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Abstract—Nowadays, Cyber-Physical Systems (CPS), partic-
ularly drones, play a pivotal role in environmental research.
Scientists depend on these platforms to monitor various sensor
data and ensure comprehensive data archiving. However, despite
their advantages, researchers encounter several challenges, in-
cluding communication limitations and the complexity of setting
up systems tailored to their needs. To address these issues, we
propose MoDD, a model-driven data collection framework based
on a customized publish/subscribe model. MoDD simplifies the
development and configuration of data collection systems. It
offers scientists a solution that meets their specific needs, allowing
them to focus on high-level requirements while the framework
manages the underlying complexities. We demonstrate the ef-
fectiveness of MoDD through practical evaluations on an actual
Unmanned Surface Vehicle. Additionally, results show a 79%
reduction in throughput (drone to base station link) compared
to existing publish/subscribe systems.

Index Terms—model-driven engineering, drone, data commu-
nications, architecture, optimization

I. INTRODUCTION

Drones such as Unmanned Surface Vehicles (USV) are
Cyber-Physical Systems (CPS) that integrate computational
processes (e.g., control, processing, and communication) into
physical devices [1]. Drones are gaining prominence in envi-
ronmental monitoring [2]. In this context, scientific observa-
tion missions raise two main issues: vehicle control and sensor
data monitoring [3]. Our focus is on the latter.

Scientists aim to monitor sensor measurements at various
frequencies to get an overall understanding of the environment
throughout the mission. In our context, we consider sensors
that produce numerical values, either in simple or hierarchical
formats, such as navigation data or physical parameters. This
allows them to guide the mission better, e.g., by adjusting
the drone’s trajectory to investigate a specific area of interest.
The monitoring process is not critical and operates on a
communication link (data link) distinct from drone control to
ensure uninterrupted navigation [4], [1]. Thus, disruptions and
delays in monitoring communications are tolerated, provided
that all acquired data are stored on-board. Besides, due to
battery limitations, efficient energy management is crucial
[4]. Therefore, data monitoring must be carried out without
straining the network or the drone’s resources, specifically by
minimizing data throughput.

The publish/subscribe model has proved to be an effective
solution in data transmission due to its inherent decoupling
characteristics [5]. Indeed, it is widely used in robotics [6], [7],
[8], IoT [9], [10], [11], and Wireless Sensor Networks (WSN)

[12], [13], [14] as it ensures that data producers (sensors)
and consumers operate independently. This level of separation
provides the flexibility to add, remove, or change sensors and
data consumers with minimal impact on the rest of the system.

In a resource-constrained context, scientists need to monitor
sensor data without overloading the network. To address this,
it is essential to minimize communication overhead between
the drone and consumers, while also ensuring persistent
data storage. This is achieved by reducing the frequency of
communications and enabling data aggregation. Additionally,
scientists face challenges in developing and integrating the
necessary software for different missions, underscoring the
need for a flexible approach.

Existing publish/subscribe models like ROS [6] support
message filtering to control how often data is received. How-
ever, this filtering only occurs on the receiving end, meaning
data is still transmitted between the drone and subscribers
at the publisher’s frequency. ROS provides a mechanism to
limit bandwidth usage (topics throttle), but this involves
discarding packets to meet the throttle rate, which is not
suitable for scientists who need to preserve all data. Some
industrial tools like Kafka [15] provide flow control mecha-
nisms, such as controlling message size and throughput and
limiting the number of unacknowledged messages. However,
it requires nodes to actively request data since it relies on
a pull-based system. This continuous polling can consume
significant network bandwidth, which might not be optimal
in resource-constrained environments. Hence, optimizing a
publish/subscribe system for each mission proves challeng-
ing. Moreover, developing a data collection solution in this
environment requires expertise across various technologies
(embedded programming, communication protocols, and per-
formance optimization). The data collection system needs to
be easily configured and adapted to suit both the platform’s
characteristics and the clients’ data monitoring requirements,
as well as to support sensor integration. Employing Model-
Driven Engineering (MDE) holds promise in simplifying the
complex development process. By automating code generation
from high-level models [16], [17], [18], MDE can help build
configurable and optimized systems.

To summarize, it is clear that end users require a simple
approach to develop a data collection solution that is both
optimized and easy to set up for each mission.

In this paper, we introduce MoDD, a model-driven data
collection framework based on a customized publish/subscribe
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architecture. MoDD’s objectives are twofold: (1) to provide
scientists with a straightforward development process and (2)
to generate optimized configurations tailored to scientists’
requirements. To tackle the first challenge, we rely on MDE
to simplify the configuration of MoDD. This flexibility is
crucial as it allows the system to adapt to varying mission
requirements, allowing scientists to focus on their research
activities. To address the second challenge, we propose a
publish/subscribe architecture that allows subscribers to spec-
ify their data ingestion frequency while maintaining the pub-
lisher’s frequency, thus minimizing throughput. This feature is
handled at the broker rather than the application level.

