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A B S T R A C T

Refining the role of apex predators in marine food webs is a necessary step in predicting the consequences of their global decline under the footprint of fishing
activities. White sharks (Carcharodon carcharias) are vulnerable predators, performing large migrations and able to forage on a variety of prey in different habitats. In
the Northeast Pacific, juvenile and adult white sharks are found seasonally at the same aggregation sites, such as Guadalupe Island off Mexico. While adults are
thought to target local pinniped colonies, very few predator-prey interactions have been documented and the diet of juveniles in this area remains poorly understood.
Here we used carbon/nitrogen stable isotopes and fatty acids to characterize the trophic ecology of white sharks at Guadalupe Island. In contrast to the ontogenetic
trophic shift paradigm, we detected no influence of size on muscle stable isotope and fatty acid composition, revealing no significant dietary variation between
juvenile and adult sharks. Stable isotopes did not allow definitive conclusions to be drawn regarding the diet of white sharks at Guadalupe Island, due to significant
variability in the contribution of different potential prey depending on the trophic discrimination factors used. However, most sharks were rich in polyunsaturated
fatty acids (such as long-chain omega 3), suggesting a local diet of mainly pelagic prey (potentially large fish or cephalopods). A few individuals appeared to show
recent consumption of pinnipeds, with higher proportions of saturated and monounsaturated fatty acids. These individual differences in fatty acid composition could
reflect an ecological trade-off between consumption of prey rich in fat (marine mammals) versus prey rich in polyunsaturated fatty acids (pelagic prey), respectively
meeting the energetic and physiological needs of white sharks. Although ontogenetic trophic changes were not able to be discerned, our results provide new insights
into the physiological drivers of predator-prey interactions, which can benefit the definition of conservation strategies in a changing ocean.

1. Introduction

Over the last decades, the global risk of oceanic predatory fish
extinction has steadily increased due to overfishing and bycatch (Dulvy
et al., 2021; Juan-Jordá et al., 2022; Pacoureau et al., 2021). Population
declines of some large sharks could lead to cascading trophic effects
altering the structure and functioning of marine ecosystems (Ferretti
et al., 2010; Heithaus et al., 2008; Pimiento et al., 2020). Improving
knowledge on the trophic ecology of apex predators is therefore an
essential step towards understanding their ecosystem role (e.g.,
top-down influence on potential prey populations) and implementing
effective management and conservation programs (Bird et al., 2018;
Hussey et al., 2015; Jorgensen et al., 2022). However, such studies pose

a significant challenge in highly mobile, generalist predators such as
white sharks (Carcharodon carcharias), which express their feeding
behavior across a wide range of prey and habitats (Boustany et al., 2002;
Carlisle et al., 2012; Huveneers et al., 2018; Le Croizier et al., 2022b).

Although they can forage on various prey items, white sharks are
thought to show a marked ontogenetic shift in feeding behavior, from a
predominantly piscivorous diet to a greater consumption of marine
mammals after reaching a length of around 3 m (Estrada et al., 2006;
Hussey et al., 2012). As a result, large white sharks are known to
aggregate near coastal pinniped colonies across the world’s oceans
(Domeier, 2012; Huveneers et al., 2018). In the northeastern Pacific,
adult individuals migrate seasonally from coastal and island aggregation
sites (e.g., central California in the USA and Guadalupe Island in Mexico,
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respectively) - where they are believed to primarily target pinnipeds - to
offshore oceanic areas in the North Pacific Subtropical Gyre where they
may largely rely on prey from the mesopelagic zone (i.e., between 200
and 1000 m deep) (Carlisle et al., 2012; Jaime-Rivera et al., 2014;
Jorgensen et al., 2012; Le Croizier et al., 2020b). In Mexico, young white
sharks occupy coastal nursery areas near the mainland, before moving to
aggregation sites such as Guadalupe Island after reaching a length of at
least 1.8 m (Hoyos-Padilla et al., 2016). Unlike adults, juveniles do not
perform seasonal offshore migrations and remain in the vicinity of
Guadalupe Island throughout the year. While they are known to feed
primarily on nearshore demersal prey in mainland nursery areas
(García-Rodríguez et al., 2021; Tamburin et al., 2019), the diet of ju-
venile white sharks at Guadalupe Island is still poorly understood.

