
HAL Id: hal-04712480
https://hal.univ-brest.fr/hal-04712480v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

MelissaDL x Breed: Towards Data-Efficient On-line
Supervised Training of Multi-parametric Surrogates

with Active Learning
Sofya Dymchenko, Abhishek Purandare, Bruno Raffin

To cite this version:
Sofya Dymchenko, Abhishek Purandare, Bruno Raffin. MelissaDL x Breed: Towards Data-Efficient
On-line Supervised Training of Multi-parametric Surrogates with Active Learning. AI4S 2024 - 5th
Workshop on artificial intelligence and machine learning for scientific applications, Nov 2024, Atlanta
(Georgia), United States. pp.1-9. �hal-04712480�

https://hal.univ-brest.fr/hal-04712480v1
https://hal.archives-ouvertes.fr

MelissaDL x Breed: Towards Data-Efficient On-line Supervised
Training of Multi-parametric Surrogates with Active Learning

Sofya Dymchenko
sofya.dymchenko@inria.fr

Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG
Grenoble, France

Abhishek Purandare
abhishek.purandare@inria.fr

Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG
Grenoble, France

Bruno Raffin
bruno.raffin@inria.fr

Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG
Grenoble, France

Abstract
Artificial intelligence is transforming scientific computing with
deep neural network surrogates that approximate solutions to par-
tial differential equations (PDEs). Traditional off-line training meth-
ods face issues with storage and I/O efficiency, as the training
dataset has to be computed with numerical solvers up-front. Our
previous work, the Melissa framework, addresses these problems
by enabling data to be created “on-the-fly” and streamed directly
into the training process. In this paper we introduce a new active
learning method to enhance data-efficiency for on-line surrogate
training. The surrogate is direct and multi-parametric, i.e., it is
trained to predict a given timestep directly with different initial
and boundary conditions parameters. Our approach uses Adaptive
Multiple Importance Sampling guided by training loss statistics, in
order to focus NN training on the difficult areas of the parameter
space. Preliminary results for 2D heat PDE demonstrate the po-
tential of this method, called Breed, to improve the generalization
capabilities of surrogates while reducing computational overhead.

CCS Concepts
•Applied computing→ Physical sciences and engineering; • Com-
puting methodologies→ Distributed artificial intelligence;
Online learning settings.

Keywords
Active Learning, Adaptive Multiple Importance Sampling, Surro-
gates, On-line Training, Data-efficiency

ACM Reference Format:
Sofya Dymchenko, Abhishek Purandare, and Bruno Raffin. 2024. Melis-
saDL x Breed: Towards Data-Efficient On-line Supervised Training of Multi-
parametric Surrogates with Active Learning. In Proceedings of Workshop
on Artificial Intelligence and Machine Learning for Scientific Applications
(SC24 Workshop: AI4S’24). ACM, New York, NY, USA, 9 pages. https://doi.
org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The advancement of artificial intelligence (AI) applications in the
natural and physical sciences, referred to as AI4Science (AI4S),
has noticeably accelerated in recent years [26]. Remarkable ex-
amples include molecule docking modeling (AlphaFold 3 [1]) and
weather forecasting (NeuralGCM [22], ClimaX [33], Aurora [5]).
This progress has been enabled by combining large training data
sets, advanced neural architectures, and parallel computational
resources.

Particular attention has been given to deep surrogates — a class
of neural networks (NNs) that approximate the solution of partial
differential equations (PDEs) used to describe various scientific
phenomena. PDE solutions are classically obtained using numerical
methods such as Finite Elements Method or Finite Volumes Method.
However, these methods are compute and memory intensive. Deep
surrogates are expected to deliver quality solutions during inference
at a fraction of the memory and computational cost of these solvers.

Deep surrogates can be trained with little to no data, as in Physics
Informed NNs (PINNs) [36, 41], where the PDE residuals, initial
and boundary conditions (IC, BC) are imposed as soft constraints
through the loss. Yet, a wide variety of neural architectures, ranging
from Graph Neural Networks [35] and Neural Operators [2, 27] to
Diffusion Models [23] and Visual Transformers [18], are trained
with numerical simulations data. A surrogate can also be trained in
a multi-parametric context with varying ICs and BCs to develop a
more generic model. [18] presented a general purpose PDE founda-
tion model that can be finetuned to obtain a specific PDE solution,
while [10] proposed a neural operator architecture that generalizes
to unseen geometries. Since all these NN are trained in a supervised
manner — using data produced by the PDE solver they aim to sub-
stitute — their performance depends on both training set quantity
and quality.

A standard approach is to train surrogates off-line: first, a dataset
is generated with traditional PDE solvers and stored on disk; then,
the surrogate is trained in an epoch-based manner by reading back
the dataset from disk. When scaled, this approach suffers from two
main limitations: 1) storage capabilities limit the dataset size, thus
compromising data quantity, fidelity, and/or diversity; 2) writing
and reading the dataset creates an I/O bottleneck, thus impairing
efficiency during training. In previous works [28, 29, 38], we tackled
both limitations by demonstrating an on-line training approach
for multi-parametric surrogates with the Melissa framework: the
dataset is generated and directly sent to training, bypassing the
storage. It allowed us to train a surrogate faster and with higher
generalization abilities due to a significantly larger training dataset.
In addition, on-line training enables the steering of the data creation

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
bruno raffin

SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA Sofya Dymchenko, Abhishek Purandare, and Bruno Raffin

process along the NN training, which opens the way to active
learning (AL) techniques. AL is a data-centric approach that intends
to choose informative samples to improve data efficiency for NN
training. AL is a paradigm shift from a model-centric to a data-
centric approach, which focuses on the data relevance and quality
rather than the model to get better performance [37].

In this paper, we present our work-in-progress active learning
method, called Breed, for data-efficient on-line surrogate training
withMelissa. To define the input parameters of the next set of solver
instances to run, the algorithm relies on the loss values obtained
during training and uses Adaptive Importance Sampling method in
order to focus on hard-to-learn parameter space regions. We show
that for a 2D Heat PDE, our method chooses initial and boundary
conditions with dissimilar temperature values (which are meant to
be more challenging to learn by the NN) and, compared to random
sampling, the NN overfits noticeably less.