The remainder of this paper is organized as follows. Key
concepts are introduced in Section II. Section III describes
MoDD’s architecture. Section IV details MoDD’s metamodel
and the proposed domain-specific language. The approach is
validated in Section V. Section VI presents related work, and
Section VII concludes and opens some perspectives.

II. BACKGROUND

A. Publish/subscribe model

The publish/subscribe messaging model [5] is a commu-
nication paradigm where entities, referred to as subscribers,
express their interest in consuming specific information. This
information is produced by publishers. The strength of this
model is its ability to completely decouple publishers and
subscribers in terms of space and synchronization [5], [19].
Participants communicate in a non-blocking manner through
a broker, a component responsible for routing messages from
publishers to the appropriate subscribers.

There are four variants of the pub/sub scheme [20], namely
channel-based, content-based, type-based, and topic-based. In
the more general-purpose channel-based scheme, publishing
an event implies its broadcasting to all subscribers without
filtering. The topic-based scheme introduces the concept of
topics, which represent the individual subjects to which par-
ticipants can subscribe or publish. In MoDD context, the use
of topics is sufficient to organize the various sensor parameters
without the need for additional filtering criteria. Therefore, the
content-based and type-based schemes would not be relevant
in this case. Moreover, the topic-based model is effective for
message routing, which meets resource constraints. Addition-
ally, it is implementation-independent, unlike the type-based
model.

B. Double buffering

Double buffering is a technique that involves using two
buffers to parallelize read and write operations. The first buffer,
often called back buffer, is used to store new data, while the
other one (front buffer) is being processed. Once the write
operation is complete and the first buffer is full, the roles of
the two buffers are swapped. This technique is particularly
useful in scenarios where there is a continuous flow of data
being produced and consumed at different rates, as it helps in
maintaining smooth processing.

III. MODD ARCHITECTURE

MoDD complies with the usual scheme of topic-based
publish/subscribe. In our context, scientists may track raw
data at the frequency set by sensors. However, in most cases,
aggregated data (such as average, min, or max) at a reduced
frequency are sufficient for continuous monitoring. Therefore,
within the MoDD approach, topics encompass both raw data
sourced from sensors and aggregated data.

The overall MoDD architecture, illustrated in Figure 1, can
be broken down into two components: an on-board segment
and a base station. The on-board segment consists of a drone
equipped with sensors. Sensors produce measurements at regu-
lar intervals and publish them to a PubBroker deployed on the
on-board computer. The PubBroker stores these data locally
and relays them to the subscribed end users at the base station
through the SubBroker. In this paper, the terms subscriber
and subscription are employed interchangeably to denote a
conceptual end user subscription rather than a physical entity.

MoDD’s architecture supports data aggregation and user-
specified data ingestion rates (best effort policy) distinct from
publishers’ frequencies. This is achieved through the use of
double buffering to better manage the periodic backups and
guarantee that end users can maintain uninterrupted access to
the measurements, even if they are not the most recent. This
design prevents the need for continuous transmission of all
data to subscribers and reduces data throughput between the
drone and the base station. In the following, we provide more
details on each element of the architecture.

Fig. 1: MoDD architecture

A. MoDD components

1) Sensors: Sensors act as publishers, periodically sending
measurements (raw data). For instance, an accelerometer that
measures acceleration along three axes (x, y, z) disseminates
its readings to three distinct topics, e.g., accel x, accel y,
and accel z. Each measurement is sent by the sensor driver
to the PubBroker using the publish() primitive (Figure 2).
This will be further detailed in Section IV-C.

2) End users: End users play the role of subscribers, reg-
istering their interest in specific topics, i.e., raw or aggregated
data they wish to monitor. These subscriptions are charac-
terized by a period and an aggregate function. The period
determines the frequency at which subscribers receive updates;
given that sensors can have high sampling rates, subscribers
may opt for less frequent updates. However, it is important
to mention that this frequency is achieved at best, but is not
guaranteed due to factors such as network latency and the
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capacity of the double buffer. Additionally, subscribers can
process the incoming data stream by specifying an aggregate
function such as the average, providing a more synthesized
view rather than raw sensor readings. This function can also
be the identity function.

