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Abstract We identify all non-splitting bi-unitary perfect polynomials over
the field F4, which admit at most four irreducible divisors. There is an
infinite number of such divisors.

1 Introduction

In this paper, we work over the finite field F4 of 4 elements:

F4 = {0, 1, α, α+ 1} where α2 + α+ 1 = 0.

As usual, N (resp. N∗) denotes the set of nonnegative integers (resp. of
positive integers).

Throughout the paper, every polynomial is a monic one.
Let S ∈ F4[x] be a nonzero polynomial. A divisor D of S is called

unitary if gcd(D,S/D) = 1. We designate by gcdu(S, T ) the greatest com-
mon unitary divisor of S and T . A divisor D of S is called bi-unitary if
gcdu(D,S/D) = 1. We denote by σ(S) (resp. σ∗(S), σ∗∗(S)) the sum of all
divisors (resp. unitary divisors, bi-unitary divisors) of S. The functions σ,
σ∗ and σ∗∗ are all multiplicative. We say that S is perfect (resp. unitary
perfect, bi-unitary perfect) if σ(S) = S (resp. σ∗(S) = S, σ∗∗(S) = S).

Finally, we say that A is indecomposable bi-unitary perfect if A has no
proper divisor which is bi-unitary perfect.

Several studies are done about perfect, unitary and bi-unitary perfect
polynomials (see [1], [2], [3], [4], [7], [8], [9] and references therein).
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In this paper, we are interested in non-splitting polynomials over F4

which are bi-unitary perfect (b.u.p.) and divisble by r irreducible factors,
where r ≤ 4.

The splitting case is already treated in ([11], Proposition 3.1 and Theo-
rem 3.2). However, we better precise these results in Theorem 1.1.

We consider the two following sets:

Ω1 := {P ∈ F4[x] : P and P + 1 are both irreducible}
Ω2 := {P ∈ F4[x] : P, P + 1, P 2 + P + 1 and P 3 + P 2 + 1 are all irreducible}.

We see that Ω2 ⊂ Ω1, Ω2 contains the four (monic) monomials of F4[x] and
it is an infinite set ([6], Lemma 2). For example, for any k ∈ N, Pk :=

x2·5
k
+ x5

k
+ α ∈ Ω2.

We get the following two results related to the fact that A splits or not.
Theorem 1.1. Let A = xa(x + 1)b(x + α)c(x + α + 1)d ∈ F4[x], where
a, b, c, d ∈ N are not all odd. Then, A is b.u.p if and only if one of the
following conditions holds:
i) a = b = c = d = 2,
ii) a = b = 2 and c = d = 2n − 1, for some n ∈ N,
iii) a = b = 2n − 1 and c = d = 2, for some n ∈ N,
iv) a, b, c, d are given by Table (1).

a 4 4 4 4 4 4 5 5 5 5 6 6 6 6

b 3 3 4 4 4 4 3 3 4 4 6 6 6 6

c 3 4 3 4 5 6 4 6 4 5 3 4 5 6

d 4 3 5 4 3 6 4 6 5 4 5 4 3 6

(1)

Theorem 1.2. Let A = P aQbRcSd ∈ F4[x], where A does not split and
a, b, c, d are not all odd. Then, A is b.u.p if and only if one of the following
conditions holds:
i) a = b = c = d = 2, P,R ∈ Ω1, Q = P + 1 and S = R+ 1,
ii) a = b = 2, c = d = 2n − 1, for some n ∈ N, P,R ∈ Ω1, Q = P + 1 and
S = R+ 1,
iii) a = b = 2n − 1, for some n ∈ N, c = d = 2, P,R ∈ Ω1, Q = P + 1 and
S = R+ 1,
iv) P ∈ Ω2, Q = P + 1, R, S ∈ {P 3 + P + 1, P 3 + P 2 + 1} and (a, b, c, d) ∈
{(7, 13, 2, 2), (13, 7, 2, 2), (14, 14, 2, 2)}.

Note that if a, b, c and d are all odd, then σ∗∗(A) = σ(A). So, A is b.u.p.
if and only if A is perfect. We also see that there exists no b.u.p. polynomial
A with ω(A) = 3.
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Since Ω1 and Ω2 are infinite sets, we see that there are infinitely many
indecomposable and odd b.u.p. polynomials over F4, even if there are only
three 4-tuples available exponents.

