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Abstract

Predicting animal population trajectories into the future has become a central

exercise in both applied and fundamental ecology. Because demographic

models classically assume population closure, they tend to provide inaccurate

predictions when applied locally to interconnected subpopulations that are

part of a larger metapopulation. Ideally, one should explicitly model dispersal

among subpopulations, but in practice this is prevented by the difficulty of

estimating dispersal rates in the wild. To forecast the local demography of

connected subpopulations, we developed a new demographic model (hereafter,

the two-scale model) that disentangles two processes occurring at different

spatial scales. First, at the larger scale, a closed population model describes

changes in metapopulation size over time. Second, total metapopulation size is

redistributed among subpopulations, using time-varying proportionality

parameters. This two-step approach ensures that the long-term growth of every

subpopulation is constrained by the overall metapopulation growth rate. It

implicitly accounts for the interconnectedness among subpopulations and

avoids unrealistic trajectories. Using realistic simulations, we compared the

performance of this new model with that of a classical closed population

model at predicting subpopulations’ trajectories over 30 years. While the clas-

sical model predicted future subpopulation sizes with an average bias of 30%

and produced predictive errors sometimes >500%, the two-scale model showed

very little bias (<3%) and never produced predictive errors >20%. We also

applied both models to a real dataset on European shags (Gulosus aristotelis)

breeding along the Atlantic coast of France. Again, the classical model

predicted highly unrealistic growths, as large as a 200-fold increase over

30 years for some subpopulations. The two-scale model predicted very sensible

growths, never larger than a threefold increase over the 30-year time horizon,

which is more in accordance with this species’ life history. This two-scale

model provides an effective solution to forecast the local demography of

connected subpopulations in the absence of data on dispersal rates. In this
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context, it is a better alternative than closed population models and a more

parsimonious option than full-dispersal models. Because the only data

required are simple counts, this model could be useful to many large-scale

wildlife monitoring programs.

KEYWORD S
dispersal, open-population models, population viability analysis, predictive modeling,
seabird demography, wildlife management

INTRODUCTION

Forecasting animal population trends into the future has
become a central endeavor in both basic ecology and
wildlife conservation (Lacy, 2019; Morris & Doak, 2002;
Mouquet et al., 2015). This predictive exercise, often
referred to as population viability analysis (Beissinger &
McCullough, 2002; Boyce, 1992), is indeed a cornerstone
of scientific studies that aim at (1) projecting the demo-
graphic consequences of some disturbance (e.g., habitat
fragmentation) on animal populations (e.g., Morita &
Yokota, 2002) or (2) comparing the consequences of alter-
native management scenarios (e.g., Ferreras et al., 2001).
Demographic projections generally rely on models
that assume geographic closure (Earl, 2019; Jeglinski
et al., 2023), meaning that a population’s trajectory is not
influenced by dispersal processes but is only driven by
births and deaths (Boyce, 1992). The main reason for mak-
ing this assumption is that immigration and emigration
rates are usually very hard and costly to estimate in the
wild (Cayuela et al., 2018; Miller et al., 2019). However,
the validity of this simplifying assumption, and therefore
the reliability of population projections, highly depends
on the spatial scale at which the demographic model is
applied (Thomas & Kunin, 1999). This issue of spatial
scale choice, known as the modifiable area unit problem,
is highly prevalent in population modeling (Laymon &
Reid, 1986) and more generally in ecology (Jelinski &
Wu, 1996). On a relatively large scale, when the analysis
encompasses an entire metapopulation (Hanski, 1998,
1999), it is sensible to assume geographic closure. Indeed,
a metapopulation as a whole can be considered as a
closed system dominated by birth and death processes
(Goodwin & Fahrig, 1998; Hanski, 1998). On a smaller
spatial scale, however, the influence of dispersal on the
local dynamics of (sub)populations becomes more impor-
tant, and closed population models become ill-adapted
(Goodwin & Fahrig, 1998). When dealing with wide-
ranging connected populations, there is thus a dilemma
between the predictive accuracy and the local utility of the
demographic predictions that can be made with a closed
population model. Indeed, the accuracy of population

projections tends to increase with the spatial scale of
the predictive scope (e.g., focusing solely on the whole
metapopulation size), because one is less likely to violate
the closure assumption at larger scales (Beissinger &
McCullough, 2002; Earl, 2019). However, broadscale
predictions are usually less useful than site-specific
ones, especially in the context of wildlife conservation
(Clapham et al., 2008). Unfortunately, population units
that are of primary interest to inform wildlife conserva-
tion decisions are often much smaller than what could
sensibly be considered as a geographically closed popula-
tion (Moritz, 1994).

