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Simple Summary: Despite strict application of dose constraints, acute pulmonary toxicity (APT)
remains frequent, and may impact treatment compliance and patient quality of life. Prediction
models based on either a radiomics approach or a voxel-based approach were previously developed,
but never combined. Combination of radiomics features and functional radiosensitivity enhances
prediction of acute pulmonary toxicity. Correction of imbalanced data enhances prediction of APT.
Use of such prediction models opens the possibility of tailored dosimetry planning.

Abstract: Introduction: The standard of care for people with locally advanced lung cancer (LALC)
who cannot be operated on is (chemo)-radiation. Despite the application of dose constraints, acute
pulmonary toxicity (APT) still often occurs. Prediction of APT is of paramount importance for the
development of innovative therapeutic combinations. The two models were previously individu-
ally created. With success, the Rad-model incorporated six radiomics functions. After additional
validation in prospective cohorts, a Pmap-model was created by identifying a specific region of the
right posterior lung and incorporating several clinical and dosimetric parameters. To create and test a
novel model to forecast the risk of APT in two cohorts receiving volumetric arctherapy radiotherapy
(VMAT), we aimed to include all the variables in this study. Methods: In the training cohort, we
retrospectively included all patients treated by VMAT for LALC at one institution between 2015 and
2018. APT was assessed according to the CTCAE v4.0 scale. Usual clinical and dosimetric features, as
well as the mean dose to the pre-defined Pmap zone (DMeanPmap), were processed using a neural
network approach and subsequently validated on an observational prospective cohort. The model
was evaluated using the area under the curve (AUC) and balanced accuracy (Bacc). Results: 165
and 42 patients were enrolled in the training and test cohorts, with APT rates of 22.4 and 19.1%,
respectively. The AUCs for the Rad and Pmap models in the validation cohort were 0.83 and 0.81,
respectively, whereas the AUC for the combined model (Comb-model) was 0.90. The Bacc for the
Rad, Pmap, and Comb models in the validation cohort were respectively 78.7, 82.4, and 89.7%.
Conclusion: The accuracy of prediction models were increased by combining radiomics, DMeanPmap,
and common clinical and dosimetric features. The use of this model may improve the evaluation
of APT risk and provide access to novel therapeutic alternatives, such as dose escalation or creative
therapy combinations.

Keywords: radiation pneumonitis; lung cancer; prediction; cluster of voxel; radiomics; personalized
medicine
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1. Introduction

In inoperable patients, radiotherapy (RT) combined with chemotherapy (Ch) is the
standard of care in stage III lung cancer [1], according to international guidelines [2]. Mod-
ern radiation techniques, such as intensity-modulated radiotherapy (IMRT) and volumetric-
arctherapy (VMAT), enable a higher conformation, resulting in lower doses to organs at
risk (OARs) without compromising coverage of the planning target volume (PTV). Despite
these advances, acute pulmonary toxicity (APT) remains frequent with a 5–25% rate [3].

APT appears to be significantly correlated to higher doses delivered to the lungs
and possibly to the heart. However, strict application of organ-based dose constraints
appear insufficient for prevention of such toxicities. This may be explained by the fact
that dose volume histograms (DVH) do not efficiently account for spatial dose distribu-
tion or organ architecture. Radiomic features could better apprehend dose distribution
heterogeneity [4] and, when applied to dose maps, appear as efficient predictors of APT [5].
A second explanation could be the lack of functional organ-based dose constraints. For
this purpose, several techniques were developed for the identification of such functional
sub-regions [6–9]. Most of these techniques require performing costly nuclear imaging,
such as 68Ga PET-CT or Ventilation-Perfusion SPECT-CT, and raise multiple questions
regarding inter-imaging modality registration and guidelines for the definition of func-
tional volumes. Based on retrospective data, a voxel-based analysis approach selected
voxels significantly associated with the APT endpoint, defining a significance map [10–12].
In patients treated with VMAT-radiotherapy for lung cancer, a volume was identified
in the posterior right lung. Higher doses to this volume (Pmap) were associated with a
significantly higher risk of APT. Despite robust results, this model suffered from overfitting
with loss of performance in the testing cohort. The radiomics model was only internally
validated, and prospective evaluation remains to be tested. Furthermore, the possibility
of the combination between the radiomics and Pmap approaches was never tested, nor
was its interest evaluated. Given the relatively low rate of grade ≥2 APT (20–25%), the
combination of the two approaches could lead to a higher performance, but only in the
training cohort, due to overfitting.