Carbon and nitrogen stable isotopes (expressed as δ13C and δ15N,
respectively) have been widely used to characterize the trophic ecology
of sharks (Besnard et al., 2022; Hussey et al., 2011; Le Croizier et al.,
2020a; Shiffman et al., 2012). Since carbon stable isotope signatures
vary substantially across primary producers at the base of food webs,
δ13C values allow to discriminate between marine ecosystems (e.g.,
coastal versus oceanic) and thus can trace the foraging habitat of
predators (Bird et al., 2018; Cherel and Hobson, 2007). Additionally,
δ15N values increase significantly from prey to predator and are there-
fore considered a relevant proxy for assessing the trophic position of
consumers in a given food web (Estrada et al., 2003; Hussey et al.,
2015). The combination of δ13C and δ15N values can also be used to
estimate the relative contribution of different prey items to the diet of a
predator (e.g., using isotopic mixing models) (Carlisle et al., 2012;
Raoult et al., 2019). These approaches require prior knowledge of the
difference between the isotopic values of the consumer and its prey,
called “trophic enrichment” or “trophic discrimination factor” (hereafter
“TDF”), expressed as Δ13C and Δ15N for carbon and nitrogen, respec-
tively. However, TDFs are known to depend on several sources of vari-
ation, such as environment, taxon, tissue and diet (Caut et al., 2009; Le
Croizier et al., 2022a; Stephens et al., 2023). The use of different TDFs
(e.g., Δ15N ranging from 2.3 to 5.5‰) to study the diet of large sharks
significantly affects the estimates, thus preventing any definitive
conclusion as to the composition of shark prey (Hussey et al., 2010; Kim
et al., 2012a; Olin et al., 2013).

Lipids form a large group of structurally heterogeneous molecules
that support two major biological functions: structural lipids are
involved in the constitution of cell membranes, while reserve lipids
represent an important form of energy storage (Parrish, 2013; Sargent
et al., 2003). Certain fatty acids (FAs), the major constituents of lipids,
are essential for the proper functioning of organisms (e.g., some omega 3
and 6) (Vagner et al., 2014, 2015). Indeed, essential FAs play a major
role in cellular synthesis, neuronal development, endocrine function and
control, ionic regulation, immune function and reproduction (Sargent
et al., 2003; Tocher, 2003). For instance, 22:6n-3 (docosahexaenoic
acid, DHA) is necessary for the formation of neural membranes in the
brain and eyes (Koven et al., 2018; Morais et al., 2011), while 20:5n-3
(eicosapentaenoic acid, EPA) and 20:4n-6 (arachidonic acid, ARA) are
important modulators of inflammatory/immune responses and repro-
duction processes through the production of eicosanoids and prosta-
noids (Chapkin et al., 2009; Xu et al., 2022a,b). As essential FAs are
poorly synthesized by marine fish, they must be obtained through food.
In addition, when sufficient lipid intake is provided by diet, de novo
synthesis of FAs is reduced or inhibited, and the majority of FAs (both
essential and non-essential FAs) come from dietary sources (Sargent
et al., 2003; Tocher, 2003). As the structural integrity of FAs is generally
conserved during trophic transfers, they can be used to trace preda-
tor-prey relationships (Beckmann et al., 2013, 2014). Finally, since FA
composition varies significantly between potential prey (e.g., marine
mammals versus fish versus cephalopods), an increasing number of
studies rely on FAs to assess the dietary composition of marine preda-
tors, including white sharks (Every et al., 2017; Meyer et al., 2019;
Pethybridge et al., 2014).

Muscle is the most commonly used tissue to study shark trophic
ecology based on biochemical tracers (e.g., Bird et al., 2018; Maurice
et al., 2021; Meyer et al., 2019). As protein turnover is slower than lipid
turnover in muscle tissue, stable isotope composition reflects shark diet
over a longer period than fatty acid composition (months/years and
weeks, respectively) (Munroe et al., 2018). In the present study, we
investigated the trophic ecology of white sharks from Guadalupe Island,
through the analysis of isotopic and FA compositions of the muscle from
individuals of various sizes. Considering previous knowledge of white
shark movements in the Northeast Pacific and the integration time of
tissue compounds, we assume that isotope values of adult sharks reflect
feeding over their entire migratory cycle, while isotope values of juve-
niles result mainly from foraging around Guadalupe Island. On the other
hand, the fatty acid composition of white sharks is thought to be influ-
enced primarily by recent prey consumption near Guadalupe Island, for
both juveniles and adults. Given the ontogenetic dietary shift observed
in other white shark populations, as well as the permanent presence of
juveniles and the seasonal presence of adults in the waters of Guadalupe
Island, we sought to answer three main questions: 1) Do isotope values
vary with shark size, as a result of differences in habitat use between
juveniles and adults and/or potential ontogenetic change in prey
composition? 2) Can we identify the main prey of juvenile sharks around
Guadalupe Island from isotope values? 3) Do fatty acid compositions
make it possible to detect differences between juveniles and adults in the
prey targeted during their simultaneous presence around Guadalupe
Island? Our objective was to better understand the role of this aggre-
gation site as foraging habitat during the life cycle of white sharks in the
Northeast Pacific.