2 Background
2.1 Simulation-based deep learning
Consider partial differential equations (PDE) of the form:

N[𝑢] (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) (1)
B𝑖 [𝑢] (𝑥𝑖 , 𝑡) = 𝑔𝑖 (𝑥𝑖 , 𝑡) ∀𝑥 ∈ X, 𝑥𝑖 ∈ 𝛿X𝑖 , 𝑡 ∈ T (2)
I[𝑢] (𝑥, 0) = ℎ(𝑥) (3)

where𝑢 (𝑥, 𝑡) is a quantity of interest described by the PDE (e.g., tem-
perature value) defined on a bounded domain Ω = X ∪ T ⊂ 𝑅𝑑+1.
N[𝑢] is a differential operator acting on 𝑢 (𝑥, 𝑡), B𝑖 [𝑢] are bound-
ary conditions operators (BCs) for boundaries

⋃
𝑖 𝛿X𝑖 = 𝛿X ⊂ X,

and I[𝑢] is an initial condition operator (IC). Let denote _ the vec-
tor that encompasses all parameters of PDE (physical constants,
coefficients of 𝑓 , 𝑔, ℎ).

Most common numerical solvers use mesh-based spatial and
temporal discretization and produce trajectories sequentially. To
obtain the numerical solution for a considered PDE, we have to 1)
provide equation-based functional definitions, domain bounds, and
vector _; and 2) select spatial discretization size𝑀𝑑 · △𝑥 = X and
temporal discretization size𝑇 · △𝑡 = T . The second defines the size
of spatial coordinates set 𝑋 and the number of iterations needed
for an autoregressive solver. This not only affects the data fidelity
level and approximation quality but also the required memory and
computation demands. Let us denote a produced solution field at
time step 𝑡 = 𝑖 · △𝑡 for a given _ 𝑗 as 𝑥 𝑗𝑖 = {𝑢 (𝑥, 𝑡) |𝑥 ∈ 𝑋 }, then the
solver produces one-by-one a trajectory:

_ 𝑗 : [𝑥 𝑗,0 → 𝑥 𝑗,1 → · · · → 𝑥 𝑗,𝑇] ≕ 𝑥 𝑗

The deep surrogate model 𝑢\ (with weights \) approximates
the PDE solution 𝑢 (𝑥, 𝑡), thereby aiming to substitute a numerical
solver. There are different types of surrogate architectures. It can
be designed to predict the solution directly, i.e., 𝑢\ (𝑋, 𝑡) = 𝑥𝑡 , or
autoregressively, i.e.,𝑢\ (𝑥𝑡) = 𝑥𝑡+△𝑡 . As we mentioned in Section 1,
the surrogate can be multi-parametric: 𝑢\ (𝑋, 𝑡, _ 𝑗) = 𝑥 𝑗 . In the
scope of this paper, we consider multi-parametric direct surrogates;
details are provided in Section 4.

2.2 The Melissa DL framework
Melissa DL [28, 29, 38] is an HPC framework designed for deep
learning tasks where the NN is trained with simulation data. It
consists of three elements: clients, a server, and a launcher (for de-
tails, see Appendix A). By default the server uniformly samples
input parameters _ for each of 𝑆 clients across the input parameter
space Λ. Each client then runs the solver on the provided inputs
and streams the data (timesteps) to the server. The launcher only
submits a subset of all clients based on allocated resources. This
enables the server to dynamically select new input parameters for
pending’ clients, which we refer to as global steering (hereafter, sim-
ply steering). It is key to unlocking data-efficient surrogate training
with active learning methods.

3 Active learning steering of data creation for
on-line surrogate training

Active learning is a possible solution for data-efficient surrogate
training, as it can help to reduce the number of simulations to
execute while maintaining the surrogate quality. Generally, AL’s
goal is to improve NN training by choosing the most informative
examples, based on an acquisition function and a query method, to
be labeled by an oracle (or a human) and given to the NN. In our
context, “labeling by an oracle” is analogous to “executing a solver”
and “choosing examples” — to “sampling solver inputs _”.

However, classical AL methods are not adapted to our on-line
training context. Extra computational and memory costs imposed
by well-known AL techniques are highly undesirable. First, the
input parameters choice decision has to be fast not to pause the
surrogate training process as the priority is to keep GPUs busy.
Second, the incurred extra memory footprint should be limited to
avoid disk storage to keep on-line training efficient.

To develop AL methods for on-line training, we take inspira-
tion from methods proposed for data-free PINNs [12, 25, 43] and
extend our previously proposed method called Breed [14]. In our
supervised setting, instead of choosing collocation points, we have
to choose input parameters _ and run an autoregressive solver. In
our compute-constrained setting, we aim to use only per-sample
loss values as it does not require any extra computation. In our
memory-constrained setting, we are not able to recompute loss
values for all training points but instead have to use “outdated” loss
values, i.e. loss values obtained from the NN at anterior learning
steps. Additionally, instead of having a pool of points to choose
from, we adaptively sample new points based on previous points
loss statistics, inspired by Population Monte Carlo algorithms [9].
We detail the proposed method, Breed, in the following.

3.1 Loss-deviation based acquisition metric
We want to define training sample informativeness through NN
loss: the higher the loss, the higher the impact on NN training.
At iteration 𝑖 of the fixed-state NN 𝑢\𝑖 , there is an underlying
probability distribution of NN failure L\𝑖 over input domain Λ,
which we choose to represent through the self-normalized loss
function 𝐿(·, ·):

L\𝑖 (_ 𝑗 ′) ≈
∑
𝑡 ∈T 𝐿(𝑢\𝑖 (𝑋, 𝑡, _ 𝑗 ′), 𝑥 𝑗 ′𝑡)∑

_ 𝑗 ∈Λ
∑
𝑡 ∈T 𝐿(𝑢\𝑖 (𝑋, 𝑡, _), 𝑥 𝑗𝑡)

,

bruno raffin

Active Learning for Data-efficient Surrogate Training SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA

where 𝑥 𝑗𝑡 is the 𝑡-th timestep of a trajectory produced by a solver
with an input parameter _ 𝑗 , as defined before. However we cannot
calculate the “actual” per-sample loss values (corresponding to NN
state \𝑖) for neither the whole domain nor approximate them em-
pirically with all the training points. Using per-sample loss values
from NN iterations before 𝑖 is not possible either, as the values are
simply not comparable. Hence, we propose to approximate it with
per-sample loss deviation statistics assuming that the higher the per-
sample loss deviation from an average batch loss, the higher the
loss. With this metric points from different batches, hence, different
NN states, are comparable.

Before running the framework, we define the computational
budget by choosing a number of total simulations runs 𝑆 , hence,
creating a set of input parameters Λ𝐽 = {_1, . . . , _ 𝑗 , . . . _𝑆 }. At any
iteration 𝑖 ′, there is a set of inputs Λ(𝑖

′)
𝐽
⊆ Λ𝐽 of size 𝑆done for

which the clients have computed the full trajectories and all points
have been seen by the NN.