3) PubBroker: Upon receiving the published measure-
ments, the PubBroker temporarily stores them. To prevent
any delays for end users caused by periodic backups, for
each measurement, a double buffer of size ni is allocated
(Figure 2). As such, each received measurement is added
to its respective double buffer, and once it reaches capacity,
its content is saved to the disk. The measurements are then
either directly transmitted (case of raw data topic) or undergo
sampling and/or aggregation before transmission (case of
aggregated data topic). In both cases, the transmission follows
the computed message emission schedule described in Section
III-C. The messages are then sent to the SubBroker, which in
turn delivers them to the subscribed end users.

Fig. 2: Broker architecture

4) SubBroker: The SubBroker’s main purpose is to reduce
the PubBroker’s workload and preserve the resources of the
drone by allowing the PubBroker to communicate with a single
node, i.e., the SubBroker, rather than multiple subscribers. It
is tasked with managing subscribers and ensuring the efficient
delivery of topics to the relevant subscribers. To enhance
communication efficiency, the SubBroker only processes the
data relevant to the subscribers’ needs.

B. Communication between the PubBroker and the SubBroker

1) Static part: From the information provided by publishers
and subscribers, a timed sequence of message emissions is
computed. The goal is to minimize throughput and merge
measurements into one single message whenever possible. The
generation of this schedule is detailed in Section III-C. Both
the PubBroker and SubBroker adhere to the same schedule. It
is worth mentioning that the PubBroker does not have access

to subscribers’ details. The task of identifying the subscribers
meant to receive the measurements falls on the SubBroker.

The communication begins with the SubBroker initiating
a connection with the PubBroker. Once connected, a ping
message is sent from the SubBroker to the PubBroker. This
ping determines the timeout period needed to compute buffer
sizes in Section III-D. Following that, the list of required topics
and the computed schedule are sent to the PubBroker.

2) Dynamic part: After a topic communication schedule
has been established, subscribers can request measurements
dynamically. However, the SubBroker must first assess its
ability to fulfill these requests, as the data related to these
dynamic subscribers were not considered during the com-
putation of the optimized message emission schedule. The
dynamic subscription process begins when a subscriber sends
a request. This request includes the topic t to monitor, the
subscription period ps, and the chosen aggregation function
f . Subsequently, the SubBroker determines if the specified
period and aggregation function can be accommodated within
the current schedule. This assessment involves verifying if the
requested period ps is a multiple of the existing one and if
the aggregation function f can be computed from the received
data. For instance, deriving a minimum value from all the data
is acceptable, but extracting data solely from minimal values is
not. If the request is feasible, the subscriber’s ID is added to the
list of targeted subscribers. Otherwise, a NOT AVAILABLE
message is sent back to the inquiring subscriber.

C. Communication optimization

The PubBroker transmits data to the SubBroker following
a pre-computed schedule (a timed sequence of messages),
minimizing communication overhead between the SubBroker
and the PubBroker. The schedule is designed to group topics
whenever possible. In Algorithm 1, the first step is to compute
the hyperperiod, defined as the least common multiple of
all subscribers’ periods. The hyperperiod represents the basic
cycle for sending messages, repeated periodically. Next, the
algorithm identifies the dates within the hyperperiod that align
with each subscriber’s active period. It then schedules the
transmission of their corresponding topics accordingly. The
resulting schedule is a sequence of lists containing (topic,
aggregation) tuples, each associated with a specific date.

The PubBroker reads the measurements published by sen-
sors and assigns them to the appropriate double buffer. It
also updates aggregation values as necessary, thus optimizing
the number of messages sent according to the topics needed.
Concurrently, the PubBroker processes the schedule, batching
topics linked to a specific date into a single message before
sending it to the SubBroker. The SubBroker then forwards
these topics to the appropriate subscribers.

D. Buffer optimization

The buffer size ni is a parameter that needs to be determined
for each topic i. Its value is influenced by the periods at which
measurements are produced, i.e., pmi, and by the subscription
period of each subscriber j, denoted by psj . Our goal is to
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Algorithm 1: Compute message emission schedule
Input: subPeriods: Subscriber period list,

subTopics: Subscriber topic list,
subAggregs: Subscriber aggregation list,
J: Number of subscribers

Output: schedule: Array of list of (topic, aggregation),
H: Hyperperiod of the schedule

1 H = lcm(subPeriods)
2 schedule[1 to H] = NULL
3 for j = 1 to J do
4 time = subPeriods[j]
5 while time ≤ H do
6 schedule[time].add(subTopics[j], subAggregs[j])
7 time = time + subPeriods[j]

determine the optimal buffer sizes for every topic in order
to minimize the delay experienced by the subscribers. This
delay is defined as the time difference between data generation
and subscriber reception, estimated as |psj − ni × pmi| for
each subscriber j associated with topic i. This problem is
formulated as a simple Mixed-Integer Linear Program (MILP).
The collective delay across all subscribers is defined as the sum
of the absolute delays between the periods of the subscribers
j and the time required to fill each buffer i. Due to the
non-linearity of the absolute value, a continuous decision
variable is introduced zj,i as shown in Equations (2–3). zj,i
is a continuous variable that represents the absolute delay
experienced by subscriber j associated with topic i.