2. Materials and methods

2.1. Sample collection

White sharks (n = 25) were sampled at Guadalupe Island in the
Mexican Pacific (Fig. 1), between the months of September and
November in 2016, 2017 and 2018. Free-swimming white sharks were
attracted with baits (yellowfin tuna, Thunnus albacares) near the scien-
tific boat. Muscle samples were taken using a biopsy probe (1 cm
diameter) targeting the tissue directly below the dorsal fin. The biopsy
probe was cleaned and rinsed with alcohol before and between samples.
After collection, tissue samples were immediately transferred to a − 20
◦C freezer on board the vessel. Once in the laboratory, muscle samples
were freeze-dried and homogenized. Individual sharks were sexed
(based on the presence or absence of claspers) and sized to the nearest
10 cm using visual size estimates. A previous study compared visually
estimated total length measurements of white sharks during cage diving
operations with measurements obtained from stereo-video cameras and
assessed the accuracy of these estimates against suspected biases (e.g.,
shark size and observer experience) (May et al., 2019). The authors
found that visual estimates were not influenced by shark size, and that
scientists were the most accurate in their estimates, with a mean accu-
racy of around 20 cm. They conclude that visual estimates of length can
be used in research that is not sensitive to 20 cm biases when the esti-
mates are made by scientists. In our study, size differences between
individuals were mostly larger (i.e., 50 cm) than the uncertainty asso-
ciated with visual estimates, which were made by a researcher (MHP)
with extensive experience in measuring white sharks at this specific site.
We therefore assume that visual estimates are a reliable method with an
acceptable degree of accuracy in the context of our study. The white
sharks we sampled ranged from 2 m to 5 m total length (TL) and were
composed of juveniles (<3 m TL), subadults (3–3.6 m TL for males and
3–4.8 m TL for females) and adults (>3.6 m TL for males and >4.8 m TL
for females) (Domeier, 2012). Samples were collected from different
individuals including 16 females (6 juveniles, 9 subadults, 1 adult), 6
males (2 juveniles, 2 subadults, 2 adults) and 3 unsexed sharks (1 adult,
2 unmeasured individuals).
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2.2. Carbon and nitrogen stable isotope analysis

Before stable isotope analyses, urea and lipid extractions were
applied on powdered samples according to Li et al. (2016). Briefly, for
urea removal, samples were vortexed in deionized water for 1 min,
soaked for 24 h at room temperature, centrifuged for 5 min, and water
removed with a medical needle. This process was repeated three times
before the samples were dried again using an EZ-2 centrifugal evapo-
rator (Genevac). For lipid extraction, urea-free samples were soaked in a
2:1 chloroform/methanol mixture, vortexed for 1 min, left overnight at
room temperature, centrifuged for 10 min and decanted. This process
was also repeated three times and the samples were dried again to
remove excess solvent. Approximately 350 μg of sample powder was
then weighed in tin capsules for isotopic analysis. The samples were
analysed by continuous flow on a Thermo Scientific Flash EA 2000
elemental analyser coupled to a Delta V Plus mass spectrometer at the
Pôle Spectrométrie Océan (Plouzané, France), according to a previously
published protocol (Besnard et al., 2021; Le Croizier et al., 2020a, 2023).
Results are expressed in standard δ notation based on international
standards (Vienna Pee Dee Belemnite for δ13C and atmospheric nitrogen
for δ15N) following the equation δ13C or δ15N = [(Rsample/Rstandard)
− 1]× 103 (in‰), where R is 13C/12C or 15N/14N. International isotopic
standards of known δ15N and δ13C were analysed: IAEA-600 Caffeine,
IAEA–CH–6 Sucrose, IAEA-N-1 and IAEA-N-2 Ammonium Sulphate. A
home standard (Thermo Acetanilide) was used for experimental preci-
sion (based on the standard deviation of the internal standard replicates)
and indicated an analytical precision of ±0.31‰ for δ13C and ±0.21‰
for δ15N.

2.3. Fatty acid analysis

Lipid extracts were flushed with nitrogen gas, vortexed, and stored at
− 20 ◦C. After the addition of tricosanoic acid (23:0) as an internal
standard and evaporation to dryness under nitrogen, fatty acid methyl
esters (FAMEs) were obtained using a method modified from Le Grand
et al. (2014). A total of 0.8 ml of a sulphuric acid solution (3.4% in

methanol) was added, vortexed and heated for 10 min at 100 ◦C. Before
gas chromatography analysis, 0.8 ml of hexane was added and the
organic phase containing FAMEs was washed three times with 1.5 ml of
hexane-saturated distilled water. The organic phase was finally trans-
ferred to tapering vials and stored at − 20 ◦C. FAMEs were analysed with
a Varian CP 8400 gas chromatograph equipped with a Zebron ZB-WAX
and a ZB-5HT column (both 30 m length, 0.25 mm internal diameter,
0.25 μm film thickness, Phenomenex) and flame ionization detectors at
the Lipidocean facility (Plouzané, France). FAMEs were identified by
comparing sample retention times to those of commercial standard
mixtures (Supelco 37-component FAMEmix, BAME, and PUFA no. 1 and
3 mixes, Sigma-Aldrich) using Galaxie 1.9.3.2 software (Varian). FAME
contents were converted to fatty acid (FA) contents based on 23:0 re-
covery. Individual FA proportions were expressed as the percentage (%)
of the total FA content.