Let 𝑙 (𝑖)
𝑗𝑡

= 𝐿\𝑖 (𝑥 𝑗,𝑡) denote per-sample loss. As a sample can
potentially be seen by the NN across several batches 𝑏𝑖 before iter-
ation 𝑖 ′, we denote the set of these batches indexes 𝐼 𝑗𝑡 ≔ {𝑖 |𝑥 𝑗,𝑡 ∈
𝑏𝑖 } ⊂ [0 : 𝑖 ′]. Then:

Λ
(𝑖′)
𝐽

= {_ 𝑗 |∃𝑙 (𝑖)𝑗𝑡 ,∀𝑖 ∈ 𝐼 𝑗𝑡 , 𝑡 = [0 : 𝑇]}

We compute and store batch-loss mean ` (𝑙 (𝑖)) and standard devi-
ation 𝜎 (𝑙 (𝑖)), where 𝑙 (𝑖) = {𝑙 (𝑖)

𝑗𝑡
|𝑥 𝑗,𝑡 ∈ 𝑏𝑖 }. Then for any _ 𝑗 ∈ Λ𝑖

′
𝐽
,

we calculate deviation values 𝛿 𝑗𝑡 = {𝛿 (𝑖)𝑗𝑡 |𝑖 ∈ 𝐼 𝑗𝑡 } defined as:

𝛿
(𝑖)
𝑗𝑡

=
max(𝑙 (𝑖)

𝑗𝑡
− ` (𝑙 (𝑖)), 0)

𝜎 (𝑙 (𝑖))
(4)

We then average across timesteps:

L̂\𝑖′ (_ 𝑗) = 𝑄 𝑗 ≔ 𝑄 (𝛿 𝑗𝑡) =
1
𝑇

∑︁
𝑡=1:𝑇

𝛿 𝑗𝑡 = (5)

=
1
𝑇

∑︁
𝑡=1:𝑇

1
|𝐼 𝑗𝑡 |

∑︁
𝑖∈𝐼 𝑗𝑡

𝛿
(𝑖)
𝑗𝑡

(6)

Not to store all the values, we iteratively update the statistic 𝛿 𝑗𝑡
upon the availability of new values.

3.2 Adaptive Multiple Importance Sampling
Instead of choosing points from a pool or a dataset, we want to sam-
ple new points according to progressing L\ . We propose to use an
Adaptive Multiple Importance Sampling (AMIS) algorithm, inspired
by the Population Monte Carlo (PMC) algorithm and previously
presented in off-line context [14]. An Importance Sampling (IS)
goal is to build a proposal probability distribution 𝑞, which is easy
to sample from, to approximate an unknown target distribution 𝜋 ,
which can be evaluated up to a normalizing constant.

In PMC, the proposal is built iteratively. At iteration 𝑖 𝑞 (𝑖) is a
mixture (population) of 𝑁 proposals: 𝑞 (𝑖) =

∑
𝑛=1:𝑁 𝑞

(𝑖)
𝑛 (·|`

(𝑖)
𝑛 , Σ).

The initial locations ` (0)𝑛 are given or chosen randomly and Σ = 𝜎I𝑑
is a hyperparameter. Next, one random value is sampled from each

proposal, and an importance weight is calculated:

𝑥
(𝑖)
𝑛 ∼ 𝑞 (𝑖)𝑛 (·|`

(𝑖)
𝑛 , 𝜎) (7)

𝑤
(𝑖)
𝑛 =

𝜋 (𝑥 (𝑖)𝑛)
𝑞
(𝑖)
𝑛 (𝑥

(𝑖)
𝑛)

(8)

Then a multinomial distribution with weights {𝑤 (𝑖)𝑛 }𝑛=1:𝑁 is trialed
𝑁 times, i.e., we resample {𝑥 (𝑖)𝑛 }𝑛=1:𝑁 with replacements and obtain
{𝑥 (𝑖)𝑛𝑖 }𝑛𝑖 ∈{1:𝑁 },𝑖=1:𝑁 . The resampled values are used as new location
parameters ` (𝑖+1)𝑛 .

0.20

0.020.32

0.08

0.04

0.26
0.08

Initial points with weights
Initial

Sample from proposals R=0.7, mixed new points
Uniform
Eliminated
Sampled

Figure 1: A visual presentation of the sampling algorithm
starting with 𝑁 = 7 initial locations, that are next weighted
to build the Gaussian mixture proposal and sample from this
distribution 𝐾 = 10 new samples. Last, 30% of these points are
discarded and substituted with uniform points to maintain
exploration capabilities.

In our context, the target is the approximated distribution L̂\ . As
obtaining 𝑥 (𝑖)𝑛 at each PMC iteration for the same L̂\ is not feasible
— NN training is considerably faster than the creation of the data
— we perform only one PMC iteration. We build a proposal once
every 𝑃 NN iterations. Triggering resampling according to metrics
such as Effective Sample Size and/or Entropy is left for future work.

At NN iteration 𝑖 = 0, the whole set Λ𝐽 is sampled uniformly.
At resampling iteration 𝑠 , 𝑖 = 𝑠 · 𝑃 (Figure 1), we have a subset
of simulations waiting for execution, i.e. Λ̃(𝑖)

𝐽
≔ Λ𝐽 \ Λ(𝑖)𝐽 of size

𝐾 = 𝑆 − 𝑆done. We want to substitute the corresponding input
parameters by sampling 𝐾 new points. To build a proposal 𝑞 (𝑠) , we
use a population of window size 𝑁 ≤ 𝑆done, i.e., last _ 𝑗 ∈ Λ

(𝑖)
𝐽

in

order of 𝑄 𝑗 value updates, for which we keep the notation Λ
(𝑖)
𝐽
.