The main risk when forecasting local demographic
trajectories of interconnected subpopulations using a
closed population model is to overestimate the trend of
subpopulations that have recently experienced a positive
balance of immigrants (see Figure 1A for an illustration
of this effect). Consider the case of an initially small
subpopulation that consistently receives a large number
of immigrants each year. For several years, this sub-
population will experience a realized growth rate that
largely exceeds the overall metapopulation’s growth rate.
However, such a large growth rate cannot be sustained
for very long. Over time, as the size of this subpopulation
increases, the relative contribution of immigration to its
growth will necessarily decrease because, proportionally
speaking, the production of new dispersers by other sub-
populations cannot keep up the pace. Immigrants must
indeed come from somewhere, and the rate of production
of new dispersers is necessarily constrained by the meta-
population’s growth rate. Ultimately, the growth rate of
that immigration-subsidized subpopulation is not inde-
pendent of the dynamics happening in the rest of the
metapopulation. In such a situation, a closed population
model will necessarily overpredict the growth of this sub-
population because it assumes that demographic trends
are independent among subpopulations. This bias is due
to the fact that the strong but transitory growth rate,
experienced by this immigration-subsidized subpopula-
tion, is being blindly projected forward over a long
period. Because population growth is an exponential pro-
cess, this bias can quickly become extremely severe
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(see Figure 1A), especially when density dependence is
not included in the model (see Discussion).

This risk of overprediction is very likely for species
with a metapopulation structure, such as colonial sea-
birds (Jeglinski et al., 2023; Schippers et al., 2009), gregar-
ious bats (Moussy et al., 2013; Reis et al., 2012), small
mammals (Olivier et al., 2009; Ozgul et al., 2009), or pond
breeding amphibians (Alex Smith & Green, 2005;
Semlitsch, 2008). A closed population model will neces-
sarily produce unrealistic projections for any subpopula-
tion (e.g., breeding colony) that has been experiencing a
strong initial phase of immigration during the phase
of data collection. To avoid this problem, the linkage
between local growth and the production of new individ-
uals at the metapopulation’s scale must be explicitly
stated in the model.

Open population models that incorporate immigra-
tion and emigration processes exist (Hanski, 1998;
Pulliam, 1988). Their use remains however very limited
in the context of most empirical analyses, because esti-
mating dispersal rates in the wild is usually far too diffi-
cult and costly (Cayuela et al., 2018; Miller et al., 2019).
Even in cases where it might be possible to estimate the
rates of local immigrants and local emigrants for a single
subpopulation, this will not be sufficient to solve the
problem. Indeed, if a high rate of immigrants is estimated
locally over a transitory period and then it is projected
forward over many years, the positive bias described
above will still occur. This is because one still implicitly
assumes that the stock of immigrants is unlimited.
To avoid this bias, immigration fluxes need to be

constrained in a realistic way, for example, through
an explicit linkage between the local demography of
subpopulations and the number of migrants they are
sending away. In a fully explicit metapopulation model,
this requires estimating not only the local dynamics
of every subpopulations within a metapopulation, but
also the rates of exchange between all possible pairs
of subpopulations, which is usually prohibitive (Jeglinski
et al., 2023).

To work around this issue, we built an innovative
demographic model in which the change of any subpopu-
lation’s size is conditional on the overall metapopulation
growth. Changes in metapopulation size are modeled
first, using a classical “closed population” demographic
process. Then, in a second step, total metapopulation size
is distributed among all local subpopulations. This
two-step process ensures that the growth of any subpopu-
lation remains constrained by the number of individuals
actually present in the metapopulation. This new model-
ing approach, named “two-scale model,” was initially
developed for the needs of a large-scale research project
that aims at quantifying the cumulative impact of off-
shore wind energy development on the population
dynamics of seabirds breeding along the French Atlantic
coast. To assess the performance of this two-scale model,
we first ran a simulation study. Next, we applied the
model to a real dataset on European shags (Gulosus
aristotelis). In both cases, the predictive performance of
the two-scale model was compared with that of a classical
closed population model assuming independent demo-
graphic trajectories among subpopulations.

F I GURE 1 Example of demographic predictions, from a single simulated dataset, provided by (A) the classical closed population

model, assuming independent growth among subpopulations; and (B) the two-scale model. The classical model largely overestimates the

growth of some subpopulations, while the two-scale model provides accurate predictions.
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MODELING APPROACH

Two-scale model description

Hereafter, we use the term subpopulation to refer to
a local population connected to other local populations
inside a larger metapopulation (Hanski, 1998, 1999).
Consider the case of I subpopulations connected by dis-
persal. The only data collected from each subpopulation
are annual count censuses, without any form of individ-
ual identification, such that no information is available to
estimate immigration and emigration rates. These types
of “simple count” data are extremely frequent in wildlife
monitoring. Formally, we describe the census data Ci,t as
the number of animals (e.g., number of breeding pairs)
counted in each subpopulation i= {1, …, I} each year
t= {1, …, T}.

