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helium depletion in the Afar mantle plume
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Ugur Balci 1 , Finlay M. Stuart1, Jean-Alix Barrat 2,3, Antoniette G. Grima4 &
Froukje M. van der Zwan 5

Mantle plumes are responsible for the Earth’s largest volcanic provinces. In the prevailing paradigm,
the deep mantle is less degassed than convecting shallow mantle, implying that plume-derived lavas
have higher concentrations of primordial volatiles such as helium (He). Demonstrating this has led to
explanations that question the established Earth model. Here, we show that the 3He/4He of basalts
from the Red Sea display coherent relationships with trace elements, allowing the helium
concentration of theAfar plume tobe calculated.Contrary to theprevailingmodel it appears the helium
concentration of the Afar plume is 10-25% of the upper mantle. This contradiction is resolved if the
plume material itself is a mixture of helium-rich high-3He/4He deep mantle with helium-depleted
low-3He/4He recently subducted oceanic crust. This implies that helium-depleted domains may exist
in convecting mantle and that moderately high 3He/4He plumes likely do not contain a notable
contribution of the deep mantle.

Much of the Earth’s intraplate volcanism is linked to deep-seated thermo-
chemical plumes of upwelling hot mantle that originate at the core-mantle
boundary1–4. They may originate from the margins of large low shear-
velocity provinces (LLSVP) in the lowermantle5–8 that are interpreted tobe a
consequence of large-scale mantle convection driven by slab subduction to
the lower mantle9–12. Lavas from the major intraplate volcanic provinces
tend to have higher 3He/4He ratios than lavas from mid-ocean ridges that
originate in the more vigorously convecting upper mantle13,14, while helium
concentrationsmeasured in the former (2–17 × 10−7 cm3 STP/g) arenotably
lower than in the latter (0.4–2.4 × 10−5 cm3 STP/g)15. The plumes with the
highest flux rates, such as Iceland, Hawaii and Galapagos, have the highest
3He/4He13,16,17. Values of up to 65 Ra (where Ra is the present-day value of
atmosphere of 1.34 × 10−6)18 have been recorded in early Iceland plume
basalts19,20. This ratio is notably higher than that of the convecting upper
mantle as recorded by depleted upper mantle-derived mid-ocean ridge
basalts (MORB) (8 ± 1 Ra)

21. The relative enrichment of primordial 3He in
plume basalts reflects the limited degassing of the deep mantle as a con-
sequence of mantle processing by partial melting. This evidence is corro-
borated by the presence of primitiveNe isotopes in high 3He/4He lavas from
the high flux mantle plumes22,23. While the evidence for primordial noble
gases in the deepmantle is undeniable, there is no consensus on the location
of the high 3He/4He reservoir; explanations range from incompletely out-
gassed ancientmantle domains24, the core25 or remnants of magma ocean26.

The prevailing models of Earth’s evolution and structure require that
the He concentration and 3He/20Ne ratio are higher in the deep mantle than
in the more degassed upper mantle13,14,27–29. However, the absolute He con-
centration inhigh-3He/4He lavas is typically lower than inMORBbasalts that
are derived from the convecting upper mantle15. This long-standing helium
paradox can be resolved if the deep mantle is more degassed than the upper
mantle but requires thatU ismore incompatible inmantlemelts thanHe30,31.
However, the experimental determination of the partitioning of helium
duringmeltingof peridotite appears to rule out thismechanism32. This, along
with the high partition coefficient and solubilities of the light noble gases in
bridgmanite33 and ferropericlase34, suggests that the lower mantle should be
less degassed than the upper mantle35. This helium paradox can also be
explained if the more volatile-rich parental magmas routinely undergo dis-
equilibrium degassing36. However, the extent to which this affects deep
mantle-derived melts is difficult to determine. The absence of reliable esti-
mates of the concentration of primordial volatiles in the mantle remains a
major hindrance to the development of models of Earth’s evolution37.

ThemodernAfarmantle plume is a unique laboratory for studying the
volatile inventory of the deep mantle. The Sr-Nd-Pb isotope and incom-
patible trace element (ITE) systematics of modern Afar mantle plume-
derived basalts are well established as a mixture of three components;
depletedMORBmantle, youngHIMU-like plumemantle and Pan-African
continental lithosphere38,39. Here, we report new analysis of basaltic glasses
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from a transect from the Afar mantle plume axis near the Gulf of Tadjoura
along the Red Sea (Supplementary Fig. 1). They reveal coherent mixing
trends between 3He/4He and ITEs. As the concentrations of trace elements
in the main mantle reservoirs are well established, the mixing relationships
can be used to determine the relative concentration of primordial He in the
upwelling Afar mantle plume and the ambient upper mantle. The data
require that the high 3He/4He mantle plume has notably lower He con-
centration than the upper mantle, an observation that is difficult to square
with the consensus view that the deep mantle is a repository of primordial
volatiles. We show how He-depleted mantle plumes can form by incor-
poration of subduction oceanic crust and discuss the implications.