Here, the points _ 𝑗 are the initial locations of the proposal, and 𝑄 𝑗

are target distribution evaluations. Then importance weights1 are:

𝑤 𝑗 ′ =
𝑄 𝑗 ′

1
𝑁

∑
𝑗 𝑄 𝑗

∀_′𝑗 , _ 𝑗 ∈ Λ
(𝑖)
𝐽

(9)

and we resample 𝑘 =1 :𝐾 locations to build the proposal:

_ 𝑗𝑘 ∼ Mult(Λ(𝑖)
𝐽
,𝑤 𝑗 , 𝐾) (10)

𝑞 (𝑠) (·) =
∑︁
𝑘

𝑞
(𝑠)
𝑘
(·) =

∑︁
𝑘

Gauss(·|_ 𝑗𝑘 , 𝜎) . (11)

1Normally, we should divide by a proposal likelihood, but in experiments, we have
not noticed if division affects the quality, so it is omitted in this paper.

bruno raffin

SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA Sofya Dymchenko, Abhishek Purandare, and Bruno Raffin

Finally, we resample new input parameters:

Λ̃
(𝑠)
𝐽
← {_𝑘 ∼ 𝑞

(𝑠)
𝑘
(·)}𝑘 (12)

In our implementation, the complexity of one iteration is 𝑂 (𝐾),
though it can be parallelized. If the point sampled appeared out of
bounds, we decrease 𝜎 by 3𝑒−1 for its proposal member and sample
again. We do it at most five times, and otherwise, the location is
left the same. The decreased 𝜎 is passed to this proposal member.
We use MultivariateNormal class from Pytorch.

The IS algorithms are known to suffer from mode collapse and
underexploration. To tackle this issue and balance a training set,
we create a mixture distribution: 𝑟 (𝑠) ·𝑞 (𝑠) (·) + (1− 𝑟 (𝑠)) · U(Λ). In
our implementation (Eq. (12)), inputs are substituted with uniform
points with probability 𝑟 (𝑠) . The concentrate-explore value 𝑟 (𝑠) ∈
[0, 1] changes as: 𝑟 (𝑠) = max

(
𝑠 · 𝑟𝑒−𝑟𝑠𝑟𝑐

, 𝑟𝑒

)
. The triplet (𝑟𝑠 , 𝑟𝑒 , 𝑟𝑐) is

a hyperparameter.

3.3 HPC implementation details
We expand the Melissa DL server with the steering mechanism
(Figure 2) to apply Breed. The resampling is triggered by the server
periodically based on the NN training iteration. Firstly, the server
acquires a consistent view of the launcher’s job submissions. Sec-
ondly, it identifies the simulations that have not yet been submitted
for resampling the inputs and, finally, starts the resampling algo-
rithm.

Figure 2: The server’s communication with the launcher for
the input parameters update mechanism. The number of
simulations to run is defined by the budget 𝑛.

The Melissa launcher has a limit𝑚 on the maximum number of
jobs allowed to run simultaneously, determined by the available
resources. Assuming the trigger is invoked while currently running
or submitted simulation 𝑆𝑘 , where 𝑘 is the highest simulation ID
observed from the launcher’s perspective. The exact start time of
the next simulations from 𝑆𝑘+1 to 𝑆𝑘+𝑚−1 cannot be determined due
to the inherent uncertainty of the batch scheduler. Therefore, the
server always chooses 𝑆𝑘+𝑚 as the starting point and thus avoids
inconsistencies that lead to resampling the parameters that may
have been already submitted.

The primary limitation of this approach lies in selecting the ap-
propriate trigger period. For instance, if the period is too frequent,
a resampled generation might never execute with the same param-
eters as it is likely to be overwritten multiple times. Consequently,
this value is left to the user’s discretion, taking into account the
execution speeds of both the solvers and the training process.

4 Experimental study
We experiment with a 2D Heat PDE solver called HeatPDE (Appen-
dix B.1), focusing on the analysis of the method’s hyperparameters
space and its performance with different NN sizes. We compare our
method to an on-line training of a surrogate where input parame-
ters are sampled uniformly, which we refer to as Random. We chose
the heat PDE case due to its relatively low computational demands
and ease of interpretability.

The surrogate is trained to directly predict the discretized tem-
perature field: 𝑢\ (_, 𝑡) = 𝑢_ (𝑥, 𝑡), where _ = [𝑇0,𝑇1,𝑇2,𝑇3,𝑇4] ∈
[100, 500]5 ⊂ Λ are the initial and four boundary temperatures
and 𝑡 ∈ [0, 1, . . . , 100]. We choose a multilayer perceptron with an
input layer of 6 neurons, 𝐿 hidden layers of 𝐻 neurons with ReLU
activation, and an output of𝑀2 = 642 neurons. It is trained using
Adam optimizer with a learning rate of 1𝑒−3 and batch size 𝐵 = 128.
The simulations run budget is 𝑆 = 800, and the pre-created fixed
validation set has 200 full-trajectory simulations with parameters
generated from a quasi-uniform Halton sequence.

4.1 Study description
We conduct two systematic studies: across different model config-
urations (Figure 3a) and across different Breed hyperparameters
(Figure 3b). All other configuration values are fixed for fair com-
parison (see appendix Table 1). We vary:

(1) The hidden size 𝐻 and number of layers 𝐿 of the fully con-
nected NN;

(2) The 3 parameters associated with sampling: window size 𝑁
and period 𝑃 (implementation), width 𝜎 (PMC);

(3) The 3 parameters associated with 𝑟 value: (𝑟𝑠 , 𝑟𝑒 , 𝑟𝑐).

The model configuration affects its expressivity and capability to
capture more complex data. It directly connects to overfitting and
underfitting phenomena, which in an on-line setting are specifically
important. We study values 𝐻 = [16, 32, 64] and 𝐿 = [1, 2, 3], run
two experiments, with Random and Breed steering.

The window size defines the size of the proposal population,
which might affect distribution approximation: smaller values can
make it “unstable” while bigger values can make it “outdated”. We
study values [50, 600, 1000].

The period affects the computational load — how often we per-
form resampling . It can also affect the distribution approximation
quality as Breed is trying to follow a dynamically changing target
L\𝑖 . Currently, the period is static, but we expect to extend it to
an adaptive trigger that uses the usual MCMC modeling metrics,
e.g., effective size and expected improvement. We study values
[10, 50, 100, 300, 500].

The tuning of width 𝜎 is a known issue in PMC algorithms.
Smaller values might make the sampling too “myopic” while bigger
values might make it not concentrative enough. Finding a golden
middle is challenging. We study values [1.0, 5.0, 10.0, 25.0].