2 Preliminaries

Some of the following results are obvious or (well) known, so we omit their
proofs. See also [10].

Lemma 2.1. Let T be an irreducible polynomial over F4 and k, l ∈ N∗.
Then, gcdu(T

k, T l) = 1 (resp. T k) if k ̸= l (resp. k = l).
In particular, gcdu(T

k, T 2n−k) = 1 for k ̸= n, gcdu(T
k, T 2n+1−k) = 1 for

any 0 ≤ k ≤ 2n+ 1.

Lemma 2.2. Let T ∈ F4[x] be irreducible. Then
i) σ∗∗(T 2n) = (1 + T )σ(Tn)σ(Tn−1), σ∗∗(T 2n+1) = σ(T 2n+1).
ii) For any c ∈ N, 1 + T divides σ∗∗(T c) but T does not.

Corollary 2.3. Let A = P hQkRlSt be such that h, k, l and t are all odd.
Then, A is b.u.p. if and only if it is perfect.

Lemma 2.4. If A = A1A2 is b.u.p. over F4 and if gcd(A1, A2) = 1, then
A1 is b.u.p. if and only if A2 is b.u.p.

Lemma 2.5. If A is b.u.p. over F4, then the polynomial A(x + λ) is also
b.u.p. over F4, for any λ ∈ {1, α, α+ 1}.

Lemma 2.6. i) σ∗∗(x2k) splits over F4 if and only if 2k ∈ {2, 4, 6}.
ii) σ∗∗(x2k+1) splits over F4 if and only if 2k + 1 = N · 2n − 1 where
N ∈ {1, 3}.

Remark 2.7. We get from Lemma 2.6 and for an irreducible polynomial T :
σ∗∗(T 2) = (T + 1)2 (i)
σ∗∗(T 4) = (T + 1)2(T + α)(T + α+ 1) (ii)
σ∗∗(T 6) = (T + 1)4(T + α)(T + α+ 1) (iii)
σ∗∗(T 2n−1) = (T + 1)2

n−1 (iv)
σ∗∗(T 3·2n−1) = (T + 1)2

n−1(T + α)2
n
(T + α+ 1)2

n
(v)

(2)

We sometimes use the above equalities for a suitable T .

3



3 Proof of Theorem 1.1

This theorem is already stated in [11]. We do not rewrite its proof.
Lemma 3.1 below completes Theorem 3.4 in [4], where one family of

splitting perfect polynomials over F4 was missing.
See [5] and [6] for the non-splitting case.

Lemma 3.1. The polynomial xh(x+1)k(x+α)l(x+α+1)t is perfect over
F4 if and only if one of the following conditions is satisfied:
i) h = k = 2n − 1, l = t = 2m − 1, for some n,m ∈ N,
ii) h = k = l = t = N · 2n − 1, for some n ∈ N and N ∈ {1, 3},
iii) h = l = 3 · 2r − 1, k = t = 2 · 2r − 1, for some r ∈ N,
iv) h = k = 3 · 2r − 1, l = 6 · 2r − 1, t = 4 · 2r − 1 for some r ∈ N.

Proof. Put A = xh(x+ 1)k(x+ α)l(x+ α+ 1)t. The sufficiency is obtained
by direct computations.

For the necessity, we recall the following facts in ([4], Lemma 2.7):

Lemma 3.2. Let a ∈ {h, k, l, t}. Then, a = 3 · 2w − 1 if a ≡ 2 mod 3 and
a = 2w − 1 if a ̸≡ 2 mod 3, with w ∈ N.
In particular, a = 2 if (a is even and a ≡ 2 mod 3).

We take account of Lemmas 2.2, 2.3, 2.6 and 2.7 in [4], for the congruency
modulo 3 of each exponent. We get 16 possible cases according to a ≡ 2
mod 3 or not.

Moreover, by Lemma 2.2 in [4], the 3 maps x 7→ x + 1, x 7→ x + α and
x 7→ x+ α+ 1 preserve “perfection”.

Therefore, h and k (resp. h and l, h and t) play symmetric roles. It
remains 4 cases:

i) h, k ̸≡ 2 mod 3
ii) h, l ≡ 2 mod 3 and k, t ̸≡ 2 mod 3
iii) h, k, l, t ≡ 2 mod 3
iv) h, k, l ≡ 2 mod 3 and t ̸≡ 2 mod 3.