Afar mantle plume
The earliest manifestation of the Afar mantle plume is the two-km thick
sequence of continental flood basalts that covers ~400,000 km2 in Ethiopia
and Yemen formed at around 30Ma40. Plume arrival triggered continental
breakup and generated the Afar triple junction, resulting in the opening of
Red Sea, Gulf of Aden and ongoing rifting and magmatism along theMain
Ethiopian Rift (MER)41–45. The eruption of mid-ocean ridge basalts and the
shallow Moho beneath the Red Sea and Gulf of Aden ridges imply that
oceanic crust is now forming46–48. The absence of lithospheric mantle
beneath Red Sea-Gulf of Tadjoura tends to rule it out as a contributor to the
basalt chemistry andmay explain why the modern Afar plume basalts have
lower TiO2 concentrations than the high 3He/4He HT2 continental flood
basalts49. While seismic studies reveal mantle upwelling from the LLSVP at
the core-mantle boundary beneath southernAfrica50–52 there is a strong low-
velocity anomaly beneath the Afar region that appears to be rooted in the
mantle transition zone53–55. The influence of themodernAfarmantle plume
is evident fromhigh 3He/4He (up to16Ra) andprimordialNe inbasalts from
Afar, the MER, southern Red Sea and Gulf of Tadjoura23,42,56–59 and high
mantle potential temperature (Tp) determined from inversion of REE
concentrations (1370–1490 °C)60,61. The similarity of ITE and radiogenic
isotope composition of the high-3He/4He MER-Afar-Gulf of Tadjoura
basalts with the earliest high Ti (HT2) lavas of the Afar CFB province (up to
21 Ra)

42,57,58,62,63 implies that the region records 30Myr of plume-derived
volcanism.

Results and discussion
Coherent 3He/4He-trace element variation in Red Sea and Gulf of
Tadjoura basalts
The 3He/4He of fresh basaltic glasses dredged from the Red Sea (16-26°N)
and the Gulf of Tadjoura (seemethods section for sample locations) show a
progressive southward increase from 8.4 to 14.4 Ra (Fig. 1 and Supple-
mentary Table 1). The 3He/4He from the northern Red Sea (8.47−8.52 Ra)
overlap global MORB values21, while high values from the Gulf of Tadjoura
basalts (13.61 – 14.39 Ra) approach the highest values reported for modern
basalts in the MER and Afar (15Ra)

42,57,64. The Gulf of Tadjoura lavas have
ITE and Sr, Nd and O isotopic ratios that overlap MER-Afar basalts65–68.
Twoenrichedmantle componentshave beenpreviously identified inGulf of
Tadjoura basalts; Tadjoura Enriched Component (TEC), which is domi-
nated by Pan-African continental lithosphere-related, andRamad Enriched
Component (REC) that appears to be HIMU mantle thought to dominate
theAfar plume38,39. All the glasses used in this studyhave Sr-Nd isotopes and
trace element ratios indicating the presence of REC component38. Further,
the trace element ratios (e.g. U/Pb, K/Nb) of the Gulf of Tadjoura basalts
indicate a strong HIMU mantle signature with no evidence of notable
lithosphere contribution69. It should be noted that the variation in Sr-Nd-Pb
isotopes and themantle heterogeneity beneathGulf of Tadjoura revealed by
previous studies39 is not observed in basaltic glasses used in this study38. The
Pb isotope composition of the Afar basalts is notably less radiogenic than
canonical HIMU values70, implying that the subducted oceanic crust that is
present in the plume was recycled in the last few hundred Myr, a so-called
“young HIMU” component39,71–73.