Minimizing this sum does not guarantee the minimization of
the delay for each individual subscriber. Hence, an additional
variable w is introduced, representing the greatest delay any
subscriber might encounter. The objective becomes twofold:
to minimize w and to ensure the delay zj,i for each subscriber
does not exceed w. The two objectives are combined in Equa-
tion (1) using a weighted sum, where α and β act as weights
that determine the relative importance of the cumulative delay
and the maximum delay. I represents the number of topics
and S(i) is the set of subscribers associated with topic i.

In Equation (5) and Equation (7), the buffer sizes ni are
constrained by MAX BUFFER, and the delays zj,i must not
exceed the timeout period, which is evaluated as three times
the ping time computed in Section III-B1. This problem is
solved using the CBC solver.

Minimize: α×
I∑

i=1

∑
j∈S(i)

zj,i + β × w (1)

zj,i ≥ psj − ni × pmi (2)
zj,i ≥ ni × pmi − psj (3)
zj,i ≤ w (4)
ni ≤ MAX BUFFER (5)

ni ≥ 1 (6)
zj,i ≤ 3× PING TIME (7)

IV. MODD METAMODEL AND CONFIGURATION

A. Process overview

Fig. 3: MoDD configuration process overview

One of our main objectives is to provide a data collection
system that effortlessly integrates various heterogeneous sen-
sors. Deploying such a system involves three key roles: (1)
the system designer, responsible for integrating all embedded
software; (2) the end user, who monitors parameters during a
mission; and (3) the sensor integrator, responsible for manag-
ing sensors and writing and deploying their specific drivers.

As depicted in Figure 3, inputs from all involved roles
are used to configure the data collection system to meet the
specific requirements of each mission. This is done through a
common description (a .modd file) using a Domain-Specific
Language (DSL) based on a metamodel. Both the DSL and
the metamodel are detailed in Section IV-B.

As usual with generative models, the MoDD specification
is used to generate specific code. Three categories of code
are generated for different purposes. First, for sensor data
publication, the sensor integrator needs to integrate existing
sensor drivers with MoDD architecture. Second, since the
applications of the PubBroker and SubBroker are already
provided by MoDD, configuration files are generated. Last,
for end users, an API is generated for integration into a client
viewer or analysis tool. Further details on the code generation
process are provided in Section IV-C.

B. MoDD metamodel and Domain-Specific Language

The MoDD metamodel, depicted in Figure 4, is structured
into three parts, corresponding to the three roles described in
Section IV-A. The first part describes sensors and topics, the
second part provides details on the platform, and the last part
outlines the subscribers’ requirements.

A MoDD data collection system features a Drone that
hosts a PubBroker and several Publishers. The drone is
equipped with various Sensors. Each sensor captures a set
of measurable physical quantities or parameters referred to
as MeasuredVariables. These measured variables represent
the topics to which publishers disseminate data every period
seconds. The PubBroker saves the published measurements at
a location determined by the logPath attribute. On the other
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Fig. 4: MoDD metamodel

hand, the base station consists of a SubBroker and several
Subscribers. The generated configuration files, as described
in Section IV-C, are stored at a location defined by the
configurationPath attribute. Subscribers are characterized by
a subscription period and the type of aggregation they require
for their data. The PubBroker, SubBroker, Publishers, and
Subscribers are addressable and can be accessed through
an Endpoint. In our context, an endpoint refers to TCP/IP
identifiers that include both an ipAddress and a port number.

This metamodel enables the various stakeholders to model
their needs. To make this process more user-friendly, a textual
grammar is derived from MoDD metamodel using Xtext. This
DSL features an intuitive textual syntax that simplifies the
description of model elements.