First, we model metapopulation growth using a classi-
cal closed population approach:

Nt+1 ¼ λ×Nt,

where Nt is the metapopulation size (i.e., the sum of the

sizes of all subpopulations; Nt ¼
PI

i¼1ni,t) in year t, and λ
represents the interannual growth rate at the meta-
population scale. At this scale, because it is assumed that
λ results only from birth and death processes, it corre-
sponds to the true overall demographic trend and it
is necessarily constrained by the species’ life history
strategy.

Second, we model the size (ni,t) of each subpopulation
i in year t by redistributing the metapopulation size (Nt)
among the I subpopulations:

ni,t ¼ γi,t ×Nt,

where γi,t, which we call the redistribution parameter, is
the proportion of Nt allocated to subpopulation i.
Parameter γi,t does not model an explicit demographic
mechanism. It is only a convenient way of capturing
the trajectory of a given subpopulation, conditionally on
the overall metapopulation size, with a single parameter.
It is therefore important to understand that this para-
meter does not explicitly represent a local immigration/
emigration rate. Rather, parameter γi,t is a latent
(unknown) combination of local survival, reproduction,
immigration, and emigration rate. This proportion γi,t
varies among subpopulations, allowing each of them to
receive its own specific fraction of the total
metapopulation size Nt. In addition, γi,t must vary across
years to ensure that each subpopulation has its own

demographic trajectory. Without year variation on γi,
every subpopulation would be forced to reach the same
local demographic trend (i.e., the trend of the whole
metapopulation). Across-year variation on γi is modeled
using a simple linear temporal effect, which provides
enough flexibility for our purpose while avoiding
overparameterization (a single degree of freedom is
added). Because of the constraints γi,t � 0;1½ � and
PI

i¼1γi,t ¼ 1, this trend is modeled using an intermediary
parameter (wi,t � −∞; +∞f g), which is an unscaled
equivalent of γi,t: The linear temporal trend is written as
follows:

wi,t ¼ β0,i + β1,i × t− 1ð Þ,

where β0,i represents the intercept for subpopulation i,
that is, the unscaled fraction of Nt received by subpopula-
tion i in year 1; and β1,i represents the slope of the linear
temporal trend for subpopulation i. The year- and
subpopulation-specific values of γi,t are then obtained by
scaling values of wi,t on the [0; 1] interval, as follows:

γi,t ¼
wi,t

PI

i¼1
wi,t

:

This last step ensures that the constraint
PI

i¼1γi,t ¼ 1
is satisfied.

Finally, we model the observation process giving rise
to local count data Ci,t, using a normal distribution:

Ci,t �Normal ni,t,σ2
� �

,

where ni,t is the true mean subpopulation size in year t
and σ2 is the variance due to the imperfect observation
process. It is common practice to use a normal
distribution to allow for overcounts (false positives)
and undercounts (false negatives), both of which can
occur during seabird colony counts, but alternatively a
lognormal or a Poisson process might be used (Schaub &
Kéry, 2021). Without intra-annual replicated counts, note
that stochastic process variance and observation
error variance are actually confounded. If replicated
counts were available, we could choose to model the
observation process differently, including, for instance, a
detection probability parameter (Royle, 2004; Williams
et al., 2002).

In this model formulation, the parameters to be esti-
mated are: (1) λ, the metapopulation growth rate; (2) β0,i
and β1,i, the intercept and slope, respectively, of the
linear temporal trend which determine the value of the
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redistribution parameter γi,t; and (3) σ2, the variance of
the observation process. All other parameters (e.g., γi,t)
are latent variables in the model, which are derived from
these basic parameters. Census data Ci,t are sufficient to
estimate all model parameters, such that none of these
parameter values need to be arbitrarily fixed by the user.

Closed population model description

In the closed population model, the demographic growth
of each subpopulation i is simply modeled as follows:

ni,t+1 ¼ λi × ni,t,

where individual growth rates λi are independent and fol-
low a lognormal distribution:

λi �LogNormal λ0,σ2λ
� �

,

with λ0 being the mean growth rate and σ2λ its variance
across subpopulations. The observation process is
modeled exactly as in the two-scale model (see above).

In this model formulation, the parameters to be esti-
mated are (1) λ0 and σ2λ, which are hyperparameters
governing the probabilistic distribution of subpopulation
growth rates λi; and (2) σ2, the variance of the observa-
tion process. Census data Ci,t are sufficient to estimate all
model parameters, such that none of these parameter
values need to be arbitrarily fixed.

