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c Cedre, 715 rue Alain Colas, 29200 Brest, France
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• Leachate led to energy metabolism
alteration and stress response.

• LEA and MR led to minor microbiota
changes but spread of Tenacibaculum
spp.

• Low concentrations of tire particles had
no effects on adult oyster ecophysiology.

• Parental exposure to leachate and tire
particles impacted gamete quality.

• Parental exposure did not lead to long-
term effects on offspring.
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A B S T R A C T

By 2040, tire particles (TP) are expected to dominate marine plastic contamination, raising concerns about their
effects on marine animals. This study employed a multidisciplinary and multigenerational approach on the
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Pacific oyster Magallana gigas to investigate the effects of TP and their leachates (LEA). Effects were analyzed at
the individual scale, from cellular, molecular, and microbiota changes to reproductive outputs and offspring
performance. Microbiota characterization revealed potential dysbiosis in oysters treated with high concentration
of both TP and LEA. RNA-seq analyses highlighted the activation of energy metabolism and stress responses in
the LEA treatment. Additionally, transcriptional changes in oocytes and the reduction of motile spermatozoa
suggested potential effects on gamete quality. Notably, possible oyster resilience was pointed out by the lack of
significant ecophysiological modifications in adults and impacts on the growth and reproductive outputs of the
offspring. Overall, the implications of the observed oyster resilience under our experimental setting are discussed
in relation to available toxicity data and within a comprehensive view of coastal ecosystems, where a higher
diversity of plastic/rubber materials and harsher environmental conditions occur.

1. Introduction

The release of tire particles (TP) mainly originates from the abrasion
of tires by the intense and widespread on-road traffic [1]. Global average
emissions of TP were estimated of 0.81 kg year-1 per capita, i.e. 6.1
million tons [2]. Because of this massive spreading in our environment
[3-6], TP represent one of the major contributors to microplastics (< 5
mm) pollution (e.g. [7-9]). Lau et al. [1] estimated that, in the worst
scenario modelling, TP might largely increase their dominant role in the
mass contribution of the aquatic microplastic contamination by 2040
(composing up to the 93 %) mainly because of the inefficiency of
management technologies used for other microplastics’ sources. Due to
their small sizes, TP can be unintentionally ingested by a wide range of
organisms [10-12].

While the literature shows contrasting biological effects of TP
(reviewed in Rødland [13]), the greatest hazard of tires seems to be
caused by the associated chemicals incorporated to improve tire prop-
erties (e.g. reviewed by Wik and Dave [14]). Tires-associated chemicals
may represent up to the 50 % of the relative mass proportion compared
to an average of 7 % in conventional plastics [15]. Aqueous leaching of
250 mg TP L-1 releases no less than 2000 chemical signatures [16],
including potentially hazardous compounds such as sulfur, polycyclic
aromatic hydrocarbons (PAHs), carbon black, trace metals, antioxi-
dants, curative and protecting agents and their transformation products
(e.g. [17-19,8,15]). More than a decade of environmental investigations
has demonstrated that the release of a ubiquitous tire rubber-derived
chemical (6-PPD-quinone) in roadway runoff stormwater induces mor-
tality events in coho salmon in urban creeks of the US West Coast [16].
Laboratory-based studies have also demonstrated that tire leachates may
induce detrimental effects on cellular activity [18,20], ecophysiological
functions (feeding, respiration; [21]) and embryo-larval traits of marine
organisms [22-24]. To date, most of the experiments performed were
based on short-term experimental exposures while long-term chronic
effects of low concentrations of TP and associated leachates are of
concern in particular for the role of endocrine disruptor that tire
chemicals could play.

In the present study, a multidisciplinary and multigenerational
approach was implemented embracing over two generations of the Pa-
cific oyster Magallana gigas, a marine bivalve mollusk of high economic
value and ecological importance for the ecosystem functioning (e.g.
regulation of water turbidity, creation of habitats, stabilizing the
shoreline; [25]). As a species that lives in coastal and intertidal areas in
numerous countries throughout the world, it is affected by marine
plastic pollution, which includes TP from air deposition, wastewater
effluents, and road surface runoff. The present study aims to test the
hypothesis that exposure to microplastics, specifically TP and their
associated chemicals, leads to long-term effects on the Pacific oyster
(M. gigas). The study focuses on evaluating the impacts across multiple
generations, examining both direct effects on the exposed generation
(G0) and potential cross-generational (G1) and multi-generational (G2)
effects. In detail, the study aims to: i) assess effects of tire particles, tire
leachates and natural particles (diatomite as a particle control) at indi-
vidual scale (generation G0) over a 6 weeks exposure during active
gametogenesis by measuring transcriptomic profiles, gut microbiota,

tissue alterations, feeding activity, growth, and reproductive outputs; ii)
monitor cross-generational effects (sensu [26]) on the G1 offspring
performance (development, survival, growth and reproduction of G1
larvae and juveniles) over one year; and iii) test multi-generational ef-
fects by looking at performances (i.e. development and survival) of the
G2 larval progenies.

2. Materials and methods

2.1. Tire particles, leachates and natural particles

Fine rubber powder composed of irregular tire particles was pur-
chased from Edge Rubber (Chambersburg, USA), which is obtained from
the ambient grinding of passenger and truck tires. Laser granulometry
(Beckman Coulter® LS 130) analyses performed on three subsamples of
the stock powder in UV-treated 1-μm filtered seawater gave a size range
of 176.4 ± 67.7 µm (min = 1.5 µm, max= 715 µm based on calculations
from 0.375 µm to 2000 µm). Diatomite (mean size = 289.2 ± 677.7 µm,
min = 0.01 µm, max = 3500 µm) was also used for an experimental
group to provide a particulate control in addition to the particle-free
control because of its natural origin, widespread presence in the ocean
and size/form similarity to the selected TP [27].

Aqueous leachates stock solution was prepared at a concentration of
5.2 g TP L-1 in 1 µm-filtered seawater using the protocol described in
Capolupo et al. [18] and detailed in Supplementary File S1. Previous
chemical analyses performed using TP leachates 20 times more
concentrated were not conclusive; metals, polychlorinated biphenyls
(PCBs) and PAHs levels being below the detection and/or quantification
limits [24]. Therefore, chemical analyses targeted in this study were
only performed on the raw material (tire powder stock) through a
multi-residue method to determine PAHs and PCBs by gas chromatog-
raphy coupled with tandemmass spectrometry (GC-MSMS, Agilent 7890
GC system linked to an Agilent 7010 triple quadrupole MS). Identifica-
tion of chemicals was performed by MRM (Multiple Reaction Moni-
toring) spectral mode that allows the selective and sensitive
quantification of compounds in complex matrices. Detailed methodol-
ogies are reported in Supplementary File S1.