In this study, we aim to combine the radiomics and voxel-based approaches and
develop a new model that enhances the prediction of APT in patients treated for a locally
advanced lung cancer treated with a VMAT-based RT.

2. Materials and Methods
2.1. Population

A previously presented population was used, consisting of 165 retrospectively and
42 prospectively included patients [12]. All patients were treated with curative intent for a
histologically-proven locally advanced lung cancer (non-small cell or small-cell lung cancer)
between 2015 and 2020. Patients with aged <18 years old and follow-up less than 1 year
after RT completion were excluded. Similarly, patients with a history of thoracic radiation
therapy, pneumonectomy, or incomplete RT were excluded. When performed, Ch could be
delivered as a sequential or concomitant treatment. RT was delivered with a prescription
dose of 60 to 66 Gy to the PTV, with 95% of the dose covering 95% of the prescription volume.
All RT courses were delivered with VMAT. The study was approved by the hospital ethical
committee (Retrospective cohort: NCT04545658, Prospective cohort: NCT03931356).

2.2. Toxicities

Using the CTCAE v4.0, acute pulmonary toxicity was graded as follows: APT3 was
defined as a binary outcome relating to a grade 3 pulmonary toxicity event happening
during the first 6 months after the start of RT, whereas APT2 was defined as a binary
outcome related to a grade 2 pulmonary toxicity event occurring during the first 6 months
after the start of RT. APT was retrospectively gathered for every patient in the retrospective
cohort. APT was measured and prospectively collected as a secondary outcome for the
prospective cohort. Actuarial incidences were employed.
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2.3. Clinical and Dosimetric Features

Age, gender, performance status (PS), administration of Ch, tumor stage as determined
by the American Joint Committee on Cancer (AJCC), mean expiratory volume/second
(MEVS), history of smoking, and chronic obstructive pulmonary disease were all gathered
as standard clinical features (COPD).

Regarding dosimetric features, all usual dose constraints for the homolateral lung
(LungH), contralateral lung (LungC), both lungs (Lungs) and the heart were considered.
The full list of dosimetric features is available as Supplementary Table S1.

2.4. Radiomics and Pmap Features

When combined in the radiomics-based model (Rad-model), six radiomic features
were previously identified as highly correlated with the risk of APT2 [5]: the Variance
(LungH_Variance), Difference Variance (LungH_DVAR), Contrast (LungH_Contrast), and
Entropy (LungH_Entropy), extracted from the LungH volume based on the Co-occurence
Matrix, as well as the IC1 Information measure of correlation (LungH_IC1) extracted
from the LungH volume, and the Energy extracted from the lung volume and based on
the histogram (Lungs_Energy). All radiomics features were extracted using the in-house
IBSI-compliant software [13] (MIRAS©), with a fixed bin number of 1 (1 Gy = 1 grey-level).

A region (Pmap) was previously identified in the posterior right lung [12]. Combining
the mean dose to this Pmap region (DMeanPmap) with 10 other features, a Pmap-model
was built, strongly associated with the risk of APT ≥ grade 2. All features used for the
Pmap-model [12] were thus considered for the model building and optimization.

2.5. Statistical Analysis

The overall population was considered as two separate and independent cohorts:
the training cohort, regrouping the 165 retrospectively evaluated patients, and the testing
cohort, consisting of the 42 prospectively included patients, as previously presented [12].
Feature set selection and model building were developed on the training cohort, blinded
from the testing set. Each model was then evaluated on the testing cohort. Several predic-
tion models were separately built using a neural network (NN) approach. Based on this NN
approach, the radiomics and Pmap models were previously presented using respectively
6 [5] and 11 [12] features. Given the fact that the Rad-model was developed on a subset of
the actual training cohort, the Rad-model was retrained. The Pmap-model was tested as
previously developed.