2.4. Data analysis

All statistical analyses were performed using the open-source soft-
ware R (R Core Team, 2023). For group comparisons, data was first
checked for normality (Shapiro-Wilk tests) and homogeneity of vari-
ances (Bartlett tests). When these conditions were met, one-way
ANOVAs were performed to test for differences between groups, other-
wise, non-parametric analogues were used (Wilcoxon tests with Holm p-
value adjustments). After checking for data normality (Shapiro-Wilk
tests), Pearson’s correlation tests were used to assess relationships be-
tween δ13C or δ15N values and shark length. Among the 58 FAs identi-
fied in white shark muscle, 11 FAs with relative proportions above 1%
(representing 87 ± 4% of the total FA content) were included in sub-
sequent statistical analyses. Permutational multivariate analyses of
variance (PERMANOVAs) were used to test the influence of sex and size
on the FA composition of white sharks. Individual white sharks were
classified based on their FA composition using a K-means cluster anal-
ysis. A similarity percentage analysis (SIMPER) was conducted to
determine the FAs most involved in the dissimilarity between groups.

Bayesian stable isotope mixing models were constructed with δ13C

Fig. 1. Map of the sampling site (Guadalupe Island) off Mexico in the northeastern Pacific.
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and δ15N values to estimate the relative contribution of different prey
groups to the diet of juvenile white sharks using the “simmr” package.
Stable isotope values of potential prey were sourced from previous
studies conducted near Guadalupe Island, and separated into four
groups: three trophic groups of pelagic species previously determined in
the region (Madigan et al., 2012), plus one group consisting of pinniped
species present at Guadalupe Island (Table S1). A previous study in a
controlled environment on hooded seals observed differences between
isotopic values of fur and muscle (Pinzone et al., 2017). As the isotopic
values reported in the literature on pinnipeds present at Guadalupe Is-
land relate only to fur, we adjusted these values to resemble muscle
values by using the differences between tissues observed experimentally
(i.e., by subtracting 0.7 ‰ to δ13C values and adding 0.7 ‰ to δ15N
values) (Pinzone et al., 2017). Different trophic discrimination factors
were used according to a meta-analysis on carnivorous marine fishes
(Stephens et al., 2023) and previous shark feeding studies under
controlled conditions (Hussey et al., 2010; Kim et al., 2012a, c). The
source data were incorporated in the mean ± SD form. Models were run
with generalist prior distributions and Markov Chain Monte Carlo
(MCMC) simulation methods (number of iterations = 100000, size of
burn-in = 10000, amount of thinning = 100 and number of MCMC
chains = 4). Convergence of the models was checked using
Gelman-Rubin diagnostics. In all cases, the Gelman-Rubin diagnostic
was 1, indicating good convergence.

A principal component analysis (PCA) was performed based on the
FA composition of white sharks. Fatty acid profiles of potential prey
species from the North and Central Pacific (species means as reported in
the literature) were overlaid on the PCA as illustrative individuals. Po-
tential prey were classified into four taxonomic groups (namely “Seals”,
“Tuna”, “Sharks” and “Squid”), consisting of northern elephant seals,
tuna species, pelagic sharks and vertically migrating large squid,
respectively (Table S2). Based on the coordinates extracted from the first
two dimensions (PC1 and PC2) of the PCA, the “nicheROVER” package
was used to define niche regions and overlaps for white sharks and
potential prey groups. Niche region was defined as the 95% probability
region in multivariate space, while niche overlap was calculated as the
probability that a randomly chosen individual from a prey group will be
found in the white shark niche. Overlap uncertainty was accounted for
by performing 1000 elliptical projections of niche region through
Bayesian statistics.

3. Results and discussion

3.1. Stable isotopes

Due to slow protein turnover, isotopic composition of muscle can
provide integrated dietary information over a long period (months to
years) (Munroe et al., 2018). Although some juvenile sharks we analysed
may have recently left mainland nurseries, both their δ13C and δ15N
values were significantly lower than those of similarly sized conspecifics
sampled along the Mexican coast (ANOVAs, p < 0.01; Table S3), sug-
gesting that they arrived at Guadalupe Island long enough for their
isotopic signature to stand out from that of juveniles still using the
coastal habitat (García-Rodríguez et al., 2021). Thus, we assume that the
isotopic values measured in our study primarily reflect feeding in the
waters of Guadalupe Island for juvenile sharks, while they also reflect
the offshore migration season for subadult and adult sharks
(Hoyos-Padilla et al., 2016). No differences were detected in muscle
isotopic composition (δ13C and δ15N values) between sexes (ANOVAs, p
> 0.05), nor any variation in isotope values with shark length (Pearson’s
correlation test, p > 0.05; Fig. 2). These results contrast with the onto-
genetic changes in isotopic composition previously observed in white
sharks from the same northeast Pacific population sampled off the coast
of California (Carlisle et al., 2012). A decrease in muscle δ13C and δ15N
values with length was found in these white sharks, suggesting a
size-based change in foraging habitat. Indeed, juvenile white sharks are