The Red Sea basalts are characterised by a range of La/Sm that is
indicative of two mantle components in the upper mantle north of the

upwelling Afar plume38,74. The high [La/Sm]n (>1) (where La/Sm is nor-
malised for primitive mantle75) basalts from the southern Red Sea and Gulf
of Tadjoura have an enriched MORB (E-MORB) type source, while low
[La/Sm]n (<1) basalts frommid- andnorthernRed Sea are typical of normal
MORB (N-MORB)76 (Supplementary Table 1). The heterogeneity of the
mantle beneath the Red Sea is supported by the wide range in Sr-Nd-Pb
isotopic composition of 13-25°N basalts (87Sr/86Sr = 0.70240-0.70396,
143Nd/144Nd = 0.512951-0.513194, 206Pb/204Pb = 18.040-19.608)38,77–81.

The Red Sea-Gulf of Tadjoura basalts appear to define strongly
hyperbolic mixing trends when 3He/4He is plotted against a variety of ITE
ratios (Fig. 2a–d). The low 3He/4He of the northernRed Sea basalts is typical
of the upper asthenosphere mantle, which can be ascribed as a mixture of
N-MORB and E-MORB38, while the high 3He/4He Afar plume component
defined by the Gulf of Tadjoura basalts has a strong youngHIMU affinity69.

The concentration of trace elements in young HIMU, E-MORB and
N-MORB mantle end-members are determined from a generation of stu-
dies of mantle-derived basalts75,82. We use these constraints to infer the He
concentration of the Afar plume (AP) mantle relative to the upper mantle
(UM) in the Red Sea basalts. In Fig. 2, mixing lines between the high
3He/4He-HIMUAfar plumemantle and the two uppermantle components
using different relative helium concentrations in UM and AP ([He]UM/AP)
are shown based on the established end-member trace element con-
centrations (Supplementary Table 2) (seeMethods section for details). The
data do not define unique mixing lines; for N-MORB [He]UM/AP values
range from1 to4 and for E-MORBmixing lines [He]UM/AP values vary from
4 to 20 (Supplementary Table 3).

Themean value determined for each sample using the four highlighted
trace element ratios inN-MORBandE-MORBsuggests that theAfar plume
has 10-25% of the helium concentration of the local uppermantle. This is in
stark contrast to theprevailingmodels of Earth evolution,which require that
deep mantle, and therefore mantle plumes, are enriched in primordial
helium relative to the degassed upper mantle14,29,36,37,83. The consistency of
the [He]UM/AP values, as defined by the range of trace elements, implies that
the conclusion is robust.

Helium-depleted mantle in the Afar plume
Assuming that depleted upper mantle has a maximum He concentration
([He]UM) of 4 ×10

14 atoms/g28 and [He]UM/AP of 4-10, the upwelling Afar
plume mantle has a He concentration of 0.4-1.0 ×1014 atoms/g. The strong
young HIMU trace element signature of the Afar plume basalts implies a
contribution from recycled oceanic crust (ROC)84,85, providing a possible
source of the He-depleted mantle. Within the existing paradigm, it is pos-
sible to generate a low [He]-high 3He/4Hemantle bymixing primordial He-
rich high 3He/4He deep mantle with He-depleted low 3He/4He recycled
oceanic crust (Fig. 3). Using deep mantle 3He/4He of 65 Ra

20 and He

Fig. 1 | New 3He/4He ratios of 15 basaltic glass samples along the Red Sea ridge
and Gulf of Tadjoura. The data can be found in Supplementary Table 1. Red circles
represent E-MORB,whereas blue circles areN-MORB (see text for grouping details).
Smaller grey circles represent previous data23,56,120.MORB 3He/4He range is 8 ± 1Ra

21.
Error bars in the y-axis represent 1σ.
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concentration of 1.1 ×1015 atoms/g28,42, the He concentration of the ROC is
in the range of 1.8−8.6 × 1013 atoms/g for [He]UM/AP of 4-10 (see the
example using [He]UM/AP = 4 in Fig. 3). In this case, the He-depleted slab
material dominates the Afar plume mantle (>95%). If the upwelling deep
mantle in the proto-Afar plume is itself a mixture of high 3He/4He deep
mantle anddepleteduppermantle prior tomixingwith the slab, themodern
Afar plume requires a lower proportion of ROC (>85%) (Fig. 3).

Assuming that the slab was fully degassed during subduction86,87 and it
contains U and Th concentrations of ROC88, the maximum modelled He
concentration ([He]max) of 8.6 ×1013 atoms/g implies that the slab was
subductedwithin the last 80Myr (Supplementary Fig. 2a). This is consistent
with the unradiogenic Pb isotope composition of modern basalts, which
contain contributions from the Afar plume (206Pb/204Pb = 19.5)60,89. Further,
it shows that until ~1 Gyr after subduction, a downgoing slab contains less
He than the deep mantle; therefore, in simple binary mixing, the deep-
mantle He isotope composition will dominate (Supplementary Fig. 2b).