All clinical, dosimetric, and radiomics features were considered for the development
of the Combined model (Comb-model), using the same NN approach. The Multilayer
Perceptron is a tool embedded in SPSS Modeler v18.0, producing a prediction model based
on the APT endpoint and ranking each feature by its importance. To reduce the number of
included features, features were combined using a decremental approach; at each step, the
least important feature is deleted, and the model is retrained until only one feature remains.
For every combination, the model was stabilized using a bootstrap approach with n = 1000
replications. For each set of features, only the model with the highest mean accuracy based
on the 1000 replications was retained. A probability threshold was defined as the value
maximizing the Youden Index defined by

YI = Sensitivity (Sp) + Speci f icity (Se)− 1.

Given the low rate of APT2 and risk of unbalanced data, the impact of a correction
using oversampling via the Synthetic Minority Oversampling Technique (SMOTE) package
was evaluated [14]. Six prediction models were thus developed:

- Three without SMOTE: RadNonSmote, PmapNonSmote, and CombNonSmote
- Three with SMOTE: RadSmote, PmapSmote, and CombSmote

The performance of each model was then analyzed using sensitivity (Se), specificity (Sp),
balanced accuracy (Bacc: mean of the Se and Sp), F1-score, and positive (PPV) and negative
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(NPV) prediction values in both the training and testing cohorts. Decision curves analysis
(DCA) for the training and testing sets was performed plotting the net benefit with its
corresponding threshold. Precision-recall curves were also used for model comparisons.

Given the clinical importance of Grade 3 APT (APT3), a secondary analysis was
performed for the prediction of APT3. New cut-offs were defined on the training cohort,
maximizing the Youden Index as presented, but for the prediction of APT3.

In the event of radiomic features being retained in the Combined models, an analysis
of its regional significance was planned. For practicality, only the most important radiomic
feature retained in the CombSmote model was analyzed. Three-dimensional radiomics
maps were calculated for each patient based on the lung volume, using the Pyradiomics
toolbox [15], with a kernel set to 3. We then used the same methodology as previously used
for the definition of the Pmap-region. The protocol was previously fully detailed [10,12].
Briefly, radiomics maps were registered to a thoracic phantom using a segment-based
registration. A voxel-based analysis was then performed, with n = 10.000 replications,
using a t-test approach evaluating the significance of each voxel for differentiating patients
with APT2 from the patients without APT2. Correction for multiple testing was used
(family-wise error). The significance map based on the most important radiomic feature
retained in the CombSmote model was named: PmapRad. Overlap between the Pmap and
PmapRad maps was evaluated using the DICE coefficient.

3. Results
3.1. Population

The population characteristics have been previously presented [12,16]. For com-
pleteness, patient characteristics according to the occurrence of APT2 in each cohort are
summarized in Supplementary Table S2. The rate of APT ≥ grade 2 was 22.4 and 19.1% in
the training and testing cohorts, respectively, whereas only 11 patients presented with an
APT ≥ grade 3 (9 in the training and 2 in the testing sets, respectively).

3.2. Radiomics and Pmap-Models

The retrained RadNonSmote and RadSmote models achieved AUCs of 0.91/0.85 in the
training cohort (Table 1) and 0.83/0.83 in the testing cohort (Table 2). Performance of
the RadNonSmote and RadSmote models, according to the number of retained features, is
available as Figure 1a,b, respectively, with the chosen model combining the six radiomic
features. Ranking of the six included radiomics features was different between the two
radiomics models. The radiomics models were obtained combining the six radiomic
features, the most important feature being the Energy_HistLungs, accounting for 58.5%
of the NN-model (Table 3), whereas Variance_CoocLungH ranked as the most important
(43.0%) for the RadSmote model. In the testing cohort, Baccs were 82.0/78.7% with 18/24.0%
probability thresholds for the RadNonSmote and RadSmote, respectively (Table 2).

The PmapNonSmote model was previously presented [12] and resulted in an AUC of
1.00 and 0.81 in the training and testing sets, respectively. Consequently, the deducted Baccs
were 99.2% in the training set (Table 1) and 82.0% in the testing set (Table 2). Adding a
correction of unbalanced data using the SMOTE approach, the PmapSmote model combined
eight features and resulted in a Bacc of 82.0% in the testing cohort (6% threshold). Perfor-
mance of the PmapNonSmote and PmapSmote models, according to the number of retained
features, is available as Figure 1c,d, respectively.