2.2. Experimental design

Acclimated adult oysters (“G0”) were placed in air bubbling and
pressurized water inflowed (sensu [28]) 50-L experimental PMMA tanks
(40 oysters tank-1) supplied continuously with UV-treated 1-µm filtered
seawater (12 L h-1; 17.7 ± 0.2 ◦C; 34.5 ± 0.4 PSU; pH 8.2 ± 0.1) con-
taining a balanced mixture (50/50, v/v) of two microalgae (Tisochrysis
lutea and Chaetoceros sp) at a daily ratio equal to 8 % dry weight
algae/dry weight oyster. The algal concentration was measured then
adjusted every morning using an electronic particle counter (Multisizer
3; Beckman Coulter, USA). This conditioning period lasted 44 days to
ensure complete gametogenesis. Photoperiod was 12 h light:12 h dark.
More details of oyster origin and acclimation set up are reported in
Supplementary File S1.

Throughout the entire 44 days conditioning period, a total of six
treatments were applied (3 replicate tanks per treatment): (1) Control
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(no particle exposure; CTL); (2) Exposure to TP at low concentration of
microplastics in ocean (10 TP mL-1; 5.2 µg L-1, namely MR-L micro-
rubber low); (3) Exposure to TP at high concentration (100 TP mL-1; 52
µg L-1, namely MR-H micro-rubber High); (4) Exposure to leachate
corresponding to a low concentration of TP (5.2 µg L-1; LEA-L); (5)
Exposure to leachate corresponding to the high concentration of TP (52
µg L-1; LEA-H); (6) Exposure to natural particles (diatomite; 52 µg L-1;
NAT). Useful and more complete information on TP and our choices are
reported in Supplementary File S1.

Stock solution of TP, leachates and natural particles in sterile 0.2-μm
filtered seawater were administered using peristaltic pumps from
concentrated TP, leachates or natural particle solutions in order to
conduct chronic and continuous exposures. Tween-20 was distributed in
all tanks to avoid particles aggregation and confounding effects. Further
information is provided in Supplementary File S1. Every 48 h, tanks
were emptied and cleaned; the first wash water was put into the effluent
treatment system.

At the end of the exposure (44 days of treatment), oocytes and
spermatozoa were collected from mature G0 adults in each condition to
assess gametes quality and fertilization success, as well as next genera-
tion (generation 1, “G1”) embryo-larval development and settlement as
described below. Three months-old G1-oyster spats were then placed in
a local oyster farm and monitored (growth, survival) for 10 months (see
details below in Section 2.5), before being retrieved on month 13 and
used for assessing gametes quality and fertilization success through a
second controlled reproduction to produce G2-larvae (employing the
same procedure used to produce G1-larvae; details below). The whole
experimental plan is summarized in Fig. S1 (Supplementary File S1).
Analyses performed on G0, G1 and G2 oysters are detailed in the sections
below.

2.3. Biometrics, ecophysiological, and cellular parameters in G0 adult
oysters

Adult oyster growth (length and dry weight), survival and
ecophysiological parameters (algal consumption, absorption efficiency)
were monitored during the time-course of the exposure (44 days). Algal
counts measured every morning allowed to estimate the algal con-
sumption of G0 oysters (AC; µm3 day-1 oyster-1) and 24-h faeces were
collected from each tank alongside with a sub-sample of the diet (500
mL) at 12-, 23-, 32- and 40-days of exposure to estimate the absorption
efficiency (AE; %) of organic matter from the diet using the Conover’s
method [29]. Details of ecophysiological parameters methods are re-
ported in Tallec et al. [21] and in Supplementary Information 1.

At the end of the exposure, hemolymph from adult oysters (n = 5 for
CTL, NAT, and MR-H; n= 6 for the other conditions) was extracted from
the posterior adductor muscle using a hypodermic syringe (23-gauge
needle). Hemocyte viability measured using both SYBR Green I (Mo-
lecular Probes) and propidium iodide (PI, Sigma), reactive oxygen spe-
cies (ROS) production through 2’,7’-dichlorofluorescein diacetate
DCFH-DA (Sigma) and activity of the MXR pumps assessed by staining
hemocytes with calcein-AM (Sigma-Aldrich; 0.25 µM) were analyzed
using flow cytometry (BD FACSverse flow cytometer, BD Biosciences,
France) as described in Détrée et al. [30] and Marques-Santos et al. [31],
respectively. Ten oysters were used for histology to evaluate sex ratio,
gonadic development and tissue alteration following Fabioux et al. [32]
and Steele and Mulcahy [33].

2.4. Molecular analyses – transcriptomics and microbiome in G0 adult
oysters

Gills and digestive gland were collected from 6 individuals at the end
of the acclimation period just before the start of the exposure (T0) and
then after 44 days of exposure (T44; 6 oysters/condition) and stored in
RNA later at − 80 ◦C until the total RNA extraction performed using
RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA from each sample of

both tissues was addressed both to gene expression profiling (RNA-
sequencing) and for microbiota characterization (16S rRNA Amplicon
sequencing). In parallel, 20,000 oocytes collected at T44 from 4 pools of
3 mature females per condition were homogenized in 1.5 mL of Extract-
all (Eurobio) and stored at − 80 ◦C for further transcriptomic analyses.
Oocytes’ total RNA was extracted by Extract-All kit (Eurobio Scientific;
Les Ulis, France) and addressed to RNA-sequencing for transcriptomic
analysis. Furthermore, seawater samples (250 mL, 3 samples per con-
dition collected at T44) were first filtered to 20 µm (discarded) and then
through a 1 µm pore size 47 mm diameter polycarbonate membrane
(Whatman, Inc., Buckinghamshire, United Kingdom) using a vacuum
pump. Half of the membrane was used for RNA extraction using RNeasy
PowerWater Kit (Qiagen) for microbiota characterization (16S).

Detailed methods for gene expression profiling (RNA-sequencing)
and for microbiota characterization (16S rRNA Amplicon sequencing)
are provided in Supplementary File S1. Sequences are available in NCBI
SRA; https://www.ncbi.nlm.nih.gov/sra; BioProject PRJNA856813.