An example is provided in Listing 1. The language defines
multiple blocks. The Drone block allows for the specifica-
tion of the equipped Sensors, with each sensor defining its
associated topics. For instance, the drone named usv has an
accelerometer that measures acceleration along the x-axis.
These measurements are recorded under the topic accel x
and expressed in ms−2. The PubBroker and SubBroker
blocks set up endpoints for their respective components. For
instance, the SubBroker is reachable at 192.169.1.163:7272.
Additionally, the PubBroker block specifies the directory path
for logging measurements (/path/to/logs), while the Sub-
Broker specifies the storage path for the generated configu-
ration files (/path/to/conf). In the Publishers block, each
publisher specifies the topics they cover and the frequency of
their publications. For instance, pub 1 disseminates x-axis
accelerometer data on topic accel x every 0.04 s. Finally, the
Subscribers block details the features of each subscription,
namely, the subscription topic, the subscription period given
in seconds, and the aggregate function. Here, sub 1 fetches
the average (AVERAGE) x-axis acceleration every 2 s.
1 Drone usv {
2 Sensors {
3 Sensor accelerometer measures {
4 accel x(METER PER SECOND SQUARED);
5 }
6 }
7 }
8 PubBroker(”192.168.1.128”:7171, ”/path/to/logs”);
9 SubBroker(”192.168.1.163”:7272, ”/path/to/conf”);

10

11 Publishers {
12 Publisher pub 1(”192.168.1.128”:7373, 0.04, ”usv.accelerometer.

↪→ accel x”);
13 }
14 Subscriptions {
15 Subscriber sub 1(”192.168.1.173”:7474, ”usv.accelerometer.accel x

↪→ ”, 2.0, AVERAGE);
16 }

Listing 1: Example of a .modd file

C. Code generation

The code generation process leverages Acceleo, a template-
based engine designed for Model-To-Text (M2T) transforma-
tions.

For broker configuration, four configuration files are gen-
erated from the .modd instance. These files contain endpoint
details for both brokers, the PubBroker’s log path, and infor-
mation about topics and subscribers stored in the SubBroker’s
designated configuration path. The SubBroker uses this in-
formation to determine double buffer sizes and compute the
message emission schedule. Data are then transmitted to the
PubBroker.

For sensor driver integration, a C++ API designed for
data publication is generated. This API includes a Publisher
class that implements the publish(topic, timestamp, value)
primitive, and provides an initial code skeleton that initializes
a Publisher instance. The sensor integrator simply needs to
insert a publish call in the data acquisition code, typically right
after new sensor data is received. This is illustrated in Listing
2, which represents a code snippet from the generated C++
skeleton integrated with an SBG driver that collects IMU data.
The Publisher instance is created in line 3, enabling pub 1
to connect to the PubBroker using the endpoint specified in
the .modd file. The sensor integrator then effortlessly adds
the publish primitive where appropriate. In the example, the
publish method is invoked in line 10 to disseminate z-axis
acceleration data to topic accel z.

Similarly, a ready-to-use C++ API is generated to set up
each subscriber instance with the characteristics defined in the
.modd file.
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1 #include ”Publisher.h”
2 // Initialize a publisher instance
3 std::unique ptr<Publisher>publisher =

std::make unique<Publisher>(”pub 1”);
4
5 SbgErrorCode on log received(SbgEComHandle* p handle,

↪→ SbgEComClass message class, SbgEComMsgId message,
↪→ const SbgBinaryLogData* p log data, void* p user arg) {

6 // Any preliminary code
7 switch (message) {
8 case SBG ECOM LOG IMU DATA: {
9 // Publish measurements to the right topic

10 publisher->publish(”accel z”,
p log data->imuData.timeStamp,
p log data->imuData.accelerometers[2]);

11 break;
12 }
13 }
14 return SBG NO ERROR;
15 }

Listing 2: Code snippet illustrating data publication

V. EVALUATION

A. Experiment

To evaluate MoDD1, an experiment was conducted in a pool
measuring 50m × 12.5m, with a depth ranging from 10m to
20m.

The experiment involved a USV equipped with various sen-
sors, including a GNSS (Global Navigation Satellite System)
module with RTK (Real-Time Kinematic) positioning for loca-
tion tracking, and an Ellipse INS (Inertial Navigation System)
for orientation and navigation. Communication between the
drone and the base station was achieved through two links:
a control link (RC transmitter) and a long-range Wi-Fi data
link.

Fig. 5: USV facing waves

The evaluation is based on two scenarios. In the first one,
a publisher disseminates data across three topics to seven
subscribers. Details about subscription periods and topics are
presented in Table I. The data aggregations requested by each
subscriber are: average for subscribers 1 to 4, minimum for
subscriber 5, and maximum for subscribers 6 and 7. The results
of the MILP for setting up double buffer sizes ni are given
in the last row. The constants for the problem formulation
are as follows: MAX BUFFER is set to 1000, the obtained
PING TIME is 0.83 s, and both coefficients α and β are set to
1. For topic accel z, a size of 6 is adequate for subscribers 5 to

1The GitHub repository provides the MoDD C++ API, the metamodel,
the textual grammar, the Acceleo templates, and a user manual. Link:
https://github.com/manele-ah/modd/

7 since they have the same subscription period psj . In the case
of topics accel x and accel y, a size of 28 accommodates
the different periods of the targeted subscribers.