known to feed primarily in coastal productive waters of the California
Current, where baselines are enriched in 13C and 15N, while adults
perform seasonal migrations to offshore regions where they exploit
pelagic food webs with lower isotopic baselines (Jorgensen et al., 2012;
Trueman and St John Glew, 2019; White et al., 2019). The authors
therefore concluded that the variations in isotopic composition
measured in California white sharks reflected changes in habitat use
rather than an increase in the trophic level of adult sharks, which would
have led conversely to increased δ13C and δ15N values. After leaving
nurseries on the Mexican coast, juvenile white sharks that reach Gua-
dalupe Island face an oceanic environment similar to offshore regions
exploited by adults during their migrations (Fig. 1). Thus, the lack of
marked contrast in isotopic baselines between habitats (i.e., Guadalupe
Island and offshore habitats) could explain the similar isotopic compo-
sitions between juveniles and adults in our study, unlike California
sharks which are exposed to stronger isotopic gradients during ontoge-
netic shift from coastal to offshore habitats. Still, C and N isotope
baselines may be slightly lower in the offshore migration zone than in
Guadalupe Island waters (Arnoldi et al., 2023; Trueman and St John
Glew, 2019). In addition, it was recently observed that the increase in
isotope values between trophic levels (i.e., trophic discrimination factor
“TDF”) could vary across regions in the North Pacific, suggesting spatial
differences in the factors underlying trophic dynamics, such as vari-
ability in community composition or changes in diet based on resource
availability (Arnoldi et al., 2023). For instance, it was estimated that top
predators feeding offshore within the North Pacific Subtropical Gyre had
significantly lower δ15N values than predators of the same trophic level
feeding in the Guadalupe Island region (Arnoldi et al., 2023). This dif-
ference of around 5‰ corresponds to the upper range of shifts in δ15N
values observed between two trophic levels (Hussey et al., 2010; Kim

Fig. 2. Biplot of δ13C or δ15N values and total length of white sharks from
Guadalupe Island. Pearson correlation tests detected no significant relationship
between isotope values and shark length. Pearson correlation coefficients (r)
and associated p-values are displayed in the panels.
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et al., 2012c; Olin et al., 2013). Therefore, foraging offshore part of the
year could lower the isotopic values of adult white sharks and, despite a
potential higher trophic level, give them isotopic values similar to those
of juvenile sharks that forage near Guadalupe Island throughout the
year.

The lack of variation in isotopic compositions with size observed in
our study could also result from a similar diet between juveniles and
adults. Isotopic analysis of vertebrae from California white sharks has
previously revealed that ontogenetic patterns in δ15N values can vary
considerably among individuals, with three trajectories observed: 1)
δ15N values increasing throughout life, 2) δ15N values increasing until
reaching a plateau and 3) constant δ15N values throughout life (Kim
et al., 2012b). The third pattern, which is similar to the one observed in
our study (Fig. 2), resulted from the fact that juveniles were character-
ized by high δ15N values, similar to those of adults. The authors there-
fore put forward the hypothesis of scavenging on pinniped carcasses or
consumption of large squid by young sharks. The diet of juvenile sharks
remains unknown in Guadalupe Island waters, as local predation on
pinnipeds and squid has only been confirmed for larger sharks
(Becerril-García et al., 2020; Hoyos, 2009). Accurate determination of
diet composition using stable isotopes remains a challenge given the
uncertainty associated with TDFs. In our study, estimates of the relative
contribution of prey to the diet of juvenile white sharks varied signifi-
cantly depending on the TDFs used. We estimated that 66% of juvenile
sharks’ diet consisted of pelagic meso-predators (Fig. 3A), using values
of 3.5‰ and 5.5‰ for Δ13C and Δ15N respectively. Using lower TDFs,
we found either a dominance of pelagic predators (i.e., 62% with Δ13C
= 0.9 ‰ and Δ15N = 2.3 ‰, Fig. 3B) or an equivalent contribution of
pelagic predators and pinnipeds to the diet of juvenile white sharks
(Fig. 3C and D) (e.g., 43% and 42% respectively with Δ13C = 1.7‰ and
Δ15N = 2.5 ‰). While three out of four models suggest that pelagic
predators represent a significant, if not dominant, proportion of juvenile
white shark prey, these results highlight the inherent limitations of
traditional isotopic methods for determining the prey targeted by

juvenile white sharks in the waters off Guadalupe Island. In future
studies, the use of compound-specific isotope analyses could overcome
TDFs by focusing on amino acids known to undergo negligible trophic
fractionation (McMahon and Newsome, 2019; Skinner et al., 2021).

3.2. Fatty acids

3.2.1. General trends
Rapid lipid turnover implies that muscle fatty acid (FA) composition

only reflects diet during the last weeks prior to sampling (Munroe et al.,
2018), when sharks of all size classes occupied the waters off Guadalupe
Island (Hoyos-Padilla et al., 2016). Of the 58 FAs identified in white
shark muscle, 11 FAs had relative proportions above 1%, with 16:0,
22:6n-3 (docosahexaenoic acid, DHA), 18:0, 18:1n-9 and 20:4n-6
(arachidonic acid, ARA) as dominant FAs (in decreasing order;
Table 1), and accounted for 87 ± 4% of the total FA content. Higher
proportions of polyunsaturated FAs (PUFAs, 37 ± 9%) and saturated
FAs (SFAs, 35 ± 5%) were found compared to monounsaturated FAs
(MUFAs, 25 ± 5%). As with stable isotopes, no effect of sex or shark
length was detected on total FA composition or individual FA pro-
portions (PERMANOVAs, p > 0.05). Although no clear influence of size
was also observed on the FA profiles of Australian white sharks (Meyer
et al., 2019; Pethybridge et al., 2014), our results contrast with the
paradigm of an ontogenetic trophic shift occurring in white sharks
around 3–3.5 m in length, with an increased consumption of marine
mammals beyond this size, as observed in other studies (Estrada et al.,
2006; Hussey et al., 2012). In addition, dietary differences were ex-
pected as a result of the contrasting habitat use previously documented
between juvenile and adult white sharks at Guadalupe Island
(Hoyos-Padilla et al., 2016). It has been proposed that swimming close
to shore in shallow water would allow juveniles to feed on demersal prey
while avoiding larger sharks, whereas patrolling in deeper water would
allow adults to ambush pinnipeds by taking advantage of reduced light
(Aquino-Baleytó et al., 2021; Hoyos-Padilla et al., 2016; Papastamatiou