2.5. Gamete quality (G0, G1)

The quality of spermatozoa and oocyte of G0 and G1 oysters were
assessed by flow cytometry after the separated incubation in SW for 45
min. Oocyte diameter was estimated in micrographs from optical mi-
croscopy using the ImageJ software, and spermatozoa behavior (per-
centage of motile spermatozoa and Velocity of the Average Path (VAP;
µm s-1)) was measured by video analyses using the Computer-Assisted
Sperm Analyzer (CASA) plug-in developed in ImageJ [34] as
described in Tallec et al. [35].

Additionally, mitochondrial function was assessed on G1 oocytes
following the analysis of ATP levels and mitochondrial content through
the luminescence measuring by using a PerkinElmer EnSpire plate
reader. More details of gamete quality analyses are reported in Sup-
plementary File S1.

2.6. Fertilization, embryo-larval development (G1, G2), larval rearing
and larval behavior (G1)

Gametes obtained from G0 and G1 oysters were pooled in 2 L of SW
(21 ◦C) with a spermatozoa-to-oocyte ratio of 100:1 (avoiding poly-
spermy) and a final concentration of 1000 oocytes mL-1. After 1 h30 of
contact, the fertilization success (F; %) was estimated as: F= (number of
fertilized oocytes ÷ number of oocytes) × 100. Then, 500,000 embryos
(2-cells or 4-cells stage) per replicates were collected and placed in 5 L of
FSW (21 ◦C), i.e., 100 embryos mL-1. After 36 h of incubation, all beakers
were sieved at 40 µm to measure the D-Larval yield (%; (number of
normal d-Larvae ÷ number of larvae) × 100) in G1 and G2 embryos.
Abnormal D-larvae referred to larvae displaying morphological mal-
formations (hinge, shell, mantle) or embryos exhibiting developmental
arrests [36].

At the end of the G1 embryo-larval development, 90 G1 D-larvae per
replicate were placed in 96-well plates filled with SW (21 ◦C). Videos
were acquired under a microscope (Keyence VHX6000, Japan; × 40) for
1 min at 30 frames s-1 then analyzed using the tracking software Etho-
vision XT 13.0 (Noldus, The Netherlands) to estimate the percent of
active larvae (Activity; %), the activity duration (seconds), the distance
traveled (mm) and the velocity (mm sec-1). At 15 days post fertilization
(dpf), eyed-larvae were sampled to compare the settlement behavior
among treatments following the procedure detailed in Supplementary
File S1.

For the first generation G1, 100,000 normal G1 D-larvae per repli-
cate were placed in 5-L cylinder (4 per condition) in a flow-through
rearing system [37]. Larvae were continuously supplied with SW (24
◦C) containing a mixed diet of T. lutea/C. neogracile (50/50, v/v) at a
mean concentration of 1500 µm3 mL-1. At 2-, 7-, 10-, 12- and 15-dpf,
20–30 larvae were sampled from each replicate and fixed in a
formaldehyde-seawater solution (0.1 % final) then pictured under a
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microscope to estimate the larval growth rate (µm day-1) using the
ImageJ software. Larvae were considered as “ready to settle”when more
than 50 % of larvae in each replicate from a treatment reached 50 % of
eye d-larvae (i.e. the metamorphosis competent stage), indicating the
end of the pelagic phase. For G1 larvae, the larval rearing was sieved on
80-mm mesh and 20,000 larvae were transferred to 30-L tanks at 25 ◦C
to settle on cultch using a down welling system (n = 3 batches per
treatment) as described in Petton et al. [38]. After 3 months of G1 larvae
conditioning, a subsample of them were transferred in a local oyster
farm as described in the following Section 2.7.

For G2 D-larvae, the mitochondrial metabolismwas assessed through
the analysis of the ATP levels described above for oocytes and through
the evaluation of mitochondrial contents. Mitochondrial content was
determined as the fluorescence values normalized to the control group.
Details are in Supplementary File S1.

2.7. Monitoring for growth, survival and reproduction of the offspring
(G1, G2)

300 G1 oyster seeds (200-days-old) per condition were deployed on
an oyster farming site in the Aber Benoit (Latitude: 48.575244 |
Longitude: − 4.60758) in November 2021, where they were reared in
onshore oyster farm facilities for 10 months (3 oyster bags per condition,
100 oysters per bag). Survival (counting all the live oysters and
removing the dead ones), individual growth (total weight, drained meat
weight, shell weight, shell length) and reproductive status (see Histology
sub-section in Supplementary File S1) were monitored by sampling 30
oysters per treatment at the final sampling in September 2022. The day
after, gametes of G1 oysters (3 males and 3 females per oyster’s bag)
were collected for gamete quality measurements, fertilization and
embryo-larval development up to 48 h D-larvae. The procedure to obtain
gametes and cross them was identical for G0 and G1 generations and is
described in Sections 2.6, 2.7 and Supplementary File S1.

2.8. Statistical analysis and graphical representation

Statistical analyses and graphical representations were conducted
using either Statgraphics or the R software [39]. Percentages were
analyzed after angular transformations. Normality and variance homo-
geneity were screened using the Shapiro and Levene tests, respectively.
Data from algal consumption were analyzed using repeated measures
ANOVA. One-way ANOVA were used to analyze effects of treatments on
the growth, the absorption efficiency, the gamete quality, larval devel-
opment, and ATP content. Post-hoc Tukey HSD test was employed for
multiple comparisons. Comparisons of sex distributions between con-
ditions were made using Fisher exact test. Differences were considered
significant when p-values < 0.05. Data is reported as mean ± standard
deviation.

3. Results

3.1. Chemical analyses on the raw material

Targeted chemical analyses detected 27 compounds (16 PAHs, 11
PCBs). Of these, 7 were below limits of quantification (Table S1 in Sup-
plementary File S1). Pyrene, phenanthrene, fluoranthene, benzo(ghi)
perylene, and chrysene had the highest concentrations ranging between
3175 and 13,865 µg kg-1 for chrysene and pyrene, respectively. In
addition, the SCAN-mode detected six additional compounds: 1,2-Dihy-
dro-2,2,4-trimethylquinoline (antioxidant), dicyclohexylamine (vulcani-
zation), 2-(tert-Butyl)-1H-indole (indole), 2-phenylbenzothiazole
(vulcanization), 10,18-Bisnorabieta-8,11,13-triene (antioxidant), N(1,3-
dimethyl-butyl)-N’-phenyl-p-phenylenediamine (6-PPD; antioxidant).