Model implementation

In the applications described below, we implemented both
closed population and two-scale models in a Bayesian
framework that relied on Markov chain Monte Carlo
(MCMC) posterior sampling. The MCMC approach allows
combining the retrospective and prospective components
of the analysis very easily, as follows. In addition to fitting
the model to the T-year count data (i.e., retrospective anal-
ysis), we simply added 30 years of NAs to the dataframe to
obtain predictions of future subpopulation sizes across a
30-year time horizon.

In all cases, we used uninformative priors. For param-
eters β0,i and β1,i of the two-scale model, which are com-
ponents of a proportionality parameter (γi,t) and thus
only take strictly positive values, we used a uniform dis-
tribution on (0, 100). For parameter λ of the two-scale
model and parameter λ0 of the closed population model,
we used a uniform distribution on (0, 10). We note that a
value of λ >1.5 is virtually impossible for a long-lived

species, such as the European shag studied in this paper,
so setting the upper boundary to 10 is largely uninforma-
tive. For parameter σ2λ of the closed population model, we
used a uniform distribution on (0, 20).

For all the analysis presented below, we ran three
parallel chains of 55,000 MCMC samples each, with a
burn-in period of 5000 samples. Adequate convergence
of MCMC chains was checked through a visual assessment
of sample path plots and using the R-hat diagnostic of
Brooks–Gelman–Rubin (Brooks & Gelman, 1998). We
decided that chain convergence was reached if R-hat <1.01.

APPLICATIONS

Simulations

Annual abundances at eight connected subpopulations
were simulated for 40 years. The initial metapopulation
size was always set to N0 = 240. For subpopulations, new
values of initial size ni,0 were randomly drawn at each
simulation from a multinomial distribution, with individ-
ual probability parameters pi themselves drawn from a
uniform (0,1) distribution to ensure enough variability in
ni,0 among subpopulations and across simulations.
Starting from ni,0, local abundances were simulated for-
ward in time as the result of two successive and demo-
graphically explicit processes. First, the interannual
dynamics of local births and deaths were modeled using
constant intrinsic growth rates λi that were specific to
each subpopulation i. Note that we use the term intrinsic
to refer to the contribution of births and deaths only to a
population’s growth rate. Second, interannual dispersal
events between subpopulations were simulated using a
I × I matrix of dispersal rates in which each subpopula-
tion i had its own level of attractiveness based on two
parameters: (1) site fidelity “sf” determined the probability
that any individual would remain inside its current
subpopulation (i.e., not emigrating); (2) heterogeneity
in attractiveness “ha,” which can take values between
0 (no heterogeneity) and 1 (maximum heterogeneity),
controlled the amount of heterogeneity in attractiveness
among subpopulations. With ha= 0, an individual leav-
ing its subpopulation would have the same probability of
dispersing to any other subpopulation. With ha> 0, some
subpopulations would be more attractive than others,
and a dispersing individual would have a higher pro-
bability of ending up in one of them. This simulation
model is, mechanistically speaking, more realistic than
the two-scale statistical model described above. Our goal
was indeed to simulate data as realistically as possible to
make a stringent test of the robustness of the statistical
model.
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We simulated datasets for the following values of
parameters sf and ha—sf = {0.3, 0.5, 0.7, 0.9} and
ha = {0.50, 0.75, 1.00}—to represent a wide range of
parameters. We did not include scenarios with very low
heterogeneity in attractiveness (e.g., ha = 0) because such
scenarios did not seem realistic. This led to a total of 12 sim-
ulation scenarios, which were run both in the context of a
growing (set 1) and declining (set 2) metapopulation. For
the first simulation set, the average metapopulation growth
rate was set to λ = 1.03, and we parameterized the intrinsic
growth rates of the eight subpopulations as follows: 0.96,
0.98, 1.01, 1.03, 1.04, 1.06, 1.07, and 1.10. For the second
simulation set, the average metapopulation growth rate
was set to λ = 0.98, with the eight subpopulation intrinsic
growth rates taking the following values: 0.91, 0.93, 0.96,
0.98, 0.99, 1.01, 1.02, and 1.05. We also ran an additional
simulation set (Appendix S1: Table S3) for a stable
metapopulation (λ = 1.00).

A total of 200 datasets were simulated for each
scenario within each simulation set. Each dataset
simulated was analyzed with both the two-scale model
and the classical closed population model, using an
MCMC posterior sampling procedure performed with
package NIMBLE (de Valpine et al., 2017) in program
R version 4.1.0 (R Core Team, 2020). From the
40 years of local abundances simulated in each dataset,
only the first 10 years were used as empirical count
data to estimate parameters, while the next 30 years
were set as NAs to let the model predict the “future”
trajectory of each subpopulation. For the sake of sim-
plicity and clarity, we assumed counts without error,
which means that the number of animals in the count
data is equal to the true number of animals present in
a given subpopulation. The observation variance was
thus set to σ2 ¼ 0 in both models. Nonetheless, addi-
tional simulations were performed to assess the robust-
ness of the results in the presence of varying levels of
observation errors (Appendix S2).