Fig. 3. Estimated proportions based on stable isotope values of pelagic species (low trophic level species, meso-predator species, predator species) and pinnipeds in
the diet of juvenile white sharks ≤3 m in total length, known to stay year round near Guadalupe Island. Different trophic discrimination factors (TDFs) were used in
the mixing models, according to previous studies: TDFs from A) Kim et al., 2012c, B) Hussey et al., (2010), C) Stephens et al., (2023) and D) Kim et al., 2012a, c.
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et al., 2022). Alternatively, both juvenile and adult sharks could feed on
species occupying the mesopelagic zone (200–1000 m depth) during the
day and reaching the surface at night, such as vertically migrating squid.
While juveniles would only have access to these prey during the night,
facilitated by the very steep topography of Guadalupe Island nearshore
area, diel vertical migrations (i.e., use of deeper water during the day)
observed in adult sharks may reflect foraging on mesopelagic prey both
day and night off the island (Aquino-Baleytó et al., 2021; Hoyos-Padilla
et al., 2016). This hypothesis was previously supported by mercury
stable isotope compositions measured in Guadalupe white sharks, which
suggested feeding on the mesopelagic compartment for both juveniles
and adults (Le Croizier et al., 2020b, 2022b).

Here, we estimated the overlap between the trophic niche of white
sharks based on FA composition and that of potential prey groups (i.e.,
elephant seals, tuna, pelagic sharks, squid; Fig. 5). The probability of
finding these prey in the white shark niche was high for pelagic sharks
and tuna (99% and 70% respectively), moderate for squid (30%) and
low for elephant seals (10%) (Fig. 5). Large pelagic species could thus be
targeted locally by white sharks, as evidenced by direct observations at
Guadalupe Island. Notably, a large individual was spotted feeding on a
2-m blue shark (Prionace glauca) (Domeier and Nasby-Lucas, 2007), a
juvenile was seen chasing a free-swimming yellowfin tuna (Thunnus
albacares) (Hoyos-Padilla, pers. comm.) and white sharks were frequently
observed preying on yellowfin tuna caught by recreational fishing boats
(Domeier and Nasby-Lucas, 2007). These results corroborate stable
isotope estimates, which placed pelagic predators such as tuna as the
likely dominant prey of juvenile white sharks. Despite modest overlap
between white shark and squid FA compositions, squid may also be
important prey for white sharks in the Northeast Pacific, supported by
cephalopod scars observed on Guadalupe white sharks that reveal
predator-prey interactions (Becerril-García et al., 2020). In addition, the
species of pelagic sharks used in our study (i.e., silky Carcharhinus fal-
ciformis, bigeye thresher Alopias superciliosus, pelagic thresher Alopias
pelagicus, smooth hammerhead Sphyrna zygaena and blue sharks) and to
which white sharks are very close in terms of FA composition (Fig. 5),
are known to feed primarily on cephalopods in the Eastern Pacific
(Galván-Magaña et al., 2013; Xu et al., 2022b). The gap between FA
profiles of squid and pelagic/white sharks could therefore be due to
taxa-specific FA concentrations, such as exceptionally high levels of
DHA in cephalopods (Chen et al., 2020; Gong et al., 2018), which are not

conserved in the same proportions in predators.
Finally, the presence of pinnipeds, such as northern elephant seals

(Mirounga angustirostris), Guadalupe fur seals (Arctocephalus townsendi)
and California sea lions (Zalophus californianus), is thought to drive the
seasonal aggregation of white sharks around Guadalupe Island (Domeier
et al., 2012; Domeier and Nasby-Lucas, 2008; Hoyos-Padilla et al.,
2016). However, very few acts of predation by white sharks on pinni-
peds have been documented at Guadalupe Island compared to other
aggregation sites in South Africa or the Northeast Pacific, such as the
Farallon Islands (Domeier and Nasby-Lucas, 2007; Hoyos, 2009). Sup-
ported by the weak overlap probability between FA compositions of
white sharks and elephant seals (Fig. 5), we hypothesize that the capture
of pinnipeds remains anecdotal in the area, potentially limited by the
clarity of the oceanic waters surrounding Guadalupe Island which fa-
cilitates the detection of sharks by pinnipeds. Our results are also
consistent with a previous study of FA profiles in eastern Australian
white sharks, which suggested that the individuals analysed were not
marine mammal specialists (Pethybridge et al., 2014). However, most
attacks on pinnipeds are believed to take place in December, when
pregnant elephant seals arrive at Guadalupe Island (Hoyos, 2009;
Hoyos-Padilla et al., 2016). As white sharks were sampled from
September to November, sampling later in the season would likely have
revealed greater consumption of marine mammals, reflected in the FA
composition of the sharks.