3.2. Ecophysiological parameters, growth monitoring and hemocytes
features (G0 adult oysters)

The 44-days exposure did not result in significant differences (p-
values > 0.05) among all treatment regarding the total hemocyte count
(mean THC value = 1.54 × 105 ± 6.74 × 104 cell mL-1), the proportion
of live hemocytes (mean value = 93.2 ± 5.2 %), their ROS production
(mean value = 194.5 ± 121.3 A.U.) and the activity of the hemocyte
MXR transmembrane pumps (mean value = 4538.8 ± 2575.5 A.U.)
(Fig. S2; Supplementary File S1).

3.3. Gene expression analysis (G0 adult oysters)

Principal Component Analysis, performed separately for digestive
gland, gills and oocytes are reported in Fig. 2. After discarding the
unwanted variance based on RUVs function, gene expression profiles of
the digestive gland (Fig. 2a) indicated a slight separation of CTL and
NAT treatments from other groups along the first (6.57 %) and second
(4.98 %) components of variation. In gills (Fig. 2b), a slight separation of
oysters exposed to LEA-H and to MR-H from other treatments was
observed along the x-axis (5.95 %). These low values for variance sug-
gest quite low to moderate biological differences in both tissues among
treatments. A clearer distinction, but still based on low variance, among
treatments was found for oocytes (10.44 % and 8.92 % variation,
respectively).

Differentially expressed genes (DEGs) identified through pairwise
comparisons between each treatment and the control group (CTL) are
listed in Supplementary File 2. Both gills and digestive gland tissues
showed a lower amount of DEGs in response to MR and LEA (from 2 to
26 DEGs) compared to oocytes for which pointed out more than 400
DEGs in all treatments in comparison to the CTL group. The number of
DEGs in each tissue/treatment are reported in Supplementary File S1-
Table S3.

In digestive gland, the highest number of DEGs and significant
pathways observed in the Gene Set Enrichment Analysis (GSEA) were
found following MR-H and LEA-H exposures, while no significant DEGs
were found following NAT exposure compared to the CTL. In detail,
GSEA (summarized in Table 1 and reported in Supplementary File 3)
showed the activation of detoxification process as point out by the
common up-regulation of “xenobiotic metabolism” following exposures
to MR-H and both LEA exposures, the up-regulation of cytochrome p450
(CYP450) in LEA-H and by the KEGG pathway “drug metabolism cyto-
chrome p450” in MR-H exposed oysters. While the up-regulation of
“oxidative phosphorylation” and “fatty acid metabolism” were observed
in all treatments including NAT, disruption of energy metabolism was
mainly observed in oysters exposed to LEA-H, with the up-regulation of
“glycolysis” (also in LEA-L), “citrate cycle” (also in MR-H) and “energy
derivation by oxidation of organic compounds”. Alterations of stress and
signaling responses were specifically detected in LEA-H oysters, showing
the up-regulation of pathways involved in “apoptosis”, “protein secre-
tion”, “reactive oxygen species pathway”, “mTORC1 signaling”, “TNF
signaling via NFKB” and “NOTCH signaling pathway”. Exposure to
leachate led also to changes in immune pathways, such as “comple-
ment”, “interferon response” and “defense response to virus”. Specific
transcriptional changes were also observed following MR-H exposures,
representing the unique treatment showing the up-regulation of several
pathways involved in neurotransmission/synapses (“excitatory syn-
apse”, “GABAergic synapse”, “glutamatergic synapse”, “regulation of
neurotransmitter levels”) and of the KEGG “pathways in cancer”.

In gills, the highest number of DEGs and molecular pathways were
observed following LEA-H exposures, showing the down-regulation of
three pathways involved in synapses, the up-regulation of pathways
involved in immune response (“interferon response” and “defense to
virus”), energy metabolism (“oxidative phosphorylation”), “UV
response”, and in signaling (“Notch signaling pathway” and “WNT
signaling pathway”). Both MR and LEA exposed oysters showed also
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transcriptional changes in pathways involved in cell cycle regulation
and proliferation. Among them, the down-regulation of “G2M check-
point”, “mitotic spindle” (in MR-H), “E2F targets” (MR-H and LEA-L),
both “MYC targets” pathways (LEA-L) and “pathways in cancer” (LEA-
H). Up-regulation of “drug metabolism cytochrome p450” was also
found following LEA and MR-H treatments.

In oocytes, almost all significant pathways were down-regulated in
exposed oysters, with major effects detected in oocytes of MR-L exposed
oysters. Among them, “Notch signaling pathway” (MR-L, MR-H, LEA-L),
“regulation of reproductive process” (MR-L, LEA-L), “apoptosis”,
“pathways in cancer” and “TNF signaling via NFKB” (MR-L). Major ef-
fects in MR-L treatment were also suggested by the up-regulation of
“PI3K/AKT/mTOR pathway” and by the down-regulation of several
pathways involved in immune response and inflammation, including
“immune system process”, “immune response”, “NOD-like receptor
signaling” and “inflammatory response”. Concerning the immune
response, down-regulation of “response to bacterium” and “interferon
response” were found in LEA-H and MR-H, respectively. Noteworthy, in
oocytes 34 genes were commonly down-regulated in NAT and both MR
treatments including Lysozyme 1, while Neuropeptide Y receptor (NPYr)
was down-regulated in both NAT and MR-H oocytes.

3.4. Microbiota analyses in gills and digestive glands (G0 adult oysters)

PCoA did not show a clear separation between treatments in both
tissues, except for a weak separation in gills of LEA-H exposed oysters
(Fig. S3-B; Supplementary File S1), similar to the results obtained for
gene expression profiles. Furthermore, no significant changes in mi-
crobial diversity (i.e. Chao1, Shannon’s and Simpson’s Index) between
treatments and the control group were observed (Fig. S4, Supplementary
File S1). Few changes in microbiota composition following exposures to
NAT, MR and LEA were confirmed by pairwise comparisons with CTL
group, highlighting a small amount of differently represented taxa in
both tissues (Table S4, Supplementary File S1). The full lists of signifi-
cant taxa for each comparison are reported in Supplementary file 4.
Noteworthy, the genus Tenacibaculum was over-represented in oyster
gills (log2FC = 8.7), digestive gland (log2FC = 23.8) and in filtered

seawater of the tank of the MR-H treatment (log2FC = 24.6). This genus
was also detected in digestive gland and gills of MR-L and LEA-H
experimental groups, respectively.

3.5. Reproductive outputs (G0 adult oysters) and G1 larval growth and
behavior

Measurements performed on gametes from exposed-adults showed
that exposures to leachates (LEA-L and LEA-H) reduced significantly the
percentage of motile spermatozoa in G0 oysters compared to the control
treatment (i.e. mean reduction of 31 % in both leachates conditions
compared to control; p-value < 0.05; Table 2); other treatments had no
effect (p-value > 0.05). Other proxies of gametes quality (i.e. VAP and
oocyte diameter) were statistically similar among all treatments (p-value
> 0.05; Table 2). The D-larval yield (average value= 82.1 ± 8.9 %) was
not affected in comparison to the control treatment (p-values > 0.05;
Table 2).