The biggest tuning burden is created by 𝑟 -value, as it is specific
to the problem, the model, and parameter 𝑃 . However, this mixing
ratio was the simplest technique for the exploitation-exploration
dilemma, which also appears in MCMC modeling and reinforce-
ment learning. We chose a “linear-constant” change scheme based
on heuristics from our previous work, where we noticed that a

bruno raffin

Active Learning for Data-efficient Surrogate Training SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA

0 2000 4000 6000

10 2

10 1

 H=16, L=1

0 1000 2000 3000

 H=16, L=2

0 2000 4000

 H=16, L=3

0 2000 4000

10 2

10 1

M
SE

 L
os

s

 H=32, L=1

0 2000 4000

 H=32, L=2

0 2000 4000

 H=32, L=3

0 2000 4000

10 2

10 1

 H=64, L=1

0 1000 2000 3000
NN Iteration (i)

 H=64, L=2

0 2000 4000

 H=64, L=3

Performance comparison across different NN architectures
Breed
Random

Training
Validation

(a) Comparative study of models: each plot rep-
resents a run with varying fully connected NN
configurations, i.e., hidden layer size 𝐻 (different
rows) and number of layers 𝐿 (different columns).

0 1000 2000 3000

10 2

10 1

M
SE

 lo
ss

window
50
600

1000

0 1000 2000 3000 4000 5000 6000

period
10
50
100

300
500

0 1000 2000 3000 4000 5000

sigma
1.0
5.0

10.0
25.0

0 1000 2000 3000 4000 5000

10 2

10 1

M
SE

 lo
ss

r start
0.1
0.5

0.8
1.0

0 1000 2000 3000 4000 5000
NN iteration (i)

r end
0.7 0.9

0 1000 2000 3000 4000 5000 6000

r breakpoint
2 4

Performance comparison across different hyperparameters

(b) Comparative study of Breed: each plot represents a run with one varying hyperparameter
value, while every other is fixed, including model configuration.

Figure 3: Experimental study over hyperparameters. The changing parameter is indicated in each legend box. The training
curve is averaged with a moving window of 40 iterations (dotted line) for visibility. The Y-axis is a logarithmic scale, and it is
shared across all plots. Values presented near the curves are the last validation loss values.

“warming up” period was needed to prevent convergence destabi-
lization. In future work, our main goal is to adopt adaptive solutions.
We study values 𝑟𝑠 = [0.1, 0.5, 0.8, 1.0], 𝑟𝑒 = [0.7, 0.9], 𝑟𝑐 = [2, 4].

4.2 Results discussion
While overall Breed performance is not clearly better than Ran-
dom, which can be explained by HeatPDE case simplicity, we see a
specific pattern. Given higher expressivity to the model, Random
experiments tend to show overfitting, which is especially noticeable
for 𝐻 = 16, 𝐿 = 3, while Breed training and validation curves stay
close 2 (Figure 3a).

We see overfitting for some hyperparameter values (Figure 3b),
i.e., high 𝑟𝑠 and low 𝜎 . As for the convergence, we observe that
higher window sizes and lower periods tend to make training di-
vergent at the beginning, which affects further iterations. Within
the 𝑟𝑠 study, we see that value 0.5 also shows divergence at earlier
iterations, but at later ones, converges faster, and its training loss is
higher than validation loss, which is a good sign of generalization
abilities. Consequently, 𝑟𝑒 and 𝑟𝑐 affect the training as well.

Apart from performance analysis, we conducted explorative
analysis across training statistics. Our central insight is that the
conditional distribution of input parameters created overall for the
run is clearly shifted when we use Breed (Figure 4). We calculated
a per input vector deviation, which represents how large is the
difference between the temperatures 𝑇0:5, and built a histogram.
In Figure 4b, we compare the fixed configuration run with the

2In Melissa, a training thread may operate more frequently than a receiving thread. It
can result in more training iterations independent of the run configuration, which we
observe in figures.

Random and Breed methods. The mean of the latter distribution is
shifted toward higher deviation values. It means that Breed focuses
sampling in Λ regions where temperatures are more diverse. It makes
sense for the HeatPDE case, as diverse temperatures bring more
dynamicity to the trajectory, which should be harder to learn. To
see this phenomenon clearly, we compared the histograms for the
uniform and proposal samples for one Breed run in Figure 4a.

Additionally, we calculated the correlation coefficients between
the NN iteration, per-sample and batch losses, and our proposed
deviation loss metric𝑄 𝑗 . We noticed that our metric has no correla-
tion to the NN iteration (-0.02) but has a positive correlation (0.27)
with per-sample loss, while batch loss and sample loss correlate
with the NN iteration (0.4, 0.31). It means, we constructed a metric
that is comparable between NN iterations and partially representative
of per-sample loss. See a visual representation of the correlation
matrix in appendix Figure 6.

5 Related work
The question of active learning originated in the context of training
NNs with a finite dataset [39]. The goal is to “select a small subset of
unlabeled samples from a large pool of data for labeling and training,
while achieving comparable generalization performance to learning
on the entire dataset” [6]. Active learning in that context relies on
two main criteria. The first one is based on uncertainty, choosing
samples that the neural models are most uncertain about. The sec-
ond is based on diversity, selecting samples bringing diversity in the
feature space compared to the already labeled ones [6]. It is tackled
in various ways: measuring samples uncertainty by approximat-
ing training dynamics [24, 40], calculating samples influence [19],

bruno raffin

SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA Sofya Dymchenko, Abhishek Purandare, and Bruno Raffin

20 40 60 80 100 120 140 160 180
Parameter vector deviation (j)

0

20

40

60

80

100

C
ou

nt

m
ea

n

m
ea

n

Input parameters deviation distribution
Uniform
Proposal

(a) Breed run: uniform (orange)
against proposal (light blue)

20 40 60 80 100 120 140 160 180
Parameter vector deviation (j)

0

20

40

60

80

100

120

140

C
ou

nt

m
ea

n

m
ea

n

Input parameters deviation distribution
Random
Breed

(b) Random run (red) against
Breed run (blue)

Figure 4: Input parameter deviation histogram obtained from
one run of 800 input parameters. On the left (a), comparison
per source of point (whether uniform or proposal) for one
Breed run; on the right (b), comparison of two runs (Random
and Breed). The mean is plotted to better see the distribution
shift.

selecting representative subsets with use of gradients [17, 20, 21],
with also extensions to data streams [7].

In the AI4Science domain, active learning has recently seen a
surge of interest to improve PINNs training. PINNs are trained by
choosing collocation points. Uniform sampling is the standard ap-
proach, but alternative adaptive sampling strategies have been pro-
posed in an attempt to improve noticeably hard-to-train networks.
Approach ranges from re-weighting sample importance [32, 44],
creating a training subset based on a probability distribution cal-
culated from the normalized losses [43], or retaining points whose
loss is higher than average and resampling the remaining ones
uniformly for each iteration [12]. [25] proposes to use values cal-
culated with the Neural Tangent Kernel (NTK) instead of the loss,
giving a more precise insight into the influence of each sample. The
compute overhead is shown to be compensated by the gain on the
convergence speed.