The first three of them are already treated in the proof of ([4], Theorem
3.4). We got the families i), ii) and iii) in Lemma 3.1.

Now, for the case iv), we may write:

h = 3 · 2r − 1, k = 3 · 2s − 1, l = 3 · 2u − 1 et t = 2v − 1, where r, s, u, v ∈ N.
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Compute σ(A) = σ(xh) · σ((x+ 1)k) · σ((x+ α)l) · σ((x+ α+ 1)t).

σ(xh) = (x+ 1)2
r−1 · (x+ α)2

r · (x+ α+ 1)2
r

σ((x+ 1)k) = x2
s−1 · (x+ α)2

s · (x+ α+ 1)2
s

σ((x+ α)l) = (x+ α+ 1)2
u−1 · x2u · (x+ 1)2

u

σ((x+ α+ 1)t) = σ((x+ α+ 1)2
v−1) = (x+ α)2

v−1.

Since σ(A) = A, by comparing exponents in A and those of in σ(A), we get:

2u + 2s − 1 = h = 3 · 2r − 1
2u + 2r − 1 = k = 3 · 2s − 1
2r + 2s + 2v − 1 = l = 3 · 2u − 1
2u + 2s + 2u − 1 = t = 2v − 1

It follows that s = r, u = r + 1 et v = r + 2. Thus, h = k = 3 · 2r − 1,
l = 3 · 2r+1 − 1 and t = 2r+2 − 1. We obtain the family iv).

4 Proof of Theorem 1.2

The sufficiency is obtained by direct computations. Propositions 4.1, 4.4
and 4.15 give the necessity.

As usual, ω(S) denotes the number of distinct irreducible factors of a
polynomial S.

4.1 Case ω(A) = 2

Put A = P hQk with deg(P ) ≤ deg(Q).

Proposition 4.1. If A is b.u.p., then Q = P +1 and either (h = k = 2) or
(h = k = 2r − 1, for some r ∈ N).

Proof. We get:

σ∗∗(P h)σ∗∗(Qk) = σ∗∗(A) = A = P hQk and ω(σ∗∗(P h)) = 1 = ω(σ∗∗(Qk)).

If h and k are both odd, then A is perfect so that Q = P + 1 and h = k =
2r − 1 for some r ∈ N.
Now, we may suppose that h is even. If h = 2, then σ∗∗(P h) = (1 + P )2.
Since P does not divide σ∗∗(P h), one has Qk = (1+P )2 and thus Q = P +1
and k = 2. If h ≥ 4, then ω(σ∗∗(P h)) ≥ 2, which is impossible.
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4.2 Case ω(A) = 3

Put A = P hQkRl with deg(P ) ≤ deg(Q) ≤ deg(R). Suppose that

σ∗∗(P h)σ∗∗(Qk)σ∗∗(Rl) = σ∗∗(A) = A = P hQkRl.

Lemma 4.2. The polynomial P + 1 is irreducible and Q = P + 1.

Proof. The polynomial 1 + P is divisible by Q or by R, since it divides
σ∗∗(P h) (Lemma 2.2). We may suppose that Q | (1 + P ). So, deg(Q) =
deg(P ) and Q = P + 1.

Lemma 4.3. One has ω(σ∗∗(P h)) ≤ 2, ω(σ∗∗(Qk)) ≤ 2, ω(σ∗∗(Rl)) ≤ 2.
Moreover, if h is even (resp. odd), then h = 2 (resp. h = 2r − 1, r ∈ N∗).

Proof. Since P does not divide σ∗∗(P h), at most Q and R divide it. Hence,
ω(σ∗∗(P h)) ≤ 2. Similarly, we get ω(σ∗∗(Qk)) ≤ 2 and ω(σ∗∗(Rl)) ≤ 2.
- If h = 2n is even, then 2 ≥ ω(σ∗∗(P 2n)) = ω((1 + P )σ(Pn)σ(Pn−1)). So,
n = 1.
- If h is odd. Put h = 2ru− 1, with u odd. One has:

2 ≥ ω(σ∗∗(P 2ru−1)) = ω((1 + P )2
r−1σ(P u−1)).