No effects of the experimental treatments were detected on the G1
larval development (p-value > 0.05; Fig. 3). The growth rates varied
from 19.9 ± 1.0 µm day-1 to 21.6 ± 0.7 µm day-1 for LEA-H and MR-H,
respectively. D-Larvae (2 dpf) displayed similar activity, active dura-
tion, distance traveled, and velocity among all treatment (p-values >

0.05; Table S5 Supplementary File S1). The level of exploring larvae at
15 dpf was similar among treatments, regardless of the tested chemical
cues with average values of 39.6 ± 3.5 %, 71.3 ± 7.4 % and 64.4
± 5.8 %, in the “Without fragrance”, “Predator fragrance”, and “Oyster
fragrance” conditions, respectively (p-value > 0.05, Table S6 in Sup-
plementary File S1). Overall, eyed-larvae exhibited a higher exploring
behavior in the presence of chemicals cues (predator and oyster fra-
grances) compared to the condition “without fragrance” (+ 71 %; p-
value < 0.001).

3.6. Long term effects on G1 and G2 generations

Growth (i.e. oyster length and weight) of G1 offspring in an oyster
farming area appeared similar among treatments (Table S7 in Supple-
mentary File S1). Survival ranged from 36 ± 10 % for MR-L to 20

Fig. 1. Algal consumption (µm3 day-1 oyster-1) in adult oysters. (A) Adult oysters from the control treatment (grey line – CTL) vs. the natural treatment (green line –
NAT); (B) Adult oysters from the control treatment (grey line – CTL) vs. the MR (micro-rubber) treatments (High: Red – MR-H; Low: Light red – MR-L); (C) Adult
oysters from the control treatment (grey line – CTL) vs. the leachate treatments (High concentration: Blue – LEA-H; Low Concentration: Light blue – LEA-L). Repeated
measures ANOVA were conducted to compare treatments at the 5 % level; n = 3 per treatment.
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± 16 % for LEA-H, with no significant differences among treatments. For
gametogenesis, all the oysters were in stage 3 at the final sampling. The
sex-ratio (male/female) varied from 7/86 in NAT to 53/47 in MR-H
(Table S8 in Supplementary File S1). The proportion of females was
high in most of the conditions (5 out of 6 conditions) and only MR-H had
a high number of males, which is only significantly different from the
NAT condition (p < 0.05; Table S9 in Supplementary File S1). Mean
gonadic tissue surface percentages varied from 50.6 ± 16.0 to 58.4
± 9.8 % for the conditions control and LEA-L, respectively, with no
significant differences among treatment (Table S7 in Supplementary File
S1). No effects was observed on G1 spermatozoa motility and velocity of
the Average Path (VAP) (Table S10 in Supplementary File S1). For G1
oocytes, two shapes were recorded, pear-shaped (circularity < 0.8) and
circular (circularity> 0.8) and their respective proportions significantly
differed between conditions (χ2 = 171, p = 0, df = 5) with pear-shaped
oocytes ranging from 64.8 (LEA-L), 81.7 (NAT), 84.7 (MR-L), 87.2 (MR-
H), 89.5 (CTL) to 90.1 % (LEA-H). The fertilization rate in the NAT
condition (86.2 ± 3.0 %) was found significantly lower compared to all
other conditions (Kruskal-Wallis test = 13.02; p-value = 0.023,
Table S10 in Supplementary File S1). Finally, ATP energy measurements
showed no difference among treatments for G1 oocytes with mean ATP
value ranging from 316 ± 11 (MR-L) to 446 ± 116 fmol/oocyte (LEA- L)
(Table S11 in Supplementary File S1). The G2 D-larval yield, ranging
from 65.2 ± 3.0 % to 80.9 ± 15.6 % for the NAT and LEA-H conditions,

respectively, was similar among groups (except for NAT; Table S10 in
Supplementary File S1). No difference in D-larvae size was observed at
48 h among conditions (Table S10). As observed for G1 oocytes, ATP
energy measurements showed no difference among treatments for G2 D-
larvae with mean values ranging from 22 ± 14 (LEA-H) to 43 ± 8 fmol/
larvae (MR-H) (Table S11 in Supplementary File S1). The mitochondrial
content remained similar in the G2 D-larvae regardless of the treatment
(MR-L: 0.85 ± 0.38, LEA-H: 0.93 ± 0.51, LEA-L: 0.99 ± 0.72, CTL: 1.0
± 0.46, MR-H: 1.59 ± 0.91, NAT: 2.04 + 0.57; data represented as relative
fluorescence values compared to the CTL group).

4. Discussion

4.1. Molecular analyses reveal the alteration of energy metabolism and
stress response following leachate exposure

Gene expression analyses of oyster’s digestive gland revealed
oxidative stress, increased energy metabolism as well as the modifica-
tion of several signaling pathways following exposure to tire leachate.
Alterations of molecular mechanisms were already observed in bivalves
(e.g. Pacific oyster, [28]; pearl oyster, [40]; blue mussel, [41]; reviewed
in Khanjani et al. [42]) after exposure to plastic particles under labo-
ratory conditions with effects that lead to profound changes in molec-
ular functioning within cells. For instance, Gardon et al. [40] reported

Fig. 2. Principal component analysis on the whole digestive gland, gills and oocytes RNAseq dataset after normalization using the RUVs function. Different colors
indicate control treatment (grey dot – CTL), natural treatment (green dot – NAT); MR high concentration purple - MR-H); MR low Concentration (white – MR-L);
leachate high concentration (Red – LEA-H); Leachate low Concentration: orange – LEA-L). For digestive gland and gills, male and female oysters are also indi-
cated with ♂ and ȱ, respectively.
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dose-specific transcriptomic responses of pearl oysters in response to
polystyrene microspheres exposure alongside with alteration of the
oysters’ energetic capacities that demonstrated a significant reduction of
the energetic budget. Specifically, the expression of genes involved in
“transport and metabolism of carbohydrates” was found to be higher in
pearl oysters exposed to micro-nanoplastics from pearl farming gears
compared with unexposed oysters, seen in parallel with an early
depletion of glycogen, consistent with its role as a rapidly mobilizable
metabolic fuel to meet the energy demands of bivalves [43].