Topics accel x accel y accel z
Subscribers sub {1, 3} sub {2, 4} sub {5, 6, 7}
pmi (s) 0.04 0.04 0.04
psj (s) {2, 0.25} {2, 0.25} {0.25, 0.25, 0.25}
ni 28 28 6

TABLE I: Double buffer settings for scenario 1

In the second scenario, a publisher sends data across 19
topics every 0.04 s. There are 19 subscribers, each subscribing
to a distinct topic with a period of 1 s. The specified data
aggregation for all these subscribers is the min function. The
MILP constants are the same as in the previous scenario.
The resulting double buffer sizes are all set to 25 since every
subscriber has the same period and subscribes to one topic.

In both scenarios, the PubBroker and publisher were de-
ployed on the drone, while the SubBroker and subscribers were
set up on a computer that communicates with the USV.

B. Code generation

We evaluate the ease and effort required to set up optimized
code for each scenario. This assessment is based on the
number of lines of code (LOC) as shown in Table II. To ac-
commodate each mission’s needs, the generated code consists
of 275 and 287 LOC, respectively. For data dissemination,
the sensor integrator adds 3 LOC in scenario 1 to publish
on the three targeted topics, and 19 LOC to handle the
19 topics in scenario 2. When combined with .modd files,
user LOC amount to 29 and 57, respectively, representing an
average of 15% of the total generated LOC and 2% of MoDD
API (2404 LOC). The added LOC are straightforward and
user-centered, meeting scientists’ needs for flexible software
development that accommodates the various requirements of
different missions.

Scenarios Scen. 1 Scen. 2
MoDD API 2404
.modd file 26 38

Generated files 275 287
Added lines in sensor drivers 3 19

TABLE II: Lines of code in MoDD deployment scenarios

C. Data transmission efficiency

The architecture of MoDD is designed to minimize the
communication overhead between the broker and subscribers.
Its effectiveness is first assessed by comparing it with three
pub/sub models based on the same implementation. Then,
MoDD is evaluated against three existing tools. This compara-
tive analysis focuses on the throughput of messages exchanged
between the drone and the base station. The throughput is
computed using a hybrid approach: initially using Wireshark
traces to determine packet sizes, and then proceeding with
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analytical calculations to derive the throughput. This allows
us to isolate and focus on the relevant (publish and subscribe)
packets. The packet sizes include both the message size at the
application layer and the headers of the TCP and IP layers.

1) Evaluation of MoDD: MoDD is compared with three
publish/subscribe models: (S1) a traditional pub/sub system
that does not include a SubBroker and is devoid of any
mechanisms for managing subscriber frequency and data ag-
gregation; (S2) a pub/sub system that includes a SubBroker
with a message batching feature; and (S3) a pub/sub system
that integrates mechanisms for managing subscriber frequency
and data aggregation but does not include a SubBroker.

The results illustrated in Table III show that data publication
volumes remain unchanged across all strategies since we do
not intervene at that level. Instead, our focus is on the data
exchanged between the drone and the base station, specifically
between the broker (S1, S3)/PubBroker (S2) and subscribers
(S1, S3)/SubBroker (S2). MoDD reduces the volume to
1,553.5 B/s and 1,284 B/s in scenarios 1 and 2, resulting in
a decrease of approximately 96%. This efficiency is attributed
to two factors. First, MoDD allows subscribers to specify their
data reception frequency, therefore creating a direct correlation
between the saved percentage and the subscribers’ chosen
frequencies, as illustrated by the 92% gain achieved with S3
in comparison to S1. Second, introducing a SubBroker enables
message batching, eliminating the need to transmit duplicate
information to multiple subscribers. This is highlighted by the
54% gain achieved with S2 as opposed to S1.

Throughput (bytes/second)
Publisher → Broker Drone → Base station
Scen. 1 Scen. 2 Scen. 1 Scen. 2

S1 12675 79825 29575 79825
S2 12675 79825 14850 32100
S3 12675 79825 3549 3193

MoDD 12675 79825 1553.5 1284

TABLE III: Data transmission volume - MoDD evaluation

2) Comparison with existing tools: In Table IV, MoDD
is compared with Kafka, MQTT (Mosquitto), and ROS 2.
Kafka follows the pub/sub paradigm but operates on a pull-
based approach where subscribers actively pull data as needed.
Subscribers send a dynamic request each time they need
data, and the requested data is received through a fetch
response. The publishing process also involves the same mech-
anism. While Kafka does not allow frequency specification,
it provides parameters to set the minimum message size per
subscriber and the maximum server response delay for fetch
requests, which we adjusted accordingly (fetch.max.wait.ms
and fetch.min.bytes). MQTT relies on a push-based sys-
tem and does not allow subscribers to specify a frequency.
However, this protocol is widely used in IoT. ROS also
operates on a push-based system and provides a mecha-
nism (TimeSequencer from message filters) for subscribing
nodes to control the frequency at which they receive messages.
However, this is handled at the subscriber level. Since ROS

does not use a broker, messages are transmitted directly
between publishers and subscribers. As a result, the publish
volume is not reported for ROS.