The paper [30] proposes to apply classical active learning algo-
rithms to multi-parametric surrogate training. Their approach is
fully off-line, using active learning with lightweight NNs to gather
metrics to build a static data set, which is next used for training
the full-featured surrogate. Simulation-based inference (SBI) [11]
trains a NN from simulations to solve an inverse problem. The NN
often relies on normalizing flows to learn the posterior distribu-
tion, which can be used in turn to select the input parameters of
the next set of simulations to run. We can also mention a former
work [4] that addressed a similar inference issue from simulation
runs, using an LSTM neural architecture with the particularity of
experiments at large scale on more than thousands of CPU nodes.
Another work proposed an HPC framework that relies on machine
learning to adaptively select the members of an ensemble to run
to accelerate the parameter space exploration according to some
given objective [42].

Our proposed sampling method is inspired by a PMC algorithm.
To our knowledge, PMC has not been used for active learning. More
advanced PMC versions exist that instead of sampling within the
vicinity of high probability points with a fixed standard deviation,
exploit geometric information of the target to adapt the location

and scale parameters of those proposals [15, 16] or use normaliz-
ing flows instead of a Gaussian proposal [34]. Deploying such an
algorithm in our context is left for future work.

6 Conclusion
In this paper, we introduced an active learning method for data-
efficient on-line training of deep surrogates using theMelissa frame-
work. Our approach steers data creation by leveraging loss statistics
and Importance Sampling: it guides the solvers to compute trajec-
tories with input parameters in hard-to-learn regions. Preliminary
results with the heat equation showed Breed’s potential to improve
NN generalization ability without computational overhead, as well
as an interpretable choice of points. Future work will focus on con-
ducting experiments for larger-scale and more complex dynamic
PDEs, refining the method with advanced sampling techniques, and
reducing the set of hyperparameters by developing self-adaptive
techniques.

Acknowledgements
This work was supported by project Exa-DoST, NumPEx PEPR
program, France 2030 state grant reference ANR-22-EXNU-0004.
This work was granted access to the HPC resources of IDRIS un-
der the allocations AD010610366R3 attributed by GENCI (Grand
Equipement National de Calcul Intensif), and benefited from ac-
cess to the Grid’5000 testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER and sev-
eral Universities as well as other organizations. We are thankful to
Quentin Guilloteau and Fernando Ayats for their help with setting
the environment for reproducible experiments.

References
[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander

Pritzel, Olaf Ronneberger, LindsayWillmore, Andrew J. Ballard, Joshua Bambrick,
Sebastian W. Bodenstein, David A. Evans, Chia-Chun Hung, Michael O’Neill,
David Reiman, Kathryn Tunyasuvunakool, ZacharyWu, Akvilė Žemgulytė, Eirini
Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland, Alexey Cherepanov,
Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael Figurnov,
Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A. Khan, Caroline M. R.
Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stec-
ula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong,
Michal Zielinski, Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg,
Demis Hassabis, and John M. Jumper. 2024. Accurate Structure Prediction of
Biomolecular Interactions with AlphaFold 3. Nature 630, 8016 (June 2024), 493–
500. https://doi.org/10.1038/s41586-024-07487-w

[2] Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini,
Jean Kossaifi, and Anima Anandkumar. 2024. Neural operators for accelerating
scientific simulations and design. Nature Reviews Physics 6, 5 (May 2024), 320–328.
https://doi.org/10.1038/s42254-024-00712-5 arXiv:2309.15325 [cs.LG]

[3] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez,
Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas
Niclausse, Lucas Nussbaum, et al. 2013. Adding virtualization capabilities to the
Grid’5000 testbed. In Cloud Computing and Services Science: Second International
Conference, CLOSER 2012, Porto, Portugal, April 18-21, 2012. Revised Selected Papers
2. Springer, 3–20.

[4] Atılım Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Mead-
ows, Jialin Liu, Andreas Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles
Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Victor Lee, Kyle Cranmer, Prab-
hat, and Frank Wood. 2019. Etalumis: Bringing Probabilistic Programming to
Scientific Simulators at Scale. (2019). https://doi.org/10.1145/3295500.3356180
arXiv:1907.03382 Publisher: IEEE Computer Society.

[5] Cristian Bodnar, Wessel Bruinsma, Ana Lucic, Megan Stanley, Johannes Brand-
stetter, Patrick Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna
Vaughan, Jayesh Gupta, Kit Thambiratnam, Alex Archibald, Elizabeth Heider,
Max Welling, Richard Turner, and Paris Perdikaris. 2024. Aurora: A Foundation
Model of the Atmosphere. Technical Report MSR-TR-2024-16. Microsoft Research

https://doi.org/10.1038/s41586-024-07487-w
https://doi.org/10.1038/s42254-024-00712-5
https://arxiv.org/abs/2309.15325
https://doi.org/10.1145/3295500.3356180
https://arxiv.org/abs/1907.03382
bruno raffin

Active Learning for Data-efficient Surrogate Training SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA

AI for Science. https://www.microsoft.com/en-us/research/publication/aurora-
a-foundation-model-of-the-atmosphere/

[6] Dake Bu, Wei Huang, Taiji Suzuki, Ji Cheng, Qingfu Zhang, Zhiqiang Xu, and
Hau-San Wong. 2024. Provably Neural Active Learning Succeeds via Prioritizing
Perplexing Samples. In Forty-First International Conference on Machine Learning.

[7] Davide Cacciarelli and Murat Kulahci. 2024. Active Learning for Data Streams:
A Survey. Machine Learning 113, 1 (Jan. 2024), 185–239. https://doi.org/10.1007/
s10994-023-06454-2

[8] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron,
and O. Richard. 2005. A batch scheduler with high level components. In CCGrid
2005. IEEE International Symposium on Cluster Computing and the Grid, 2005.,
Vol. 2. 776–783 Vol. 2. https://doi.org/10.1109/CCGRID.2005.1558641

[9] Olivier Cappé, Arnaud Guillin, Jean-Michel Marin, and Christian Robert. 2004.
Population Monte Carlo. Journal of Computational and Graphical Statistics 13, 4
(2004), 907–929. https://hal.science/hal-01337419

[10] Ze Cheng, Zhongkai Hao, Xiaoqiang Wang, Jianing Huang, Youjia Wu, Xudan
Liu, Yiru Zhao, Songming Liu, and Hang Su. 2024. Reference Neural Operators:
Learning the Smooth Dependence of Solutions of PDEs on Geometric Deforma-
tions. arXiv e-prints, Article arXiv:2405.17509 (May 2024), arXiv:2405.17509 pages.
https://doi.org/10.48550/arXiv.2405.17509 arXiv:2405.17509 [cs.LG]

[11] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. 2020. The Frontier of
Simulation-Based Inference. Proceedings of the National Academy of Sciences 117,
48 (Dec. 2020), 30055–30062. https://doi.org/10.1073/pnas.1912789117

[12] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. 2023. Miti-
gating Propagation Failures in Physics-informed Neural Networks using Retain-
Resample-Release (R3) Sampling. In Proceedings of the 40th International Con-
ference on Machine Learning. PMLR, 7264–7302. https://proceedings.mlr.press/
v202/daw23a.html ISSN: 2640-3498.