Predictive model performance was assessed using
only model predictions for the 30-year forecasting period.
To compare the performance of the two models, we used
measures of (1) relative bias, that is, bias scaled by the
parameter value, and (2) root mean squared error
(RMSE), a measure that combines both bias and impreci-
sion. We remind that predictive accuracy is high when
the RMSE is close to 0.

Real data

Both closed population and two-scale models were
applied to annual count data collected during the breed-
ing season at European shag colonies distributed along

the French Atlantic coast. These data were collected from
multiple sources (local NGOs) and used for the need of a
study aiming at quantifying the impact of collisions with
offshore wind turbines on shag populations. The
European shag is a partially migratory species (Grist
et al., 2014) distributed all across the Eastern part of the
North Atlantic, from Morocco to Norway, and across
the Mediterranean basin. In France, most breeding colo-
nies are located in the northern part of the Atlantic coast
and along the Channel Sea (Figure 2), where shags are
present all year round. Like many colonial seabirds,
European shags are highly philopatric (Aebischer, 1995;
Barlow et al., 2013). However, they still display some
level of dispersal, and we know that their dispersal rate
quickly decreases with distance from their colony of birth
(Barlow et al., 2013). With the rapid development of

F I GURE 2 Map of the 234 European shag colonies (dots) on

the French Atlantic and Channel Sea coast. Each color corresponds

to a subpopulation, which consists of one or several colonies. The

delimitation of these subpopulations was based on the proximity of

colonies to seven French offshore windfarms (green polygons) that

have been authorized in the area (see Appendix S1).
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offshore wind energy along the French Atlantic coast,
there is growing concern about the potential impact of
wind turbine collisions on European shag demography,
which is already sensitive to oceanographic changes
(Fortin et al., 2013). Given the spatial distribution of shag
colonies in relation to the windfarms’ planned locations
(Figure 2), we expect some colonies to be more exposed
to collisions than others. It was thus necessary to project
the European shag demography at a scale finer than the
whole Atlantic coast. Annual count data on European
shag colonies were collected between 2006 and 2016.
Each year, as part of routine seabird surveys, the number
of “Apparently Occupied Sites” (AOS) at a given colony
was counted by field observers. An AOS is defined as one
or two shags present at a nesting site, with or without the
presence of nesting material (Monnat & Cadiou, 2004).
Counts in AOS are typically used as a proxy of the num-
ber of breeding pairs or reproductive females in seabird
survey programs (e.g., Deakin et al., 2022; Newson
et al., 2008). In the text below, we refer to it as the “num-
ber of breeding pairs.”

In total, 234 colonies were monitored during this
11-year period, but not every colony was surveyed every
year. The number of colonies surveyed each year varied
between 50 and 140, with an average of 90 (SD = 30.6).
Only 27 colonies were present and surveyed every single
year between 2006 and 2016, while 109 colonies were
present or have been surveyed only once during this
period. On average, a colony was surveyed 4.2 years
(SD = 3.7). Shag pair abundance was also very heteroge-
neous across colonies (mean = 38.3, SD = 81.2), span-
ning from a single pair being present some years on the
smallest colonies, up to 1004 pairs for the largest one. For
this analysis, the 234 colonies were aggregated in 11 sub-
populations, based on their proximity to planned offshore
windfarms, using the grouping procedure defined in
Appendix S3. To build subpopulation-scale abundance
data, we simply summed the count data across all the colo-
nies included in a given subpopulation. Because the pro-
portion of colonies surveyed within a given subpopulation
varied across years, we had to include a proportionality
correction parameter in the observation process model
(Appendix S4). We note that in this analysis, unlike in the
simulation study, we did not assume perfect detection and
therefore did not set the observation variance σ2 to 0. In
both models, this parameter σ2 was fully estimated from
data through the Bayesian MCMC procedure. However,
because our count data lack intra-annual replication,
interannual process variance and observation variance
are both confounded in σ2.

For this analysis, the MCMC procedure was per-
formed in JAGS (Plummer, 2003), using the jagsUI
(Kellner, 2024) package in program R version 4.1.0

(R Core Team, 2020). We added 30 years of NAs to the
11-year count data to obtain subpopulation projections
from both fitted models.