So, u = 1 because ω(σ(P u−1)) ≥ 2 if u ≥ 3.

Proposition 4.4. If h, k and l are not all odd, then A is not b.u.p.

Proof. By Lemma 4.2, one has Q = P + 1 and so A = P h(P + 1)kRl.
- If h, k are all even, then h = k = 2. Therefore,

(1 + P )2(1 +Q)2σ∗∗(Rl) = σ∗∗(A) = A = P 2Q2Rl.

Hence, σ∗∗(Rl) = Rl. It is impossible.
- If h is even, k odd and l even, then h = l = 2, k = 2r − 1. Therefore,

Q2P 2r−1(1+R)2 = (1+P )2(1+Q)2
r−1(1+R)2 = σ∗∗(A) = A = P 2Q2r−1R2.

Hence, R divides PQ. It is impossible.
- If h is even, k and l odd, then h = 2, k = 2r − 1, l = 2s − 1. One has:

Q2P 2r−1(1+R)2
s−1 = (1+P )2(1+Q)2

r−1(1+R)2
s−1 = σ∗∗(A) = A = P 2Q2r−1R2s−1.

Hence, R divides PQ. It is impossible.
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4.3 Case ω(A) = 4

Put A = P hQkRlSt with deg(P ) ≤ deg(Q) ≤ deg(R) ≤ deg(S).
We suppose that A is b.u.p. and indecomposable (i.e., neither P hQk nor

RlSt are b.u.p).

Lemma 4.5. One has: Q = P + 1, 1 + R = P u1Qv1 , 1 + S = P u2Qv2Rz

where u1, v1 ≥ 1 and u2, v2, z ≥ 0.
Moreover, if deg(R) = deg(S) then u2, v2 ≥ 1 and z = 0.

Proof. The polynomial 1 + P divides σ∗∗(A) = A, so Q divides 1 + P and
thus, Q = 1 + P because deg(P ) ≤ deg(Q).
Now, 1 +R divides σ∗∗(A) = A, so 1 +R = P u1Qv1Su3 and u3 = 0 because
deg(R) ≤ deg(S). Since R = P u1Qv1 + 1 is irreducible, we conclude that
u1, v1 ≥ 1 and gcd(u1, v1) = 1. By the same reason, 1 + S = P u2Qv2Rz

where u2, v2, z ≥ 0 and z may be positive.

4.3.1 Case deg(P ) = 1

We may suppose that P = x. Lemma 4.2 implies that Q = x+1. Moreover,
deg(S) = 1 if deg(R) = 1. So, deg(S) ≥ deg(R) > 1.
We write: A = xh(x + 1)kRlSt. The exponents h and k play symmetric
roles.

Lemma 4.6 ([5], Lemma 2.6). If 1 + x + · · · + x2w = UV , then deg(U) =
deg(V ) and U(0) = 1 = V (0).
Moreover, if R and S are both of the form xu1(x + 1)v1 + 1, then 2w = 6
and U, V ∈ {x3 + x+ 1, x3 + x2 + 1}.

Lemma 4.7. If h is even, then h ∈ {2, 14}. Moreover, R,S ∈ {x3 + x +
1, x3 + x2 + 1} if h = 14.

Proof. • If h ∈ {4, 6}, then x + α and x + α + 1 both divide σ∗∗(xh) and
thus, they divide σ∗∗(A) = A. So, A splits, which is impossible.
• If h = 2n ≥ 8, then σ∗∗(xh) = (1 + x)σ(xn)σ(xn−1).
- If n = 2w ≥ 4, then σ(xn) = RS because it divides σ∗∗(A) = A and
neither x nor x+ 1 divide σ(xn). So, by Lemma 4.6, deg(R) = deg(S) and
R(0) = 1 = S(0). From Lemma 4.5, we may put 1 + R = xu1(x + 1)v1 ,
1 + S = xu2(x + 1)v2 , where u1, u2, v1, v2 ≥ 1. Therefore, 2w = 6 and
h = 12. But, the monomials x+ 1, x+ α and x+ α+ 1 all divide σ∗∗(x12).
It contradicts the fact that A does not split.
- If n = 2w + 1 is odd, then σ(xn−1) = RS and as above, n − 1 = 2w = 6.
So, h = 14, σ∗∗(x14) = (x+1)8RS where R,S ∈ {x3+x+1, x3+x2+1}.