[13] Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and Policy-
Free System for Software Deployment.. In LISA, Vol. 4. 79–92.

[14] Sofya Dymchenko and Bruno Raffin. 2023. Loss-driven sampling within hard-
to-learn areas for simulation-based neural network training. In MLPS 2023 -
Machine Learning and the Physical Sciences Workshop at NeurIPS 2023 - 37th
conference on Neural Information Processing Systems. New Orleans, United States,
1–5. https://hal.science/hal-04305233

[15] Víctor Elvira and Émilie Chouzenoux. 2022. Optimized Population Monte Carlo.
IEEE Transactions on Signal Processing 70 (2022), 2489–2501. https://doi.org/10.
1109/TSP.2022.3172619 arXiv:2204.06891 [stat]

[16] Víctor Elvira, Émilie Chouzenoux, Ömer Deniz Akyildiz, and Luca Martino. 2023.
Gradient-Based Adaptive Importance Samplers. Journal of the Franklin Institute
360, 13 (Sept. 2023), 9490–9514. https://doi.org/10.1016/j.jfranklin.2023.06.041

[17] Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Mohammad Taher Pilehvar,
Yadollah Yaghoobzadeh, and Samira Ebrahimi Kahou. 2022. BERT on a Data Diet:
Finding Important Examples by Gradient-Based Pruning. In NeurIPS.

[18] Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Moli-
naro, Emmanuel de Bézenac, and Siddhartha Mishra. 2024. Poseidon: Effi-
cient Foundation Models for PDEs. https://doi.org/10.48550/arXiv.2405.19101
arXiv:2405.19101 [cs]

[19] Karthikeyan K and Anders Søgaard. 2021. Revisiting Methods for Finding Influen-
tial Examples. (2021). https://doi.org/10.48550/arxiv.2111.04683 arXiv:2111.04683

[20] Angelos Katharopoulos and François Fleuret. 2019. Not All Samples Are Created
Equal: Deep Learning with Importance Sampling. https://doi.org/10.48550/arXiv.
1803.00942 arXiv:1803.00942 [cs]

[21] Krishnateja Killamsetty, Guttu Sai Abhishek, Ganesh Ramakrishnan, Alexandre V
Evfimievski, Lucian Popa, and Rishabh Iyer. 2022. AUTOMATA : Gradient
Based Data Subset Selection for Compute-Efficient Hyper-parameter Tuning. In
Advances in Neural Information Processing Systems.

[22] Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin
Mooers, Milan Klöwer, James Lottes, Stephan Rasp, Peter Düben, Sam Hatfield,
Peter Battaglia, Alvaro Sanchez-Gonzalez, Matthew Willson, Michael P. Brenner,
and Stephan Hoyer. 2024. Neural General Circulation Models for Weather and
Climate. Nature (July 2024). https://doi.org/10.1038/s41586-024-07744-y

[23] Georg Kohl, Li-Wei Chen, and Nils Thuerey. 2023. Benchmarking Autoregressive
Conditional Diffusion Models for Turbulent Flow Simulation. arXiv e-prints,
Article arXiv:2309.01745 (Sept. 2023), arXiv:2309.01745 pages. https://doi.org/10.
48550/arXiv.2309.01745 arXiv:2309.01745 [cs.LG]

[24] Seong Min Kye, Kwanghee Choi, and Buru Chang. 2022. TiDAL: Learning
Training Dynamics for Active Learning. (2022). https://doi.org/10.48550/ARXIV.
2210.06788 Publisher: arXiv Version Number: 1.

[25] Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan
Kian Hsiang Low. 2023. PINNACLE: PINN Adaptive ColLocation and Exper-
imental Points Selection. In The Twelfth International Conference on Learning
Representations.

[26] Alexander Lavin, Hector Zenil, Brooks Paige, David Krakauer, Justin Gottschlich,
Tim Mattson, Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş
Baydin, Carina Prunkl, Brooks Paige, Olexandr Isayev, Erik Peterson, Peter L.
McMahon, Jakob Macke, Kyle Cranmer, Jiaxin Zhang, Haruko Wainwright, Adi

Hanuka, Manuela Veloso, Samuel Assefa, Stephan Zheng, and Avi Pfeffer. 2021.
Simulation Intelligence: Towards a New Generation of Scientific Methods. (2021).
arXiv:2112.03235 http://arxiv.org/abs/2112.03235

[27] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, AndrewM. Stuart, and Anima Anandkumar. 2021. Fourier
Neural Operator for Parametric Partial Differential Equations. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net. https://openreview.net/forum?id=c8P9NQVtmnO

[28] Lucas Meyer, Marc Schouler, Robert Alexander Caulk, Alejandro Ribés, and
Bruno Raffin. 2023. High Throughput Training of Deep Surrogates from Large
Ensemble Runs. In SC 2023 - The International Conference for High Performance
Computing, Networking, Storage, and Analysis. ACM, Denver, CO, United States,
1–14. https://doi.org/10.1145/3581784.3607083

[29] Lucas Meyer, Marc Schouler, Robert Alexander Caulk, Alejandro Ribés, and
Bruno Raffin. 2023. Training Deep Surrogate Models with Large Scale Online
Learning. In ICML 2023 - International Conference on Machine Learning. 1–17.
https://hal.science/hal-04102400

[30] Daniel Musekamp, Marimuthu Kalimuthu, David Holzmüller, Makoto Takamoto,
and Mathias Niepert. 2024. Active Learning for Neural PDE Solvers.
arXiv:2408.01536 [cs]

[31] F Mölder, KP Jablonski, B Letcher, MB Hall, CH Tomkins-Tinch, V Sochat, J
Forster, S Lee, SO Twardziok, A Kanitz, A Wilm, M Holtgrewe, S Rahmann, S
Nahnsen, and J Köster. 2021. Sustainable data analysis with Snakemake [version
2; peer review: 2 approved]. F1000Research 10, 33 (2021). https://doi.org/10.
12688/f1000research.29032.2

[32] Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. 2021.
Efficient training of physics-informed neural networks via importance sampling.
36, 8 (2021), 962–977. https://doi.org/10.1111/mice.12685 arXiv:2104.12325 [cs,
math]

[33] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya
Grover. 2023. ClimaX: A foundationmodel for weather and climate. In Proceedings
of the 40th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 25904–
25938. https://proceedings.mlr.press/v202/nguyen23a.html

[34] Soumyasundar Pal, Antonios Valkanas, and Mark Coates. 2023. Population
Monte Carlo with Normalizing Flow. https://doi.org/10.48550/arXiv.2312.03857
arXiv:2312.03857 [stat].