As planned, 3D radiomics maps were extracted for each patient, using the LungH_Variance
feature. Overlap between the PmapRad and Pmap maps is presented as Supplementary Figure S1
and appears to be relatively low (DICE coefficient of 0.35).
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Figure 1. Performance of each model (RadNoSmote (a), RadSmote (b), PmapNoSmote (c), PmapSmot (d),
CombNoSmote (e), and CombSmote (f)) according to the number of retained features for the prediction
of APT ≥ grade 2. Abbreviation: Accuracy: Mean accuracy based on the bootstrap n = 1000 replica-
tions, APT: Acute pulmonary toxicity, Rad_NoSmote: Radiomics model without Smote, Rad_Smote:
Radiomics model with Smote, Pmap_NoSmote: Pmap model without Smote, Pmap_Smote: Pmap
model with Smote, Comb_NoSmote: Combined model without Smote, Comb_Smote: Combined
model with Smote. Legend: x-axis: number of features in the model, y-axis: mean accuracy (n = 1000
bootstrap replications) of the model.
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Table 1. Analysis of each model’s discrimination between patients with or without APT ≥ grade 2 in the training set.

Set AUC p Cut-Off C-Index Se Sp BAcc F1

Number of Patients, n (%)

Below the Cutoff
(Low Risk of APT ≥ Grade 2)

Above the Cutoff
(High Risk of APT ≥ Grade 2)

Total Without APT With APT Total Without APT With APT

RadNoSmote 0.91 <0.0001 >18% 0.85 86.5 84.4 85.5 0.72 113
(68.5%) 108 (95.6%) 5 (4.4%) 52

(31.5%) 20 (38.5%) 32 (61.5%)

RadSmote 0.85 <0.0001 >24% 0.77 75.7 78.1 76.9 0.66 109
(66.1%) 100 (91.7%) 9 (8.3%) 56

(33.9%) 28 (50.0%) 28 (50.0%)

PmapNoSmote 0.99 <0.0001 >8% 0.99 100.0 98.4 99.2 1.00 126
(76.4%) 126 (100.0%) 0 (0.0%) 39

(23.6%) 2 (5.1%) 37 (94.9%)

PmapSmote 0.99 <0.0001 >6% 0.96 100.0 91.4 95.7 0.96 117
(70.9%) 117 (100.0%) 0 (0.0%) 48

(29.1%) 11 (22.9%) 37 (77.1%)

CombNoSmote 0.99 <0.0001 >8% 0.99 100 98.4 99.2 1.00 126
(76.4%) 126 (100.0%) 0 (0.0%) 39

(23.6%) 2 (5.1%) 37 (94.9%)

CombSmote 0.91 <0.0001 >12% 0.87 81.1 92.2 86.7 0.85 125
(75.8%) 118 (94.4%) 7 (5.6%) 40

(24.2%) 10 (25.0%) 30 (75.0%)

Abbreviations: AUC: Area under the curve, Se: Sensitivity, Sp: Specificity, BAcc: Balanced Accuracy, F1: F1-score, APT: Acute pulmonary toxicity, Rad_NoSmote: Radiomics model
without Smote, Rad_Smote: Radiomics model with Smote, Pmap_NoSmote: Pmap model without Smote, Pmap_Smote: Pmap model with Smote, Comb_NoSmote: Combined model
without Smote, Comb_Smote: Combined model with Smote.
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Table 2. Analysis of each model’s discrimination between patients with or without APT ≥ grade 2 in the testing set.

Set AUC p Cut-Off C-Index Se Sp BAcc F1

Number of Patients, n (%)

Below the Cutoff
(Low Risk of APT ≥ Grade 2

Above the Cutoff
(High Risk of APT ≥ Grade 2)

Total Without APT With APT Total Without APT With APT

RadNoSmote 0.83 <0.0001 >18% 0.82 87.5 76.5 82.0 0.63 27
(64.3%) 26 (96.3%) 1 (3.7%) 15

(35.7%) 8 (53.3%) 7 (46.7%)

RadSmote 0.83 <0.0001 >24% 0.79 75.0 82.4 78.7 0.60 30
(71.4%) 28 (93.3%) 2 (6.7%) 12

(28.6%) 6 (50.0%) 6 (50.0%)

PmapNoSmote 0.81 <0.0001 >8% 0.82 87.5 76.5 82.0 0.61 27
(64.3%) 26 (96.3%) 1 (3.7%) 15

(35.7%) 8 (53.3%) 7 (46.7%)