In addition to an impaired energy metabolism [44], microplastics
were reported to affect DNA integrity, oxidative stress and antioxidants
enzymes [40,42,45,46]. Considering that oxidative stress is a key
mechanism for metal and PAH toxicity in aquatic organisms [47,48], the
up-regulation of “reactive oxygen species pathway” in LEA-H exposed
oysters could be explained by leachate’s additives, as already proposed
by Shin et al. [44]. The increased oxidative stress may lead to excessive
energy consumption required to maintain cellular homeostasis, as sug-
gested by the up-regulation of several functional categories involved in

Table 1
Summary of significant pathways obtained through GSEA for digestive gland, gills and oocytes. Green and red colors indicated down- or up-regulation, respectively, for
each significant pathway.

DIGESTIVE GLAND GILLS OOCYTES
Diges�ve gland Gills Oocytes

Process Pathways NA
T

LEA
-L

LEA-
H

MR
-L 

MR-
H

NA
T

LEA
-L

LEA-
H

MR
-L 

MR-
H

NA
T

LEA
-L

LEA-
H

MR
-L 

MR-
H

ENERGY 
METABOLISM/METABOLI

C PROCESSES

HALLMARK_OXIDATIVE_PHOSPHORYLATION x x x x x x
HALLMARK_FATTY_ACID_METABOLISM x x x x x

HALLMARK_GLYCOLYSIS x x
GO_ENERGY_DERIVATION_BY_OXIDATION_OF_ORGANI

C_COMPOUNDS x

KEGG_CITRATE_CYCLE_TCA_CYCLE x x

CELLULAR COMPONENT
HALLMARK_PEROXISOME x x x x

HALLMARK_APICAL_JUNCTION x x
HALLMARK_APICAL_SURFACE x x x x

STRESS RESPONSE 

HALLMARK_XENOBIOTIC_METABOLISM x x x x
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 x x x x

HALLMARK_DNA_REPAIR x x
HALLMARK_UV_RESPONSE_DN x x

HALLMARK_PROTEIN_SECRETION x
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY x

IMMUNE RESPONSE HALLMARK_COMPLEMENT x x
HALLMARK_INTERFERON_RESPONSE x x x

IMMUNE SYSTEM PROCESS x x
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY x

IMMUNE RESPONSE x x
GO_INNATE_IMMUNE_RESPONSE x

RESPONSE_TO_BACTERIUM x
HALLMARK_INFLAMMATORY_RESPONSE x

GO_DEFENSE_RESPONSE_TO_VIRUS x x

NEUROTRANSMISSION/S
YNAPSE

GO_EXCITATORY_SYNAPSE x x
GO_GABA_ERGIC_SYNAPSE x x x

GO_GLUTAMATERGIC_SYNAPSE x x
GO_REGULATION_OF_NEUROTRANSMITTER_LEVELS x

REPRODUCTION/DEVELO
PMENT

GO_REGULATION_OF_REPRODUCTIVE_PROCESS x x x x
GO_CANONICAL_WNT_SIGNALING_PATHWAY x x

KEGG_NOTCH_SIGNALING_PATHWAY x x x x x
HALLMARK_MYOGENESIS x

HALLMARK_ADIPOGENESIS x x x x

CELL 
CYCLE/PROLIFERATION

HALLMARK_APOPTOSIS x x
KEGG_PATHWAYS_IN_CANCER x x x
HALLMARK_G2M_CHECKPOINT x
HALLMARK_MITOTIC_SPINDLE x
HALLMARK_MYC_TARGETS_V2 x

HALLMARK_E2F_TARGETS x x
HALLMARK_MYC_TARGETS_V1 x

HALLMARK_MTORC1_SIGNALING x
HALLMARK_PI3K_AKT_MTOR_SIGNALING x
HALLMARK_TNFA_SIGNALING_VIA_NFKB x x

Table 2
Percentage of G0motile spermatozoa (%), sperm velocity (VAP; µm s-1), oocyte diameter (µm), and fertilization yield (%), D-larval yield (%) of obtained G1-larvae after
44 days of parental exposure to: (1) CTL; (2) NAT; (3) MR-L; (4) MR-H; (5) LEA-L; (6) LEA-H. One-way ANOVA was conducted to compare treatments at the 5 % level
with Tukey-HSD when necessary; * = p-value < 0.05; n = 3.

Treatment Sperm motility (%) VAP (µm s-1) Oocyte diameter (µm) Fertilization yield (%) D-larval yield (%)

CTL 55.4 ± 7.7 91.6 ± 15.3 30.9 ± 0.7 87.8 ± 1.3 91.3 ± 3.9
NAT 48.7 ± 10.6 82.5 ± 10.0 30.2 ± 0.6 82.5 ± 6.8 65.5 ± 38.9
MR-L 47.9 ± 9.3 77.8 ± 9.6 31.4 ± 0.6 90.5 ± 5.9 81.0 ± 17.8
MR-H 43.1 ± 8.9 77.5 ± 6.4 30.5 ± 0.6 87.5 ± 9.2 87.0 ± 5.3
LEA-L 37.4 ± 5.8 * 78.4 ± 4.3 30.7 ± 0.3 82.8 ± 6.6 85.3 ± 7.5
LEA-H 38.8 ± 5.3 * 72.8 ± 6.1 30.6 ± 0.2 83.8 ± 4.4 82.7 ± 14.6
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energy metabolism, from glycolysis to oxidative cycle and citrate cycle.
Additional evidence of oyster’s attempts to maintain homeostasis was
provided by the up-regulation of pathways involved in drug metabolism
and “mTORC 1 signaling”; in fact the most important role of mTORC1 is
to monitor the energy status of the cell and, consequently, activate
protein translation [49], thus favouring cell and tissue growth [50]
suggested by the up-regulation of “protein secretion” category in the
same treatment (LEA-H). Changes of the expression of genes involved in
detoxification processes and protein synthesis were detected in oysters
(S. glomerata) following the long-term treatment with few PAHs [51],
corroborating the potential effect of leachate chemicals of our results.

Moreover, oxidative stress due to leachate exposure may have also
interfered with other key signaling pathways. Among them, the up-
regulation of the NOTCH signaling pathway, a highly conserved cell
signaling system, in both gills and digestive gland of LEA-H exposed
oysters was detected suggesting potential consequences in an enormous
diversity of developmental processes [52]. The up-regulation of NOTCH
signaling pathway was already described in liver of rats exposed to
benzo[a]pyrene [53], as well as in the gut of planarians exposed to
microplastics [54]. Disruption of key signaling pathways following
leachate exposures is also suggested by the up-regulation of “apoptosis”,
“TNF signaling via NFKB” and “WNT canonical signaling pathway”. The
latter is a highly evolutionarily conserved signal transduction pathway
playing pivotal roles in cell proliferation and tissue homeostasis; its
up-regulation recorded in gills could be triggered by oxidative stress as
already described in previous studies following exposures to nano- and
microplastics [55-58].