RESULTS

Simulations

Our simulation study reveals that the two-scale model
provides much more accurate predictions than a clas-
sical closed subpopulation model assuming indepen-
dent demographic trajectories among subpopulations
(Figure 1, Tables 1 and 2). This result holds whether
the metapopulation is growing, declining, or stable
(see Appendix S1 for detailed results of each scenario).
This result also remains valid in the presence of obser-
vation error (Appendix S2).

The difference in performance between both models
is particularly striking for the prediction of future sub-
population sizes. Across years and space, the classical
model tended to overpredict future subpopulation sizes.
Across all the scenarios assessed, the averaged bias was
26.5%, with a minimum bias of 9.7% and a maximum
bias of 47.6% (Tables 1 and 2). Our new two-scale
model, on the other hand, showed very little bias, with
a tendency toward a slight underestimation of future
subpopulation sizes. The averaged bias was −3.6%, with
all biases falling inside the −6.7% to 0.3% range
(Tables 1 and 2). The difference in terms of RMSE on
that parameter is even more marked. The classical
model has an averaged relative RMSE of 110% versus
only 10% for the two-scale model.

When focusing on the subpopulation with the larg-
est rate of growth, the difference in performance
between the two models is even more salient. The clas-
sical model predicted that subpopulation’s size at the
30-year time horizon with an error of 415% on average,
which means a fivefold overestimation. Across the sce-
nario assessed, this error varied between 175% and
734%, highlighting that the classical model was never
able to provide an accurate prediction of the future size
of the fastest growing subpopulation. In contrast, the
two-scale model displayed an average predictive error
of −4.4%, with an error range between −16.8% and
9.5%. Here also, the tendency was a slight underestima-
tion, but this was not a systematic pattern observed for
every scenario (Appendix S1).

As far as predicting growth rates, our new model also
performed systematically better than the classical model,
but the differences were less noticeable (Tables 1 and 2).
In terms of subpopulation-specific growth rates, the clas-
sical model had a −2% bias and a 5% RMSE, while our
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new model showed a −0.2% and 1.5% RMSE. Regarding
the overall metapopulation growth rates, the biases were
of 2% and −0.4% for the classical model and our new
model, respectively.

Real data

As expected, the classical demographic model assuming
population closure at the local scale forecasted much
larger growths for some subpopulations than our two-scale
model (Figure 3, Table 3). For instance, the classical
model predicts that subpopulation no. 1 will grow from
ca. 600 breeding pairs in 2016 to ca. 31,600 pairs by 2046
(Table 3), which represents a 51-fold increase in 30 years.
This is a very unlikely scenario that would require a con-
sistent growth of 14% each year. Our model, on the other
hand, predicts a much more credible subpopulation size of
ca. 1700 pairs in 2046. This represents a threefold increase
in 30 years and would require an average annual growth
rate of 7%. A similar pattern is observed for subpopulation

no. 8 (Table 3), which was holding only 17 breeding pairs
in 2016. The classical model predicts a 213-fold increase of
this subpopulation, which is expected to reach ca. 3600
pairs by 2046. On the other hand, our model only predicts
a threefold increase with a final subpopulation size of
ca. 48 breeding pairs. Overall, average predictions of sub-
population sizes by 2046 range between 27 and 31,600
pairs for the classical model, versus a range comprised
between 10 and 5400 pairs for the new model.

At the metapopulation scale, despite the fact that the
overall growth rate seems fairly similar between the two
models (λ = 1.05 for the classic model vs. λ = 1.02 for the
new model), the metapopulation size after 30 years
predicted by the classical model (NTH = 52,253) is 3.4
times larger than that predicted by the two-scale model
(NTH = 15,433). The metapopulation growth prediction
from the classical model represents a 6.6-fold increase
over 30 years, which does not seem realistic for such a
long-lived species. From the two-scale model, the predic-
tion is only a 1.9-fold increase, a result that appears much
more sensible.

TAB L E 1 Summary results of the first simulation set for a growing metapopulation (λ = 1.03).

Performance
metric

Demographic
parameter

Closed population model Two-scale model

Average
Min–max
range Average

Min–max
range

RMSE ni,t 124.7% 65.4% to 196.7% 9.7% 4.8% to 18.2%

RMSE λi 4.5% 2.6% to 10.6% 1.4% 0.4% to 2.8%

RMSE λ0 1.9% 0.9% to 2.8% 0.3% 0.2% to 0.6%

Bias ni,t 29.7% 11.2% to 47.6% −2.6% −6.7% to 0.3%

Bias λi −1.7% −5.1% to 0.0% 0.0% −0.2% to 0.6%

Bias λ0 1.9% 0.9% to 2.8% −0.2% −0.6% to 0.0%

Error nmax,T 364.5% 174.6% to 558.9% −0.6% −16.8% to 9.5%

Abbreviation: RMSE, root mean squared error.

