions of internalizing vs. noninternalizing copper-64 radioimmunoconjugates in cell and animal models of colon cancer, Nuclear Medicine and Biology, vol.32, issue.8, pp.851-858, 2005.
DOI : 10.1016/j.nucmedbio.2005.05.006

M. Zeglis, K. K. Sevak, T. Reiner, P. Mohindra, S. D. Carlin et al., A Pretargeted PET Imaging Strategy Based on Bioorthogonal Diels-Alder Click Chemistry, Journal of Nuclear Medicine, vol.54, issue.8, pp.1389-1396, 2013.
DOI : 10.2967/jnumed.112.115840

L. J. Dearling, S. D. Voss, P. Dunning, E. Snay, F. Fahey et al., Imaging cancer using PET ??? the effect of the bifunctional chelator on the biodistribution of a 64Cu-labeled antibody, Nuclear Medicine and Biology, vol.38, issue.1, pp.29-38, 2011.
DOI : 10.1016/j.nucmedbio.2010.07.003

N. Pandya, N. Bhatt, A. V. Dale, J. Y. Kim, H. Lee et al., Cu-Immuno-Positron Emission Tomography, Bioconjugate Chemistry, vol.24, issue.8, pp.1356-1366, 2013.
DOI : 10.1021/bc400192a

E. Rogers, C. J. Anderson, J. M. Connett, L. W. Guo, W. B. Edwards et al., Comparison of Four Bifunctional Chelates for Radiolabeling Monoclonal Antibodies with Copper Radioisotopes:?? Biodistribution and Metabolism, Bioconjugate Chemistry, vol.7, issue.4, pp.511-522, 1996.
DOI : 10.1021/bc9600372

E. S. Ghetie and . Ward, Multiple Roles for the Major Histocompatibility Complex Class I??? Related Receptor FcRn, Annual Review of Immunology, vol.18, issue.1, pp.739-766, 2000.
DOI : 10.1146/annurev.immunol.18.1.739

C. Garrison, T. L. Rold, G. L. Sieckman, S. D. Figueroa, W. A. Volkert et al., In Vivo Evaluation and Small-Animal PET/CT of a Prostate Cancer Mouse Model Using 64Cu Bombesin Analogs: Side-by-Side Comparison of the CB-TE2A and DOTA Chelation Systems, Journal of Nuclear Medicine, vol.48, issue.8, pp.1327-1337, 2007.
DOI : 10.2967/jnumed.107.039487

L. J. Dearling, B. M. Paterson, V. Akurathi, S. Betanzos-lara, S. T. Treves et al., The Ionic Charge of Copper-64 Complexes Conjugated to an Engineered Antibody Affects Biodistribution, Bioconjugate Chemistry, vol.26, issue.4, pp.707-717, 2015.
DOI : 10.1021/acs.bioconjchem.5b00049

M. Jones-wilson, K. A. Deal, C. J. Anderson, D. W. Mccarthy, Z. Kovacs et al., The in vivo behavior of copper-64-labeled azamacrocyclic complexes, Nuclear Medicine and Biology, vol.25, issue.6, pp.523-530, 1998.
DOI : 10.1016/S0969-8051(98)00017-1

L. Fani, K. Del-pozzo, R. Abiraj, M. L. Mansi, R. Tamma et al., PET of Somatostatin Receptor-Positive Tumors Using 64Cu- and 68Ga-Somatostatin Antagonists: The Chelate Makes the Difference, Journal of Nuclear Medicine, vol.52, issue.7, pp.1110-1118, 2011.
DOI : 10.2967/jnumed.111.087999

M. Halime, N. Frindel, P. Camus, M. Orain, M. Lacombe et al., Cu phenotypic PET imaging studies of multiple myeloma with the te2a derivative, Org. Biomol. Chem., vol.24, issue.34, pp.11302-11314, 2015.
DOI : 10.1039/C5OB01618E