The best candidate for a young slab in the Afar plume is subducted
Tethyan oceanic crust that has been imaged beneath the region51,90. Seismic
tomography observations for the Afar triple junction show slow seismic
velocities indicating hot upwelling mantle originating from the
660–1000 km mantle transition zone (MTZ) (SGLOBE-rani91 in the Sub-
Machine portal92; Supplementary Fig. 3). These profiles also track fast
seismic anomalies between 440–660 km depth underlying the Zagros
mountains to the north-east of the upwelling Afar plume. These fast
anomalies represent the subducted Zagros-Makran slab that initiated at

~60Ma93,94. Assuming the density contrast between the upper mantle and
oceanic lithosphere (80 kg/m3)10,95,96, the mantle viscosity ratio between
oceanic lithosphere to the upper mantle (50)96,97, and the thickness of the
Makran slab (70 km)95,98, we calculate a sinking speed of 1.36 cm/year in the
upper mantle for the Zagros-Makran slab (based on a simple Stokes sinker
calculation – see ”Methods” section). This is consistentwith the globalmean
slab sinking rate of 1.2–1.3 cm/yr for the entire mantle99–101. Assuming a
plume upwelling rate of 50 cm/yr102, the slab could have subducted to no
more than 1,100 km before being incorporated into the upwelling Afar
plume. This implies that the Afar plume acquired its chemical and isotopic
fingerprint from theTethyanZagros-Makran slabduring large-scalemixing
at theMTZ instead of the CMB. Slab-plumemixing within theMTZ and at
upper lower mantle depths beneath Afar could be further facilitated by the
presence of a hydratedMTZ103,104 resulting from the continuous subduction
of Tethyan slab material since Pangea break-up51,90.

ThedominanceofROC in theAfar plumemantle is consistentwith the
previous observation of limited deepmantle contribution (<5%) inmodern
Afar plume based on basalt chemistry42. This is difficult to reconcilewith the
highTp recordedbyMER-Afar basalts as slabs are likely to benotably colder
than the deep mantle into which they are subducted105. It can be resolved if
the dominant source of ROC in the plume is heated slab edge material.
There is evidence to suggest that slab edges have ahigher shearwave velocity
compared to the centre of the slabs106,107. Slab edges are heated up to ambient
mantle temperatures by the time they reach MTZ, allowing for the gen-
eration of high Tp readings in MER/Afar basalts105,106.

Fig. 2 | Helium isotope and trace element ratio mixing plots between Afar plume
and heterogeneous upper mantle endmembers. a–d In the mixing plots, Afar
plume and heterogeneous upper mantle endmembers are identified by Gulf of
Tadjoura and Red Sea basalts. Trace element concentrations in the mantle end-
members are defined as; HIMU for Afar plume mantle from ref. 75; E-MORB (red
circles) and N-MORB (blue circles) for the northern Red Sea82. The numbers above

each mixing line correspond to the relative He concentrations of the upper mantle
(UM) and Afar plume (AP), i.e. [He]UM/AP. Gulf of Tadjoura samples that were
previously analysed23,56 are also shown in these plots for illustration, they were not
included in the He concentration calculations (Supplementary Table 3). Error bars
in the y-axis represent 1σ.
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Implications
This studypresents a reliable estimateof the absoluteHecontent ofupwelling
deep mantle. In contrast to the prevailing paradigm, we find that the Afar
mantle plume is depleted in primordial He relative to the convecting upper
mantle. The lowHe content can be reconciledwith the trace element and the
isotopic compositionof theplume lavas andcanbeplausibly explainedby the
incorporation of subducted oceanic crust in the last 80Myr. This process
generates domains of primordial volatile-depleted material. Until ~1 Gyr
after subduction, downgoing slabs contain less He than the deep mantle
(Supplementary Fig. 2). On this timescale, slabs can penetrate the deep
mantle. Where these He-depleted mantle domains are incorporated into
upwellingplumes, the bulk composition of the resulting intraplate volcanism
can be dominated by the recycled slab, yet the He inventory will be domi-
nated by the deep mantle contribution. This explains why high 3He/4He are
recorded by many OIBs that display enriched geochemical signatures13 and
requires care should be exercised when using moderately high 3He/4He
mantle plumes to extrapolate the bulk composition of deep Earth.