TAB L E 2 Summary results of the second simulation set for a declining metapopulation (λ = 0.98).

Performance
metric

Demographic
parameter

Closed population model Two-scale model

Average
Min–max
range Average

Min–max
range

RMSE ni,t 95.5% 54.3% to 139.1% 10.2% 6.6% to 14.1%

RMSE λi 5.5% 3.2% to 12.5% 1.6% 0.6% to 2.6%

RMSE λ0 2.1% 1.1% to 3.0% 0.6% 0.4% to 0.8%

Bias ni,t 23.2% 9.7% to 39.1% −4.6% −6.6% to −2.5%

Bias λi −2.2% −6.1% to −0.1% −0.5% −0.7% to 0.0%

Bias λ0 2.1% 1.1% to 3.0% −0.6% −0.8% to −0.3%

Error nmax,T 466.0% 236.2% to 734.2% −8.2% −16.1% to −3.9%

Abbreviation: RMSE, root mean squared error.
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DISCUSSION

The two-scale demographic model presented in this study
provides an efficient approach to forecast the local
growth of multiple subpopulations interconnected by dis-
persal. Because the only data required to implement this
model are annual subpopulation counts, it should prove
useful in many situations. Indeed, most wildlife monitor-
ing programs that are routinely conducted around the

world, notably in the context of omnibus surveillance
monitoring (Nichols & Williams, 2006), consist of simple
head counts without any form of individual identification
or any other means of estimating dispersal rates (Pollock
et al., 2002; Yoccoz et al., 2001).

As shown by the results from our simulations
and real data analyses, this model is a better alternative
than closed population models, which inappropriately
assume independent subpopulation trajectories and, as a

F I GURE 3 Projections of European shag populations’ trajectories from each model. Note the difference in scale of the y-axis between

the two graphs.

TAB L E 3 Summary results from the European shag data analysis.

Subpopulation
Initiala

population size

Predicted population size (after
30 years) Annual growth rate

Closed population
model

Two-scale
model

Closed population
model

Two-scale
model

1 626 31,617 1734 1.14 1.07

2 627 345 850 0.98 1.00

3 1368 2300 2498 1.02 1.02

4 2480 7927 5391 1.04 1.03

5 445 1792 996 1.05 1.03

6 5 27 10 1.05 1.03

7 95 2082 264 1.10 1.06

8 17 3655 48 1.19 1.09

9 1442 1845 2521 1.01 1.02

10 817 458 1109 0.98 1.00

11 5 204 13 1.12 1.05

Metapopulation 7925 52,253 15,433 1.05 1.02

aPopulation size in 2016 (t = 11), that is, at the end of the data period.
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consequence, systematically overpredict the growth of
some subpopulations or even that of the metapopulation
as a whole. Moreover, in the absence of ancillary infor-
mation on dispersal rates, the two-scale model provides a
more parsimonious and thus more relevant alternative
than full-dispersal models, which consider bidirectional
exchanges between every possible pairs of subpopulations.
For m subpopulations, a full-dispersal model would
require estimating m2 dispersal rates (i.e., m × m dispersal
matrix), while the two-scale model only requires estimat-
ing 2-m redistribution parameters (m intercepts [i.e., β0,i]
and m temporal slopes [i.e., β1,i]). This gain in number of
parameters is achieved because the redistribution of indi-
viduals across space is modeled in a centralized top-down
fashion (i.e., unidirectional vertical transfer), instead
of considering full bidirectional horizontal transfers.
Although our approach consists of a phenomenological
model that does not seek to accurately reflect how dis-
persal mechanisms really occur in the wild, it provides a
convenient and fully identifiable model that allows esti-
mating and forecasting local subpopulation trajectories
with good accuracy, in the absence of dispersal data.

Traditionally, demographic forecasting has been based
on closed population models and therefore primarily car-
ried on single and isolated (sub)populations (Lacy, 2019).
A specific method, called multiple-population viability
analyses (Wenger et al., 2017), allows predicting demo-
graphic trajectories for several (sub)populations but only if
they are fully isolated from each other (Legault, 2005;
Neville et al., 2020). In both cases, because the focal enti-
ties defined as “populations” are isolated fragment of a
species’ distribution range (e.g., Lunney et al., 2007), the
assumption of geographic closure can genuinely be made.
However, when viability analyses are performed at spatial
scales that encompass several connected subpopulations,
only two methods have been available so far. First, a site
occupancy approach can be used (MacKenzie et al., 2006;
Sjögren-Gulve & Hanski, 2000). Such metapopulation
viability analyses are able to predict probabilities of col-
onization and extinction for each subpopulation
(e.g., Howell et al., 2020; Schtickzelle & Baguette, 2004),
but they do not provide any insight on local demogra-
phy (Sjögren-Gulve & Hanski, 2000). Second, we can
treat the whole metapopulation as a unique focal “popu-
lation” and use a classical closed population model
(e.g., Frick et al., 2017). This approach is valid because
the closure assumption is met at the metapopulation
scale (Goodwin & Fahrig, 1998), but it cannot produce
the local predictions that are usually wanted (Clapham
et al., 2008).