The up-regulation of pathways involved in synapse and neurotrans-
mission was observed in digestive gland following the exposure to the
highest tire particle concentration (MR-H). Conversely, the same path-
ways were down-regulated in gills following leachate exposure (LEA-L,
LEA-H). To date, most of the available studies that pointed out the po-
tential neurotoxicity caused by microplastics were focused on changes
occurring mainly in the neurotransmitter acetylcholinesterase (AchE)
activity [59-63]. To our knowledge, disruption of synapses and neuro-
transmitter regulation has never been described in the digestive gland
following TP and LEA exposure. In accordance with Yurchenko et al.
[64], we speculate that these findings may be related to the three pairs of
ganglia directly connected to the digestive tissues that form the nervous
system in oysters. Despite increasing evidence suggesting the involve-
ment of bivalve neurotransmitters in a variety of behaviors and bio-
logical functions, their diversity and distribution in the nervous system
remain somewhat unclear, making further analyzes necessary to
correctly interpret the tissue- and treatment-specific responses high-
lighted here at the transcriptional level.

Overall, our data showed the putative toxicity of leachates exercised
through molecular modifications leading to the alteration of several key
signaling pathways and biological processes. The increasing of energy
metabolism has both costs and benefits: on one side, it may help to
maintain cell homeostasis, while, on the other side, the allocation of

extra energy required to face chemical stress might drive to a lower
availability of energy for several traits such as reproduction. Potential
effects on reproductive outputs were therefore sought as described
below.

4.2. Oyster’s microbiota characterization reveals minor changes in
microbial communities but over-representation of Tenacibaculum spp.

Despite minor changes in microbial communities of gills and diges-
tive glands upon a 44-days exposure to tire particles and leachates, an
over-representation of Tenacibaculum spp. was observed in digestive
gland of oysters exposed to both tire particles concentrations (MR-L and
H) and in gills of oysters exposed to MR-H and LEA-H, suggesting the
onset of dysbiosis following exposure to high concentration of both tire
particles and leachates [65]. Tenacibaculum spp is a gram-negative and
motile bacterial genus from the family of Flavobacteriaceae that in-
cludes opportunistic species often associated to mortality events in fish
and shellfish species [66,67]. Recently, Tenacibaculum has been also
associated to mortality events occurring in Italy in adult Pacific oysters,
where it induced necrotic lesions [67]. The dominance of Tenacibaculum
spp. in exposed oysters as compared to controls suggested a potential
perturbation of the gut microbiome that could have consequences on the
oyster physiology and resistance to stress [68]. Indeed, the oyster
microbiota and its stability are closely linked to host resistance to stress
and pathogens [69,70].

4.3. Low concentrations of tire particles and leachates had no effects on
adult oyster ecophysiology

No effects were observed in adult oysters on growth, feeding rate and
absorption efficiency, as well as on hemocyte oxidative and detoxification
processes upon exposure to tire particles or their leachates. This suggest
that (i) oysters exposed to tire particles reasonably managed to cope with
the presence of various chemical compounds (e.g. pyrene, phenanthrene,
fluoranthene, benzo(ghi)perylene) in the tire powder and/or (ii) the
leaching of such compounds was somewhat moderate as it did not exac-
erbate toxicity in exposed oysters. Regarding the first point, the most
elevated levels of PAHs detected in tire powder used in the present study
(pyrene 13,865, phenanthrene 7025, fluoranthene 5481, benzo(ghi)per-
ylene 5582 μg kg− 1), are clearly much higher than the toxicity threshold
previously observed in aquatic species without knowing the exact quan-
tity desorbed in water and potentially accumulated in animals, although
the exact quantity desorbed in water and potentially accumulated in
animals is unknown. For example, for pyrene, the measured EC50 is equal
to 1024 µg L-1 in short-term exposure in Daphnia magna and to 9.3 µg L-1

in 7 days test in Ceriodaphnia dubia [71]. Interesting, consequences at
molecular level were detected in oyster (Saccostrea glomerata) after the
treatment for prolonged period (7 days) to pyrene and fluoranthene by
using rice flour (particle sizes up to 50 µm) as chemicals carrier, such as
the alteration of genes related to PAH detoxification (e.g. cytochrome

Fig. 3. Size of larvae (G1) issued from parental exposures. (A) Control treatment (grey line – CTL) vs. the natural treatment (green line – NAT); (B) Control treatment
(grey line – CTL) vs. the micro-rubber treatments (High concentration: Red – MR-H; Low Concentration: Light red – MR-L); (C) Control treatment (grey line – CTL) vs.
the leachate treatments (High concentration: Blue – LEA-H; Low Concentration: Light blue – LEA-L).
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P450), innate immune responses (e.g. pathogen recognition, phagocy-
tosis) and protein synthesis [51]. In previous studies inM. gigas, sub-lethal
effects of tire particles leachates were reported both on early life stages
[24] and juveniles of oyster, reflected by significant reductions in algal
and oxygen consumption by a mean of 52 % and 16 %, respectively [21].
The difference of effects with the present study may be explained by
several non-mutually exclusive explanations: the concentration of tested
tire particles chemical-associated leachates in the present study was 20
times less concentrated than the lowest dose tested in Tallec et al. [21]. In
addition, the brands and life-history of the tires used to produce the
leachates were different between both studies, which may lead to dif-
ferences in their chemical composition, thus influencing the intrinsic
toxicity of the material.

4.4. Parental exposure impacted gamete quality without consequences on
the fertilization success

A significant incidence of the parental exposure was mainly observed
on the percentage of motile G0 spermatozoa with a 22 % reduction in
the two leachates conditions (LEA-L and LEA-H, p-value < 0.05) as
compared to the other treatments. Such effects of parental exposure on
their reproductive outputs (reviewed in [72]) were suspected to be due
to (i) endocrine-like toxicity of MP and/or their associated chemical
compounds (e.g. [73]), as well as to (ii) a disruption of the energy
metabolism (e.g. [28]) as mentioned above or to (iii) transfer of particles
in the offspring (as observed for NP; [74]). A reduction in the proportion
of motile spermatozoa may have consequences on the overall fertiliza-
tion success [75]. This was not the case here for both G1 and G2 early life
stages supposedly due to the optimal fertilization conditions providing
sufficient amount of spermatozoa to fertilize the oocytes (initial con-
centration spz:oocyte set at 100:1). In natural coastal environments
where high dilution process occurs the probability of encounter is much
lower, thus any significant alterations of the gamete’s quality could have
consequences on the fertilization success.