PmapSmote 0.79 <0.0001 >6% 0.82 100.0 64.7 82.4 0.57 22
(52.4%) 22 (100.0%) 0 (0.0%) 20

(47.6%) 12 (60.0%) 8 (40.0%)

CombNoSmote 0.83 <0.0001 > 8% 0.70 62.5 76.5 69.5 0.57 29
(69.0%) 26 (89.7%) 3 (10.3%) 13

(31.0%) 8 (61.5%) 5 (38.5%)

CombSmote 0.90 <0.0001 >12% 0.90 100.0 79.4 89.7 0.71 27
(64.3%) 27 (100.0%) 0 (0.0%) 15

(35.7%) 7 (46.7%) 8 (53.3%)

Abbreviations: AUC: Area under the curve, Se: Sensitivity, Sp: Specificity, BAcc: Balanced accuracy, F1: F1 score, APT: Acute pulmonary toxicity, Rad_NoSmote: Radiomics model
without Smote, Rad_Smote: Radiomics model with Smote, Pmap_NoSmote: Pmap model without Smote, Pmap_Smote: Pmap model with Smote, Comb_NoSmote: Combined model
without Smote, Comb_Smote: Combined model with Smote.
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Table 3. Classification of each feature by importance for each model.

RadNoSmote Model RadSmote Model PmapNoSmote Model PmapSmote Model CombNoSmote Model CombSmote Model

Feature Importance Feature Importance Feature Importance Feature Importance Feature Importance Feature Importance

LungH_Variance 0.1% LungH_Entropy 1.9% V40Heart 5.0% Stage 3.6% V40Heart 4.4% V13LungH 3.3%

LungH_DVAR 1.5% Lungs_Energy 4.5% DMeanLungH 5.0% V5LungH 5.0% DMeanLungH 5.0% V5LungH 3.8%

LungH_Contrast 3.2% LungH_IC1 15.6% V5LungH 5.0% MEVS 5.4% V5LungH 5.0% V10LungH 4.4%

LungH_IC1 15.2% LungH_DVAR 16.9% AJCC Stage 5.0% V10LungH 6.1% AJCC Stage 5.1% DMeanLungH 4.8%

LungH_Entropy 20.5% LungH_Contrast 18.1% V10LungH 6.0% DMeanLungH 6.6% V10LungH 5.5% V302Lungs 6.3%

Lungs_Energy 58.5% LungH_Variance 43.0% COPD 6.0% V302Lungs 10.2% COPD 6.1% COPD 10.4%

MEVS 7.0% DMean2Lungs 15.5% MEVS 6.1% DMean2Lungs 10.5%

Smoking
Status 7.0% DMeanPmap 47.7% Smoking Status 6.2% LungH_Variance 12.6%

V302Lungs 7.0% V302Lungs 6.7% DMeanPmap 44.1%

DMean2Lungs 11.0% LungH_Variance 7.1%

DMeanPmap 36.0% DMean2Lungs 10.1%

DMeanPmap 32.7%

Abbreviations: V40Heart: Volume of the heart receiving 40 Gy, DMeanLungH: Mean dose received by the homolateral lung, V5LungH: Volume of the homolateral lung receiving 5 Gy,
AJCC Stage: American Joint Committee on Cancer, V10LungH: Volume of the homolateral lung receiving 10 Gy, COPD: Chronic obstructive pulmonary disease, MEVS: Mean expiratory
volume/second, V302Lungs: Volume of the 2 lungs receiving 30 Gy, DMean2Lungs: Mean dose received by the 2 lungs, DMeanPmap: Mean dose received by the Pmap volume, LungH:
Homolateral lung, Lungs: both lungs, LungH_Variance: Variance extracted from the LungH volume on the Co-occurence matrix (Cooc), LungH_DVAR: Difference variance extracted
from the LungH volume on the Cooc matrix, LungH_Contrast: Contrast extracted from the LungH volume on the Cooc matrix, LungH_IC1: Information measure of correlation extracted
from the LungH volume on the Cooc matrix, LungH_Entropy: Entropy extracted from the LungH volume on the Cooc matrix, LungH, Lungs_Energy: Entropy extracted from the
LungH volume on the histogram. Abbreviation: Rad_NoSmote: Radiomics model without Smote, Rad_Smote: Radiomics model with Smote, Pmap_NoSmote: Pmap model without
Smote, Pmap_Smote: Pmap model with Smote, Comb_NoSmote: Combined model without Smote, Comb_Smote: Combined model with Smote.
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3.3. Combined Model