Our main motivation for developing the two-scale
model was to solve the issue of unrealistic demographic
booms in subpopulation predictions. An alternative to

avoid this issue would be to include density dependence
in every local subpopulation. This would actually pro-
vide a more mechanistic and realistic solution, but we
found two important issues with that approach. First,
although density dependence has been reported in
many instances (Bonenfant et al., 2009; Brook &
Bradshaw, 2006; S�anchez-Lizaso et al., 2000), there is
usually no guarantee that a given subpopulation actually
experiences density dependent regulation of its growth
(Horswill et al., 2017; S�anchez-Lizaso et al., 2000).
Second, the strength and shape of density dependence
are very hard to estimate from a simple time series of
population counts, especially when observation uncer-
tainty cannot be properly accounted for (Knape & de
Valpine, 2012; Lebreton & Gimenez, 2013). Our two-scale
model was specifically developed to deal with limited
data, and in such a situation, it would seem impossible to
estimate density dependence parameters for multiple sub-
populations with a decent level of accuracy.

Like in any forecasting exercise that aims at making
anticipatory predictions (Maris et al., 2018), the projec-
tions produced by the two-scale model rely on the
assumption that recent historical conditions, which were
driving subpopulation trends, will persist in the future
(Mouquet et al., 2015). More specifically, this model first
assumes that the future metapopulation growth will
remain consistent with its trend over the recent past, an
assumption that is very common in most PVA analyses
(Boyce, 1992; Lacy, 2019). Second, the two-scale model
assumes that dispersal rates among subpopulations, cap-
tured through redistribution parameters γi,t, follow a con-
stant linear trend over time, which might not totally
reflect the true changes of dispersal dynamics in the
metapopulation. As mentioned above, these assumptions
of constancy are a common issue in every anticipatory
prediction endeavor, independently from the type of
modeling approach being used (Maris et al., 2018;
Mouquet et al., 2015).

Currently, the model is formulated to analyze single
count data (i.e., only one count per colony per year),
because these are often the only data available, as is the
case for the present European shag case study that moti-
vated the development of this approach. With this formu-
lation, imperfect detection cannot explicitly be accounted
for and observation variance cannot be disentangled from
true interannual process variance. Additional simulations
(see Appendix S2) showed that the model’s performance
was barely affected by moderate levels of observation
errors (CV between 10% and 50%). Nonetheless, we
know that intra-annual repeated counts are a much
more reliable source of information to account for obser-
vation errors (Williams et al., 2002), especially when one
seeks to disentangle interannual process variance from
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observation variance (Ahrestani et al., 2013; Nichols
et al., 2009). Repeated count data could easily be incorpo-
rated in this model, simply by adding one level of indexing
(i.e., repetitions k) to the count data (Ci,t,k) in the observa-
tion process. In addition, one could easily consider alterna-
tive ways of modeling the observation process, including,
for example, a parameter for individual detection probabil-
ity, as is done in N-mixture models (Royle, 2004).

Forecasting future population trends at both large
and local scales is an exercise of growing interest to
research ecologists, wildlife managers, and decision
makers (Houlahan et al., 2017; Mouquet et al., 2015;
Sutherland & Freckleton, 2012). However, making reli-
able predictions often requires large amounts of data
that can be difficult or costly to obtain (Yoccoz
et al., 2001). This issue is further complicated by the fact
that the monitoring of animal populations that span
across large areas is rarely done in the context of a sin-
gle, well-planned wildlife program (Pollock et al., 2002).
Often, like in our European shag example, surveys at
different locations are performed independently by dif-
ferent entities (e.g., local NGOs) that each have their
own monitoring schedule. As a consequence, not every
subpopulation is surveyed every year, which results in a
fair number of missing surveys in the dataset. For
instance, in our shag example, the global dataset
contained 63% of missing counts (i.e., colony × year sur-
veys). Despite this, the two-scale model was able to esti-
mate and forecast subpopulation trajectories with
decently narrow CIs (see Figure 3B), which suggests a
good robustness to missing data. Nonetheless, there
surely is a limit to the amount of missing data that can
be tolerated by the model before its predictions become
unreliable, an important question that should be investi-
gated in the near future.
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