Results show that Kafka’s data throughput in drone-to-
subscriber communication scenarios is, on average, 6.98 times
greater than MoDD’s. This is due to Kafka’s dynamic and
distributed design, which results in messages containing ex-
tensive information (partitions, offsets, etc.). Despite MQTT
being a more lightweight protocol, as evidenced by its publish
volume being 2.65 times lower than MoDD’s, the throughput
on the sensitive drone-subscriber link is still, on average, 4.43
times higher with MQTT than with MoDD. This difference
arises because MQTT brokers lack mechanisms for managing
subscriber frequency and data aggregation. Regarding ROS,
the throughput on the drone-subscriber link is on average
11.45 times greater than MoDD’s. This is because even though
message filters allow subscribers to specify the frequency of
message reception, this filtering occurs after the data has been
transmitted. Indeed, the received packets are buffered on the
subscriber side (the buffer size is also given as a parameter),
and they are emitted at the desired frequency after transmission
between the drone and the subscribers.

The results presented in Sections V-C1 and V-C2 underline
how the approach optimizes communication between the drone
and the base station, a sensitive link within the architecture that
also impacts the drone’s autonomy [4].

Throughput (bytes/second)
Publisher → Broker Drone → Subscribers
Scen. 1 Scen. 2 Scen. 1 Scen. 2

MoDD 12675 79825 5102.5 4477
Kafka 15675 77575 19410 45505
MQTT 4800 29950 11200 29950
ROS 2 - - 28700 77450

TABLE IV: Data transmission volume - Comparison with
existing tools

3) Double buffer overhead: To assess the performance
impact of using double buffers, a comparative analysis is
conducted between MoDD’s PubBroker and MQTT broker.
Two metrics are evaluated: data latency and physical memory
usage. This analysis is based on averaged measurements from
10 test runs, each lasting 1 minute. Data latency is defined as
the time elapsed between the publication of the first message
corresponding to the first element in the double buffer, and
the reception of aggregated data by subscribers. This excludes
messages sent at subscribers’ desired frequency but containing
no new information due to ongoing writes to the double buffer.
In the case of MQTT, latency is measured from message
publication to subscriber delivery. In scenario 1, MoDD shows
lower latency, primarily because subscribers 5 to 7 track data
on a double buffer corresponding to their specified period.
The standard deviation observed is due to the higher latency
experienced by subscribers 1 to 4 compared to subscribers 5
to 7. In scenario 2, MoDD shows higher latency because it
processes 19 topics, posing a challenging scenario for data
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monitoring. However, MoDD maintains a memory footprint
that is on par with MQTT. Overall, the impact of double
buffers is justified by the data throughput benefits it provides
compared to MQTT. This is particularly relevant since the
monitoring process is not subject to real-time constraints,
and end users can tolerate delays of a few seconds. For
future work, it would be interesting to study the variability
of the double buffer size and its impact on data latency. Our
intuition suggests that larger buffer sizes increase latency, as
data must accumulate in the buffer before transmission of new
measurements, and vice versa.

Data latency (s)
(+/- std. dev)

Mem. usage (%)
(+/- std. dev)

Scen. 1 Scen. 2 Scen. 1 Scen. 2
MoDD 0.87 (0.64) 3.14 (0.31) 0.08 (10-4) 0.09 (10-3)
MQTT 1.49 (0.03) 1.52 (0.03) 0.09 (10-5) 0.09 (10-5)

TABLE V: Measuring double buffer overhead

VI. RELATED WORK

A. Publish/subscribe model

Publish/subscribe models are widely adopted in many fields,
both in academia and industry. In the context of wireless sensor
networks, many solutions are proposed [20]. Mires [12] is
a pub/sub middleware designed to simplify the creation of
WSN applications by encapsulating network protocols and
providing a high-level API. Other solutions, such as TinyCOPS
[21] and TinyDDS [13], rely on a content-based scheme and
aim to provide interoperability across different protocols based
on the requirements of application designers. PRISMA [14]
is another pub/sub middleware based on REST. It supports
communication and topology control services while providing
QoS mechanisms to meet quality constraints.