For the combined models, 43 features were considered and their correlation with the
risk of APT2 was evaluated (Supplementary Table S3). Without SMOTE, the best model
achieved a mean accuracy of 0.88 (Figure 1e) and combined 12 different features (Table 3).
In this model (CombNonSmote), the three most important features were the DMeanPmap,
Dmean2Lungs, and Variance_CoocLungH, with respective importances of 32.7, 10.1, and 7.1%.
On the training cohort, the CombNonSmote model achieved an AUC of 0.91 and a Bacc of
86.2% when applying a 8% threshold (Table 1). On the testing cohort, this model resulted in
a Bacc of 69.5%. Correct classification occurred for 89.7% of low-risk and 38.5% of high-risk
patients (Table 2).

Use of the SMOTE approach resulted in the development of a different combined
model (Figure 1f), the CombSmote model, combining nine features, with the three most im-
portant features remaining the same: DMeanPmap, Variance_CoocLungH, and Dmean2Lungs,
with respective importances of 44.1, 12.6, and 10.5% (Table 3). In the testing cohort, the
CombSmote model resulted in a Bacc of 89.7% using the 12% threshold, with the highest
PPV (53.3%) while maintaining a 100% NPV.

3.4. Model Comparison for the Prediction of APT ≥ Grade 2 and APT ≥ Grade 3

For APT2, the PmapNoSmote, PmapSmote, and CombNoSmote achieved the highest results
based on the curves in the training cohort (Figure 2a), whereas no significant differences
were observed between the six models in the testing cohort (Figure 2b).
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Figure 2. Comparison between each model in the training (a) and testing (b) sets based on the
ROC curve for the prediction of APT ≥ grade 2. Abbreviation: Rad_NoSmote: Radiomics model
without Smote, Rad_Smote: Radiomics model with Smote, Pmap_NoSmote: Pmap model without
Smote, Pmap_Smote: Pmap model with Smote, Comb_NoSmote: Combined model without Smote,
Comb_Smote: Combined model with Smote.

Though both the six-prediction models achieved interesting results in the testing set,
the CombSmote model achieved better results than the CombNoSmote, Rad, and Pmap models
for the overall range of predicted probabilities (Figure 3). Similarly, the F1 score for the
CombSmote model surpassed all other models in the testing cohort (0.71 vs. 0.56–0.63).
Precision-recall and calibration curves favored Smote-based models, except for the Pmap
models (Supplementary Figures S2 and S3, respectively).
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Figure 3. Comparison between each model in the training (a) and testing (b) sets based on the deci-
sion curve analysis for the prediction of APT ≥ grade 2. Abbreviation: APT: Acute pulmonary
toxicity, Rad_NoSmote: Radiomics model without Smote, Rad_Smote: Radiomics model with
Smote, Pmap_NoSmote: Pmap model without Smote, Pmap_Smote: Pmap model with Smote,
Comb_NoSmote: Combined model without Smote, Comb_Smote: Combined model with Smote.
Legend: x-axis: Probability threshold, y-axis: Net clinical benefit.

In both cohorts, according to the DCA, the radiomics model achieved the lowest clinical
benefit for predicted probabilities >20%. On the other hand, for predicted probabilities <20%,
net clinical benefit seemed to overlap in the testing cohort.

Regarding the prediction of APT ≥ grade 3 in the training cohort, three prediction models
ranked first (PmapNoSmote, PmapSmote, and CombNoSmote), with a Bacc of 0.92 and newly de-
fined respective cut-offs (Supplementary Table S4, Supplementary Figure S4a). On the testing
cohort and with a 86% threshold, the PmapSmote model ranked first, with a Bacc of 0.94, a NPV
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of 100%, but a low PPV of 28.6% (Supplementary Table S5, Supplementary Figure S4b). Apart
from the RadNoSmote, all remaining models performed similarly with Baccs ranging from 0.85
to 0.93 and a NPV of 100.0% for all. Based on the DCA, the PmapSmote and CombNoSmote mod-
els harbored a favorable profile in the training cohort (Supplementary Figure S5a), whereas
the PmapSmote stood out in the testing cohort (Supplementary Figure S5b). To be noted, clinical
benefits remained relatively small for all prediction models.