Methods
Sample collection
This studyuses freshbasaltic glass samples fromtwoyoungMid-ocean ridges:
Red Sea (from 26-16oN) and Gulf of Tadjoura, Republic of Djibouti (Sup-
plementary Fig. 1). Helium isotope analysis was performed on basaltic glasses
dredged from the Red Sea during R/V Poseion P408-1 (the FS Poseidon
Fahrtbericht/Cruise Report P408 [POS408] from ref. 108) and R/V Pelagia
64/PE350/351 (RV PELAGIA Cruise Report 64PE350/64PE351 from
ref. 109) expeditions and cruises M31/2 from ref. 110, and SO29 from
refs. 23,111.The locationand traceelement compositionof theRedSeabasalts
can be found in ref. 74. The location of basalt samples dredged from the Gulf
of Tadjoura can be found in ref. 38. The trace element composition of these
samples were reported using the method of ref. 38 (Supplementary Table 4).

Analysis procedures: helium isotope measurements
The helium isotope composition of fifteen Red Sea-Gulf of Tadjoura basaltic
glasses were measured in the SUERC noble gas laboratory (Supplementary
Table 1). Ten samples were analysed using a MAP-215-50 noble gas mass
spectrometerusingprocedures reportedby ref. 112. Five sampleswere analysed
usingHelix SFTnoble gasmass spectrometer followingprocedures reportedby
ref. 113. In all cases the volatiles were extracted from vesicles in basaltic glasses
by invacuocrushingusingamulti-samplehydrauliccrusherapparatus.Helium
blanks during both analytical sessions were less than 1% of measured 4He
signals. Mass spectrometers were calibrated using HESJ He isotope standard.

Calculating relative mantle helium concentrations
In Fig. 2 we plot the He isotope composition of Red Sea basalts against trace
element ratios. Mixing lines are plotted between Afar mantle plume and two
upper mantle (N-MORB and E-MORB) components using the mass balance
equations of Langmuir et al. 114. The helium isotope ratios composition of the
Afar plume (AP) is 16 Ra

42,59,60,68 and 8 Ra
21 for the upper mantle (UM) end-

members. There is less clarity on the ITE ratios of the upper mantle as they
reflect the source and degree of enrichment84,115,116. In order to accommodate
the established heterogeneity in shallow mantle beneath Red Sea38, we define
end-member values for N-MORB and E-MORB mantle domains using the
highest ratio recorded in samples along Red Sea74. For the Afar plume end-
memberweuse the lowest ratiorecorded inGulfofTadjoura samplesaccording
to the [La/Sm]ngrouping (SupplementaryTable1).Themixing linesdeveloped
inFig.2are set for [He]UM/APof0.5,1,5and20.TherelativeproportionofHe in
the mantle domains ([He]UM/AP) has been calculated for each sample and all
trace element ratios (Rb/La, Rb/U,K/La, andK/Nb) (Fig. 2 and Supplementary
Table 3) using the best fit of mixing lines for each sample by changing the
[He]UM/AP value. The mean of the samples [He]UM/AP value is 7 ± 3 (1σ).

Slab sinking speed Vstoke calculation of Makran Slab
Weuse Stokes law117 to calculate the slab sinking speedVStokes, of theZagros-
Makran subduction. This method assumes a simple Stokes sinker11,118,119,
which accepts a higher-density blob (slab) sinking through a viscous fluid
(mantle) and calculates the speed of this sphere (Stokes sphere) to calculate
the speed that the Zagros-Makran slab has been sinking;

VStokes ¼ C
Δρgα2

ηm
;where ð1Þ

C ¼ 2þ 2η0

6þ 9η0
; where ð2Þ

η0 ¼ ηs
ηm

ð3Þ

WhereΔρ is the density contrast between slab andmantle and has a value of
80 kg/m3 from refs. 10,95,96, η′ is themantle viscosity ratio between oceanic
lithosphere to uppermantlewith a value of 50 from refs. 96,97,α is the radius
of the slablet with a value of 35,000m after the thickness of theMakran slab
taken to be 70 km from refs. 95,98. ηm is the upper mantle viscosity with a
valueof 5 × 1020Pa s fromref. 97 andηs as the oceanic lithosphere viscosity of
2.5 ×1022Pa s from ref. 96 and g is the gravitational force taken as 9.81m/s2.

Data availability
All data analysed or generated in this study are publicly available in Figshare
at https://doi.org/10.6084/m9.figshare.26517178.v1.
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