3.2.2. Interindividual variability
Although no ontogenetic changes were found, variability in FA

profiles between individual sharks was detected. Two groups of in-
dividuals were separated based on FA composition (K-means clustering),
with DHA, 18:0 and 18:1n-9 accounting mainly for the dissimilarity
between groups (31%, 14% and 11% respectively, SIMPER). Group 1 (n
= 6) had higher proportions of SFAs and MUFAs (16:0, 18:0, 18:1n-9),
while group 2 (n = 19) was characterized by higher proportions of n-3
and n-6 PUFAs (ARA, DHA, EPA, 22:5n-3 and 22:4n-6) (Table 1,
Fig. 4A). As in our study, significant intraspecific variability in FA
composition was highlighted in eastern Australian white sharks, mainly
driven by the opposition between 18:1n-9-rich and DHA-rich individuals
(Pethybridge et al., 2014). The authors attributed these differences to
varying contributions of mammalian blubber and fish/cephalopods to
the diet of individual white sharks. Indeed, the blubber of marine
mammals is particularly rich in 18:1n-9 and poor in DHA (e.g., 27% and
5% respectively in the northern elephant seal) (Goetsch et al., 2018),
while the muscle of large pelagic fish and squid generally contains lower
levels of 18:1n-9 and higher levels of DHA (e.g., 2% and 42% respec-
tively in the jumbo squid Dosidicus gigas) (Chen et al., 2020). Here, the
probability of finding elephant seals in the white shark niche was 36%
for group 1 while it was zero for group 2 (Fig. 5). Conversely, the
probability of niche overlap between white sharks and
cephalopod-eating pelagic sharks was much higher for group 2
compared to group 1 (94% versus 5% respectively). These marked dif-
ferences between groups could reflect individual dietary specialization,
such as previously suggested in white sharks (French et al., 2018; Kim
et al., 2012b; Pethybridge et al., 2014). However, we assume that
consistent differences in predatory behavior would be revealed by
long-term integrating stable isotopes, such as observed in other studies
(French et al., 2018; Kim et al., 2012b), whereas no significant differ-
ences between groups were found here for either δ13C or δ15N (Table 1).
Alternatively, rather than reflecting individual dietary specialization,
this intergroup variability in FA composition could reflect the recent and
opportunistic consumption of prey providing trophic inputs fulfilling
different ecophysiological functions in white sharks. Since lipids are a
major source of energy for metabolically active marine predators, white
sharks are thought to rely primarily on marine mammal blubber to meet
the energy requirements necessary to undertake long migrations (Del
Raye et al., 2013; Moxley et al., 2019; Pethybridge et al., 2014). For
instance, the consumption of northern elephant seals, in which fat can

Table 1
Fatty acid (%) and stable isotope (‰) compositions in white sharks from Gua-
dalupe Island (mean ± SD). Individual white sharks were separated into two
groups based on their FA composition (Groups 1 and 2, K-means clustering). ”*”
indicates higher value compared to the other group (Wilcoxon tests with Holm p-
value adjustments, p < 0.05).

White sharks (n = 25) Group 1 (n = 6) Group 2 (n = 19)

Saturated fatty acids (SFAs)
16:0 17.7 ± 2.6 20.2 ± 3.8 * 16.9 ± 1.5
18:0 15.3 ± 3.2 19.4 ± 3.8 * 14.1 ± 1.7
Σ SFAs 35.0 ± 5.3 42.0 ± 5.7 * 32.8 ± 2.5
Monounsaturated fatty acids (MUFAs)
16:1n-7 1.6 ± 0.6 2.0 ± 0.8 1.5 ± 0.6
18:1n-9 11.5 ± 2.7 14.8 ± 2.5 * 10.4 ± 1.8
18:1n-7 6.2 ± 1.7 7.2 ± 2.8 5.9 ± 1.1
20:1n-9 1.6 ± 0.4 1.7 ± 0.5 1.6 ± 0.3
Σ MUFAs 24.7 ± 5.2 31.4 ± 4.7 * 22.6 ± 3.2
Polyunsaturated fatty acids (PUFAs)
20:4n-6 (ARA) 9.2 ± 2.4 7.0 ± 2.9 9.9 ± 1.7 *
20:5n-3 (EPA) 1.1 ± 0.4 0.7 ± 0.2 1.2 ± 0.4 *
22:4n-6 3.2 ± 1.2 1.6 ± 0.8 3.6 ± 0.9 *
22:5n-3 3.8 ± 1.4 1.9 ± 0.5 4.4 ± 1.1 *
22:6n-3 (DHA) 16.1 ± 6.2 6.7 ± 2.8 19.0 ± 3.3 *
Σ PUFAs 37.2 ± 9.1 22.7 ± 4.9 41.8 ± 3.5 *
Stable isotopes
δ13C − 15.4 ± 0.9 − 15.3 ± 1.2 − 15.5 ± 0.9
δ15N 19.7 ± 1.2 20.2 ± 1.4 19.6 ± 1.1
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Fig. 4. A) Principal component analysis (PCA) of white sharks from Guadalupe Island, based on muscle fatty acid (FA) composition (FAs accounting for more than
1% of the total FA amount, shown as grey arrows). Individual white sharks were separated into two groups based on their FA composition (Group 1: red dots, Group
2: blue dots). B) FA profiles of potential prey items from the North and Central Pacific (sourced from the literature), shown as illustrative individuals on PCA based on
FA composition of white sharks from Guadalupe Island (left panel). Brown inverted triangles: seals, yellow diamonds: tuna, light blue squares: pelagic sharks, pink
triangles: squid. The convex hull areas of the two groups of white sharks are represented by red and blue dotted lines.