4. Discussion

Stage III lung cancer is a unique setting, where a tailored approach regarding response
to treatment and risk of adverse events is mandatory. Indeed, though immunotherapy
(IT) has changed the landscape of patients with locally advanced lung cancer [3,17], access
to these adjuvant treatments must be increased. Furthermore, several phase II and phase
III trials are currently ongoing to evaluate the benefit of IT with Ch-RT. In a recent Phase
II trial [18] evaluating two different Ch-IT combinations with RT, 67 out of 112 patients
treated with carboplatin—paclitaxel—pembrolizumab (patients with non-squamous or
squamous lung cancer) discontinued treatment, 62.2% because of adverse events. Though
objective response rates were interesting (approximately 70% in each arm), radiation pneu-
monitis of any grade was observed in 17.9% of the patients. Technical features regarding
dosimetry planning and dose–volume histograms for both the PTV and OARs were in-
sufficiently detailed in prospective trials evaluating treatments in this setting. Several
studies assessing the compliance of the delivered planning to the protocols proved that
survival was positively impacted by both volume definition and dose constraints [19,20].
One might think the initial dosimetry planning could also impact patients’ tolerance to
treatment. Given the number of trials evaluating Ch-IT with RT combinations [18,21–26],
we developed two different approaches.

Our first approach considered the impact of spatial dosimetry and heterogeneity of
the dose received by both lungs [5]. In the testing cohort, the RadNoSmote model retrained
on 165 patients achieved a lower Bacc than previously reported with a Bacc of 82.0% in the
testing set. Based on only six radiomics features, this model is easily applicable but can
only be considered as a method for evaluating dosimetry plans.

With a different approach based on voxel-based analysis, a cluster of voxels sensitive
to radiotherapy was localized in the posterior right lung. Combining 11 features, the
PmapNoSmote model achieved similar results on the testing set (Bacc of 82.0%) compared
with the radiomics model. Interestingly, the DCA favored the Pmap model for an APT2
predicted probability superior to 20%. On the contrary, for probabilities inferior to 20%, per-
formances of the two models overlapped. These two approaches are relatively innovative
but have never been combined.

In the combined approach, we considered 12 features, among which the DMeanPmap
and a radiomics feature (LungH_Variance) were associated. The CombNoSmote model
was associated with an AUC of 0.82 and Bacc of 69.5%, thus a lower Bacc mainly due to
lower sensitivity. Addition of the SMOTE approach enhanced the performance of three
newly developed prediction models. With a NPV of 100%, the rate of false positives
decreased from 53.3% for the RadNoSmote and PmapNoSmote models to 46.7%. This model
consisting of a two-step approach probably better apprehended the complexity of dose
delivery to a functionally heterogenous organ such as the lung. The first step, consisting
of an evaluation of the DMeanPmap and other clinical and dosimetric features, offers the
possibility of adaptative planning with a goal of decreasing the DMeanPmap. Once the
dosimetry planning is completed, radiomics features are extracted and combined with
previous features to produce a risk probability. A few advantages were found, including
better results for APT2 and APT3 prediction. On the other hand, this approach remains
more complex and less easily implemented for a clinical use. External validation of our
models is currently under investigation. Despite validation in a prospectively recruited
cohort, multicentric validation is needed. Several factors, such as treatment delivery
heterogeneity, toxicity evaluation, and racial and ethnic differences, as well as psychosocial
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factors, which could not be assessed in our cohorts, should be added to fully evaluate
model performances.

Apart from the RadSmote and CombSmote, all models were prone to overfitting with
significant performance loss between training and testing cohorts. RadSmote and CombSmote
achieved harbored correction for imbalanced data that seemed to reduce this limitation and
should be considered in future prediction models when dealing with skewed endpoints.
The CombSmote model also stood out from the other models with the highest F1 score.

Having more efficient APT prediction tools could greatly benefit patients undergoing RT
for lung cancer. Patients at high predicted risk of APT should be considered for dosimetry
optimization until an acceptable risk is reached. When unfeasible, careful monitoring under
treatment or neoadjuvant chemotherapy could be proposed. Patients at low risk of APT could
benefit from dose escalation or treatment combination, with the addition of IT during CT-RT
followed by adjuvant IT, as studied in several phase III trials [18,21–26].