7



Lemma 4.8. If h is odd, then h = 2ru− 1 where r ∈ N∗ and u ∈ {1, 7}.

Proof. Put h = 2ru− 1 with u odd. One has:

σ∗∗(xh) = σ(xh) = (1 + x)2
r−1[σ(xu−1)]2

r
.

If u ≥ 3, then σ(xu−1) = RS. So, as we have just seen above, u− 1 = 6 and
R,S ∈ {x3 + x+ 1, x3 + x2 + 1}.

Lemma 4.9. If l is even (resp. odd), then l = 2 (resp. l = 2s − 1, with
s ≥ 1).

Proof. • If l is even and l ≥ 4, then put l = 2n, n ≥ 2. As above, σ(Rn)
and σ(Rn−1) divide A.
- If n is even, then we must have σ(Rn) = Sz because P,Q divide 1 + R,
R does not divide σ(Rn) and gcd(1 + R, σ(Rn)) = 1. Hence z = 1 and
S = σ(Rn) is irreducible. It is impossible.
- If n is odd, then σ(Rn−1) = S which is impossible, as above.
• If l = 2ru−1 is odd, with u odd, then σ∗∗(Rl) = σ(Rl) = (1+R)2

r−1[σ(Ru−1)]2
r
.

If u ≥ 3, then σ(Ru−1) = S, which is impossible.

4.3.2 Case deg(P ) > 1

Several proofs are similar to those in Section 4.3.1. As above, Lemma 4.2
implies that Q = P + 1. We write: A = P h(P + 1)kRlSt.

Lemma 4.10. If 1 + P + · · ·+ P 2w = RS, then deg(R) = deg(S), 2w = 6,
P ∈ Ω2 and R,S ∈ {P 3 + P + 1, P 3 + P 2 + 1}.

Proof. Suppose that 1+P+· · ·+P 2w = RS. One has 1+x+· · ·+x2w = UV
where U(P ) = R and V (P ) = S. By Lemma 4.6, one has: U(0) = 1 =
V (0), deg(U) = deg(V ). So, deg(R) = deg(S).
Moreover, U and V must be of the form xu(x+ 1)v + 1. Indeed, if 1 + U =
xu1(x + 1)v1Lz, with z ≥ 0, then 1 + R = P u(P + 1)vL(P )z, L(P ) = Sy,
y ≥ 1, deg(S) = deg(R) = udeg(P ) + zy deg(S), zy = 0. Thus, z = 0 and
1 + U = xu1(x + 1)v1 . Analogously, 1 + V = xu2(x + 1)v2 . Therefore, by
Lemma 4.6, 2w = 6 and R,S ∈ {P 3 + P + 1, P 3 + P 2 + 1}.

Lemma 4.11. If h is even, then h ∈ {2, 14}.

Proof. • If h ∈ {4, 6}, then P + α and P + α + 1 both divide σ∗∗(P h) and
thus, they divide σ∗∗(A) = A. So, P , P + 1, R = P + α and S = P + α+ 1
are all irreducible over F4, which is impossible.
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• If h = 2n ≥ 8, then σ∗∗(P h) = (1 + P )σ(Pn)σ(Pn−1).
- If n = 2w ≥ 4 is even, then σ(Pn) = RS, deg(R) = deg(S). We obtain
2w = 6 and h = 12.
But P+1, P+α and P+α+1 all divide σ∗∗(P 12). As above, it is impossible.
- If n = 2w+1 is odd, then σ(Pn−1) = RS and n− 1 = 2w = 6. So, h = 14
and R,S ∈ {P 3 + P + 1, P 3 + P 2 + 1}.

Lemma 4.12. If h is odd, then h = 2ru− 1 where r ∈ N∗ and u ∈ {1, 7}.

Proof. Put h = 2ru− 1 with u odd. One has:

σ∗∗(P h) = σ(P h) = (1 + P )2
r−1[σ(P u−1)]2

r
.

If u ≥ 3, then σ(P u−1) = RS and as we have just seen above, u− 1 = 6 and
R,S ∈ {P 3 + P + 1, P 3 + P 2 + 1}.

We also get the analoguos of Lemma 4.9.

Lemma 4.13. If l is even (resp. odd), then l = 2 (resp. l = 2s − 1, with
s ≥ 1).