When considering the molecular pattern in oocytes, the high number
of DEGs (more than 400) in comparison with other tissues (no more than
26 in pairwise comparisons in gills or digestive glands) demonstrates
that oocytes are significantly targeted in cases of prolonged exposures of
the broodstock during gametogenesis as suggested in the zebrafish
exposed to NP PS [74]. Overall, molecular changes observed in oocytes,
mainly following tire particles exposures, could be explained by the
presence of microparticles in follicular fluid, able to influence the
regulation of genes involved in cell cycle and apoptosis with possible
consequent disruption of gamete functioning in oocytes [76]. Among
DEGs, some support the hypothesis of endocrine disruption. The NOTCH
signaling pathway was down-regulated in oysters treated with both tire
particles (MR-H and MR-L) and LEA-L. Such impairment could lead to
subsequent effects in embryonic development, as demonstrated in
metazoan organisms [52], but was not observed here in G1 nor in G2.

Conversely to adult digestive gland and gills, most important effects
at molecular level in oocytes were found in oysters exposed to low tire
particles concentration (MR-L). Tire particles immunotoxicity is
repeatedly noted by the impairment of molecular pathways playing key
role in i) cell cycling (“TNF signaling via NFKB” and “PI3K/AKT/mTOR
pathway”); ii) immune system and changes in apoptosis regulation
(down-regulation of several pathways/genes involved in immune
response and apoptosis as BIRC7, BIRC3 and IAP1) as already observed
in oocytes of zebrafish exposed to NP PS [77]; iii) down-regulation of
NPY receptor and Lysozyme 1 (both down-regulated), already observed in
fertilizedM. galloprovincialis eggs exposed to NP [78]. While NPY plays a
major role in the coordination of energy balance and reproduction, a
potential immunomodulatory role was also suggested in invertebrates,
including M. gigas, in which NPYr down-regulation was reported in
larvae exposed to heat and bacterial stress [79].

Sub-lethal effects of tire particles and leachates exposures on oocytes
are also demonstrated by the up-regulation of Growth arrest and DNA-

damage-inducible protein GADD45, playing a key role in cell cycle ar-
rest, DNA repair, cell survival, and apoptosis. GADD45 was described
up-regulated in several bivalve species following exposure to different
stressors including microplastics [80-83]. Indeed, GADD45 appeared
significantly over-expressed in response to low tire particles and leach-
ates concentrations, questioning its loss of function at higher concen-
trations as already reported in oocytes of zebrafish exposed to different
microplastic concentrations [77]. A negative correlation between
GADD45 and D-larvae yields was recently highlighted in Pecten maximus
[84] suggesting potential detrimental effects in reproductive efficiency
following contaminant exposures, not observed here.

4.5. Parental exposure did not lead to long-term effects on offspring
growth and reproductive outputs

No long-term consequences of parental exposure (G0) on the
consecutive generation (G1) were observed by monitoring growth,
survival and reproductive success over 13 months, despite sub-lethal
effects on molecular functioning, gamete quality and microbiota
observed in exposed broodstock. Even during early development, a life
stage characterized by fine-tuning of the cellular metabolic program and
by a high metabolic rate [85], mitochondrial function showed no
changes in oocyte and larvae in terms of ATP levels and mitochondrial
contents. This suggests the ability for oysters to cope with moderate
contamination levels of tire particles and their associated leachates in
our experimental conditions.

5. Conclusions

While our results bring a positive note on the apparent resilience of
Pacific oysters to tire particles and associated leachates exposure by
activating transcriptional changes to cope with chemical stressors,
caution should be taken when extrapolating these results to other rubber
materials or to natural – harsher – conditions occurring in coastal eco-
systems. As previously demonstrated, the toxicity of plastic and rubber
materials are highly dependent on their chemical formulations and life
history [24,16,86] leading to end-less combinations of toxicity poten-
tial. Another aspect to bear in mind is that, in the natural environment,
food deprivation and/or environmental stressors (e.g. heatwaves) may
occur, leading to a limited energy budget to withstand the consequences
of contaminants such as tire particles and their leachates, resulting in
largely different outcomes from the ones observed here under optimal
experimental conditions compared to unfavorable environmental con-
ditions (e.g. global change, ocean acidification, pollutions).

Environmental Implications

Tire particles and associated chemicals led to the disruption of oys-
ters’ energy metabolism and the activation of molecular mechanisms
involved in stress response. Possible impacts on gamete quality and the
spread of opportunistic pathogens have also been observed. Fortunately,
the lack of significant long-term consequences regarding fertilization
success, growth and reproductive outputs of the offspring suggests
possible oyster resilience. However, the increase of tire particles con-
centrations and the harsher environmental conditions compared to our
laboratory experimental setting expected in the coming years are of
particular concern for the conservation of species chronically exposed to
tire particles and associated chemicals.
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[36] Tallec, K., Huvet, A., Di Poi, C., González-Fernández, C., Lambert, C., Petton, B.,
et al., 2018. Nanoplastics impaired oyster free living stages, gametes and embryos.
Environ Pollut 242 (Part B), 1226–1235. https://doi.org/10.1016/j.
envpol.2018.08.020.

[37] Rico-Villa, B., Woerther, P., Mingant, C., Lepiver, D., Pouvreau, S., Hamon, M.,
et al., 2008. A flow-through rearing system for ecophysiological studies of Pacific
oyster Magallana gigas larvae. Aquaculture 282, 54–60. https://doi.org/10.1016/j.
aquaculture.2008.06.016.

[38] Petton, B., Pernet, F., Robert, R., Boudry, P., 2013. Temperature influence on
pathogen transmission and subsequent mortalities in juvenile pacific oysters
Crassostrea gigas. Aquac Environ Interact 3 (3), 257–273.

[39] R Core Team. R: a language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2016. 〈https://www.R-project.
org/〉.

[40] Gardon, T., Morvan, L., Huvet, A., Quillien, V., Soyez, C., Le Moullac, G., et al.,
2020. Microplastics induce dose-specific transcriptomic disruptions in energy
metabolism and immunity of the pearl oyster Pinctada margaritifera. Environ
Pollut 266, 115180. https://doi.org/10.1016/j.envpol.2020.115180.
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