Main alternatives to such machine-learning approaches are based on nuclear imaging and
require costly exams, such as ventilation (V)/perfusion (P), SPECT-CT, or 68Ga PET-CT [6–8].
These approaches have the advantage of offering the possibility of adaptative planning,
based on the physiological structure of the lungs. However, several technical issues arise,
such as 4D inter-modality registration and variability of the definitions of functional and
non-functional lungs. Furthermore, the possibility of effective optimization of dosime-
try planning must be demonstrated. Such approaches could further enhance prediction
modeling and treatment planning.

Though the Pmap and PmapRad volumes appeared complementary, both regions
were mainly encompassed in the right lung, confirming the specific role of these sub-regions
regarding the risk of APT. Despite an overlap between these regions and functional regions,
as defined through nuclear imaging [6], the precise physiopathology underlying the role of
these regions needs further research. Specific vascularization of the posterior right lung
could be a primary explanation. Sensitivity of these regions to low-dose volumes (V5LungH
and V10LungH) and their impacts on respiratory functions, especially on the diffusion
capacity of the lungs for carbon monoxide (DLCO), could partly explain our results. A
phase 2 study (NCT04942275) being conducted at our institution focuses on patients treated
with stereotactic radiotherapy (SBRT), aimed at better understanding regional radiation
sensitivity [27]. Despite it being on a different population, substantial information will be
extracted from this study and may explain the specific role of the posterior right lung.

Despite its few limitations, this study brings new insight for prediction modelling in
patients treated with radiotherapy and marks the final step before clinical validation in a
randomized setting. With two competitive models, comparison and combination appear
necessary to choose the best model for validation. This choice is based on prediction efficiency,
but also generalizability, ease of use, and integration in the usual workflow, with the Pmap
model being the most balanced model. This manuscript stands out from previous studies
due to several factors. Due to the relatively moderate cohort and high number of features, a
correction of imbalanced data was performed, enhancing the overall results for several models.
As hypothetized, all non-SMOTE models suffered from overfitting. This was the main benefit
of the SMOTE approach, with enhanced performance for the CombSmote model regarding
the prediction of grade > 2 APT. Finally, this work brought a focus on APT3 prediction with,
again, the combination model reaching the highest performances.

5. Conclusions

The accuracy of the APT2 prediction models is increased by combining radiomics,
DMeanPmap, and common clinical and dosimetric features. The combined model appears
to be more effective for the prediction of APT ≥ grades 2 and 3 than other prediction
models, such as the Pmap-model in patients treated with VMAT for locally advanced lung
cancer. These two models are useful tools for clinicians to reduce the risk of APT in selected
patients and are ready for prospective and external validation in a multicentric setting.
Following this validation, a randomized study will be initiated comparing outcomes in
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patients treated with dosimetric optimization based on the previously presented Pmap
model and patients treated without dosimetric optimization. Such a randomized trial will
need a simple, efficient, and generalizable prediction model that would be either embedded
in the treatment planning system or act as a standalone tool. Furthermore, the use of this
model may provide access to novel therapeutic alternatives, such as dose escalation or
creative therapy combinations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jpm12111926/s1, Supplementary Table S1: List of all studied dosimetric features,
Supplementary Table S2: Main patient characteristics in the training and testing sets, Supplementary Table S3:
Correlation of each feature with the APT2 risk (training cohort), Supplementary Table S4: Analysis of
the each model’s discrimination between patients with or without APT ≥ grade 3 in the training set,
Supplementary Table S5: Analysis of the each model’s discrimination between patients with or without
APT ≥ grade 3 in the testing set, Supplementary Figure S1: Overlap between the PmapRad and Pmap maps,
Supplementary Figure S2: Comparison between each model in the testing sets based on the precision-recall
curve for the prediction of APT ≥ grade 2, Supplementary Figure S3: Comparison between each model in
the testing sets based on the calibration curve for the prediction of APT ≥ grade 2, Supplementary Figure S4:
Comparison between each model in the training (a) and testing (b) sets, based on the ROC curve for the
prediction of APT ≥ grade 3, Supplementary Figure S5: Comparison between each model in the training (a)
and testing (b) sets, based on the decision curve analysis for the prediction of APT ≥ grade 3.
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