4.3.3 End of the proof

We recapitulate below, for P ∈ Ω2, Q = P + 1, R = P 3 + P + 1 and
S = P 3 + P 2 + 1, the expressions of σ∗∗(T z), for T z ∈ {P h, Qk, Rl, St}.

Keep in mind that h, k, l and t are not all odd.

h σ∗∗(P h)

2 Q2

14 Q8RS

2r − 1 Q2r−1

7 · 2r − 1 Q2r−1R2rS2r

k σ∗∗(Qk)

2 P 2

14 Q8RS

2s − 1 P 2s−1

7 · 2s − 1 P 2s−1R2sS2s

(3)

l σ∗∗(Rl)

2 P 2Q4

2e − 1 P 2e−1 ·Q2·(2e−1)

t σ∗∗(St)

2 P 4Q2

2f − 1 P 2·(2f−1) ·Q2f−1

(4)

We compare from Tables (3) and (4), the exponents of P,Q,R, S in σ∗∗(A)
and in A. Instead of considering several possible cases, we give an upper
bound to each exponent a ∈ {h, k, l, t}. We use Maple computations to
determine those which satisfy σ∗∗(A) = A. We obtain the following results.
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Lemma 4.14. - If h and k are both even, then h, k ∈ {2, 14} and e, f ≤ 3.
So, l, t ∈ {1, 2, 3, 7}.
- If h is even and k odd, then h ∈ {2, 14} and s, e, f ≤ 3. So,
k ∈ {1, 3, 7, 13, 27, 55} and l, t ∈ {1, 2, 3, 7}.
- If h and k are both odd, then (h, k, l, t) ∈ {(3, 7, 2, 2), (7, 3, 2, 2)}.

Proof. - If h is even, then h ≤ 14. Each exponent of P in the tables equals
at most 14. So, s, e, f ≤ 3.
- If h = 2r − 1 and k = 2s − 1, then σ∗∗(P hQk) = P kQh, h = k and P hQk

is b.u.p. Hence, RlSt is also b.u.p. and l = t = 2.
- If h = 2r − 1 and k = 7 · 2s − 1, then only R2s and S2s divide σ∗∗(A) = A.
So, s = 1, l = t = 2, k = 13. Thus, σ∗∗(RlSt) = P 6Q6. By comparing the
exponents of Q in the tables, we get 6 + 2r − 1 = k = 13. So, r = 3 and
h = 7.
Analogously, if h = 7 · 2r − 1 and k = 2s − 1, then h = 13, k = 7, l = t = 2.
- If h = 7 · 2r − 1 and k = 2s − 1, then only R2r+2s and S2r+2s divide
σ∗∗(A) = A. So, l = t = 2 and we get the contradiction: 2r + 2s = 2 with
r, s ≥ 1.

We also remark that the values of the exponents h, k, l and t do not
depend on the choice of P ∈ Ω2. Therefore, for the computations with
Maple, we took two values of P : P = x and P = x2 + x+ α.

Proposition 4.15. If A = P hQkRlSt is b.u.p and indecomposable, where
h, k, l and t are not all odd, then

P ∈ Ω2, Q = P + 1. R,S ∈ {P 3 + P + 1, P 3 + P 2 + 1},

and (h, k, l, t) ∈ {(7, 13, 2, 2), (13, 7, 2, 2), (14, 14, 2, 2)}.

4.3.4 Maple Computations

We search all A = P hQkRlSt such that h, k, l, t are not all odd, ω(A) ≥ 3
and σ∗∗(A) = A, by means of Lemmas 4.8, 4.9 and 4.14. We get the results
stated in Proposition 4.15.

The function σ∗∗ is defined as Sigm2star

> Sigm2star1:=proc(S,a) if a=0 then 1;else if a mod 2 = 0

then n:=a/2:sig1:=sum(S^l,l=0..n):sig2:=sum(S^l,l=0..n-1):

Factor((1+S)*sig1*sig2) mod 2:

else Factor(sum(S^l,l=0..a)) mod 2:fi:fi:end:
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> Sigm2star:=proc(S) P:=1:L:=Factors(S) mod 2:k:=nops(L[2]):

for j to k do S1:=L[2][j][1]:h1:=L[2][j][2]:

P:=P*Sigm2star1(S1,h1):od:P:end:
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