Fig. 5. Posterior distributions of probabilistic niche overlap metrics (%), for a niche region size of 95% and based on individual coordinates extracted from PCA of FA
compositions (PC1 and PC2, Fig. 4). The posterior means and 95% credible intervals are displayed as solid and dashed grey vertical lines, respectively. The
probability for an individual from a group of potential prey (tuna, squid, pelagic sharks, seals) to be found in the white shark niche (all individuals in black, group 1 in
red, group 2 in blue) is indicated in a panel at the top right. For example, the probability of finding a seal in the white shark niche is 10% considering all individuals,
36% for group 1 sharks and 0% for group 2 sharks.
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represent more than 30% of total body weight (Crocker et al., 2014), is
likely to represent an important energy supply for white sharks before
their offshore migration from Guadalupe Island (Hoyos-Padilla et al.,
2016). On the other hand, some omega-3 PUFAs are necessary for the
development and proper functioning of the brain, vision and nervous
system (Glencross, 2009; Sargent et al., 2003; Tocher, 2003). Dietary
limitation of these compounds is thus known to alter physiological
performances in marine consumers (Vagner et al., 2014, 2015). While
omega-3 PUFAs levels are low in marine mammal blubber in favor of
SFAs and MUFAs (Goetsch et al., 2018), they can be much higher in lean
prey such as cephalopods (e.g., 0.3% lipids composed of ~40% DHA in
jumbo squid mantle) (Gong et al., 2018; Saito et al., 2014). Therefore,
the observed opposition between SFAs/MUFAs and PUFAs among the
two groups of white sharks (Table 1, Fig. 4A) may reflect an ecological
trade-off between consumption of lipid-rich prey with higher levels of
SFAs/MUFAs (i.e., marine mammals) versus consumption of lean prey
with higher levels of PUFAs (i.e., pelagic fish and squid), respectively
satisfying the energetic and physiological needs of white sharks.

4. Conclusion

Our study improves our limited knowledge of the trophic ecology of
white sharks in a major aggregation site in the Northeast Pacific.
Through a multi-tracer approach (stable isotopes and FAs), we observed
similar feeding across three size classes (juveniles, subadults, adults).
Our estimates based on FA profiles indicate that white sharks feed pri-
marily on pelagic prey in Guadalupe Island waters. However, variability
between individuals was found, with the FA composition of some sharks
reflecting recent consumption of marine mammals. During their
migratory cycle, white sharks may target different prey to meet their
energetic and physiological needs. As fisheries and global change are
likely to alter the distribution and abundance of marine species, po-
tential impacts on the ecophysiology of apex predators such as white
sharks should be carefully monitored in the future.
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O’Sullivan, J.B., Ramm, K., Skomal, G., Sloan, S., Smale, M.J., Sosa-Nishizaki, O.,
Sperone, E., Tamburin, E., Towner, A.V., Wcisel, M.A., Weng, K.C., Werry, J.M.,
2018. Future research directions on the “elusive” white shark. Front. Mar. Sci. 5
https://doi.org/10.3389/fmars.2018.00455.

Jaime-Rivera, M., Caraveo-Patiño, J., Hoyos-Padilla, M., Galván-Magaña, F., 2014.
Feeding and migration habits of white shark Carcharodon carcharias (Lamniformes:
Lamnidae) from Isla Guadalupe inferred by analysis of stable isotopes δ15N and
δ13C. Rev. Biol. Trop. 62, 637–647.

Jorgensen, S.J., Arnoldi, N.S., Estess, E.E., Chapple, T.K., Rückert, M., Anderson, S.D.,
Block, B.A., 2012. Eating or meeting? Cluster analysis reveals intricacies of white
shark (Carcharodon carcharias) migration and offshore behavior. PLoS One 7,
e47819. https://doi.org/10.1371/journal.pone.0047819.

Jorgensen, S.J., Micheli, F., White, T.D., Houtan, K.S.V., Alfaro-Shigueto, J.,
Andrzejaczek, S., Arnoldi, N.S., Baum, J.K., Block, B., Britten, G.L., Butner, C.,
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