Although these solutions offer many capabilities, they still
require additional programming efforts to properly configure
and optimize them. Middleware configuration is mainly aimed
at developers, without directly involving end users. In contrast,
MoDD enables users to describe the system in a natural
language. Granted, sensors need to be integrated appropriately
into the system, but development efforts are significantly
reduced. Besides, these solutions are more focused on control
aspects. Our goal is different. We aim to enable multiple
scientists to monitor data at various frequencies, while also
attempting to minimize throughput.

In IoT, pub/sub models are heavily used through MQTT [9].
MQTT is a lightweight network protocol that aims for efficient
message exchange between constrained devices over low-
bandwidth networks. The Object Management Group (OMG)
has also integrated this model into the Data Distribution
Service (DDS) [10], which defines interfaces for developing
pub/sub systems with QoS management capabilities [22], [23].

For drones and robotics, the pub/sub model is mainly
implemented through ROS (Robot Operating System) [6],
[24], as highlighted by several works [7], [8]. ROS uses this
model for inter-process communication, fostering a loosely

coupled and distributed system. Additionally, many industrial
messaging brokers implement the pub/sub pattern such as
Kafka [15], ActiveMQ [25], and RabbitMQ [26]. Although
these technologies are mature and offer a wide range of
capabilities, they are not fully optimized for efficient commu-
nication between the broker and users. These systems often
transmit data at the publisher’s set frequency, which can lead
to unnecessary transmissions. Methods to limit bandwidth
typically involve discarding packets, which is not suitable for
scenarios requiring complete data preservation. Some systems
provide rate-limiting mechanisms but rely on a pull-based
approach that requires constant data polling.

B. MDE in IoT and robotics

In [27], the authors discuss the role of MDE in simplifying
complex robotics software development. The analysis reveals
that the majority of studies have concentrated their methods
on ground robot and robotic arm applications, with a compara-
tively limited application in the context of aerial vehicles, and
no referenced works address USV. [16] proposes AutoIoT, a
framework developed for generating IoT server-side applica-
tions. IoT scenarios are described through a metamodel, and
users define their IoT systems with a JSON file. Model-to-
model and model-to-text transformations are used to output
the final application. [28] presents a model-based approach
aimed at generating efficient APIs to handle communication
between resource-constrained devices. The described method
relies on ThingML models [29] to define the messages that
need to be exchanged, as well as some network features such
as acknowledgments, timeouts, and message retransmission.
[17] introduces CyprIoT, a framework devised for modeling
and controlling network-based IoT applications. It addresses
the challenge of connecting diverse IoT devices and provides
a networking language as well as a rule-based policy language
to control the behavior of the network.

While present frameworks adeptly serve the needs of
robotics and a range of IoT applications, a distinct gap remains
in addressing the specific challenges associated with data
collection for drones.

VII. CONCLUSION

The development of a data collection system for au-
tonomous marine systems requires a comprehensive under-
standing of various technologies. MDE simplifies this by
providing a modeling tool that allows users to overlook low-
level details and focus on high-level concepts. MoDD captures
user requirements for both platform and data and addresses
the needs of scientists in terms of data collection. This is
achieved through an architecture that optimizes data transfer,
ensuring efficient monitoring and archiving of data. This is
demonstrated through a case study conducted with a USV
equipped with multiple sensors. The framework’s ease of use
was assessed in real-world scenarios and the data transmission
volume showed a 79% decrease compared to existing publish/-
subscribe systems.
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Future research will focus on incorporating energy aware-
ness into MoDD architecture and balancing the trade-offs
between double buffer overhead and throughput. We plan to
approach this as a multi-objective problem, considering energy
consumption, latency, and throughput as metrics. Additionally,
we aim to study the variability introduced by double buffering
and its impact on data latency. Another direction for improve-
ment would be to extend the metamodel to include details for
specific targets beyond our custom publish/subscribe system,
such as ROS, for the embedded part of the system (i.e.,
PubBroker). Future work could also benefit from a comprehen-
sive qualitative evaluation, involving collecting feedback from
developers and end users through questionnaires to assess the
usability of the framework.

The architecture targeted by our framework is designed
for aiding scientists in data collection and analysis. For
multi-drone scenarios, we could envision a more distributed
framework across several nodes. Our proposal would be to
distribute the broker across several nodes, but this raises issues
of coordination and efficient routing. Additionally, we could
propose a modular approach, where sensor integration can
be handled through plug-and-play modules. However, it still
requires further customization to incorporate the specifics of
each sensor.
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