[35] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia.
2021. Learning Mesh-Based Simulation with Graph Networks. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net. https://openreview.net/forum?id=roNqYL0_XP

[36] M. Raissi, P. Perdikaris, and G.E. Karniadakis. 2019. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. J. Comput. Phys. 378 (2019),
686–707. https://doi.org/10.1016/j.jcp.2018.10.045

[37] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta,
Xiaojiang Chen, and Xin Wang. 2020. A Survey of Deep Active Learning. arXiv
e-prints, Article arXiv:2009.00236 (Aug. 2020), arXiv:2009.00236 pages. https:
//doi.org/10.48550/arXiv.2009.00236 arXiv:2009.00236 [cs.LG]

[38] Marc Schouler, Robert Alexander Caulk, Lucas Meyer, Théophile Terraz,
Christoph Conrads, Sebastian Friedemann, Achal Agarwal, Juan Manuel Bal-
donado, Bartłomiej Pogodziński, Anna Sekuła, Alejandro Ribes, and Bruno Raf-
fin. 2023. Melissa: coordinating large-scale ensemble runs for deep learning
and sensitivity analyses. Journal of Open Source Software 8, 86 (2023), 5291.
https://doi.org/10.21105/joss.05291

[39] Rinyoichi Takezoe, Xu Liu, Shunan Mao, Marco Tianyu Chen, Zhanpeng Feng,
Shiliang Zhang, and Xiaoyu Wang. 2023. Deep Active Learning for Computer
Vision: Past and Future. APSIPA Transactions on Signal and Information Processing
12, 1 (2023), –. https://doi.org/10.1561/116.00000057

[40] Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew J. Margenot,
and Jingrui He. 2022. Deep Active Learning by Leveraging Training Dynamics.
https://openreview.net/forum?id=aJ5xc1QB7EX

[41] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. 2023. An
Expert’s Guide to Training Physics-informed Neural Networks. https://doi.org/
10.48550/arXiv.2308.08468 arXiv:2308.08468 [physics].

[42] Logan Ward, Ganesh Sivaraman, J. Gregory Pauloski, Yadu Babuji, Ryan Chard,
Naveen Dandu, Paul C. Redfern, Rajeev S. Assary, Kyle Chard, Larry A. Curtiss,
Rajeev Thakur, and Ian Foster. 2021. Colmena: Scalable Machine-Learning-Based
Steering of Ensemble Simulations for High Performance Computing. (2021), 9–20.
https://doi.org/10.1109/MLHPC54614.2021.00007

[43] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. 2022. A com-
prehensive study of non-adaptive and residual-based adaptive sampling for
physics-informed neural networks. https://doi.org/10.48550/arXiv.2207.10289
arXiv:2207.10289 [physics]

[44] Zijiang Yang, Zhongwei Qiu, and Dongmei Fu. 2022. DMIS: Dynamic Mesh-
based Importance Sampling for Training Physics-Informed Neural Networks.
https://doi.org/10.48550/arXiv.2211.13944 arXiv:2211.13944 [cs, math]

https://www.microsoft.com/en-us/research/publication/aurora-a-foundation-model-of-the-atmosphere/
https://www.microsoft.com/en-us/research/publication/aurora-a-foundation-model-of-the-atmosphere/
https://doi.org/10.1007/s10994-023-06454-2
https://doi.org/10.1007/s10994-023-06454-2
https://doi.org/10.1109/CCGRID.2005.1558641
https://hal.science/hal-01337419
https://doi.org/10.48550/arXiv.2405.17509
https://arxiv.org/abs/2405.17509
https://doi.org/10.1073/pnas.1912789117
https://proceedings.mlr.press/v202/daw23a.html
https://proceedings.mlr.press/v202/daw23a.html
https://hal.science/hal-04305233
https://doi.org/10.1109/TSP.2022.3172619
https://doi.org/10.1109/TSP.2022.3172619
https://arxiv.org/abs/2204.06891
https://doi.org/10.1016/j.jfranklin.2023.06.041
https://doi.org/10.48550/arXiv.2405.19101
https://arxiv.org/abs/2405.19101
https://doi.org/10.48550/arxiv.2111.04683
https://arxiv.org/abs/2111.04683
https://doi.org/10.48550/arXiv.1803.00942
https://doi.org/10.48550/arXiv.1803.00942
https://arxiv.org/abs/1803.00942 [cs]
https://doi.org/10.1038/s41586-024-07744-y
https://doi.org/10.48550/arXiv.2309.01745
https://doi.org/10.48550/arXiv.2309.01745
https://arxiv.org/abs/2309.01745
https://doi.org/10.48550/ARXIV.2210.06788
https://doi.org/10.48550/ARXIV.2210.06788
https://arxiv.org/abs/2112.03235
http://arxiv.org/abs/2112.03235
https://openreview.net/forum?id=c8P9NQVtmnO
https://doi.org/10.1145/3581784.3607083
https://hal.science/hal-04102400
https://arxiv.org/abs/2408.01536
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1111/mice.12685
https://arxiv.org/abs/2104.12325 [cs, math]
https://arxiv.org/abs/2104.12325 [cs, math]
https://proceedings.mlr.press/v202/nguyen23a.html
https://doi.org/10.48550/arXiv.2312.03857
https://openreview.net/forum?id=roNqYL0_XP
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.48550/arXiv.2009.00236
https://doi.org/10.48550/arXiv.2009.00236
https://arxiv.org/abs/2009.00236
https://doi.org/10.21105/joss.05291
https://doi.org/10.1561/116.00000057
https://openreview.net/forum?id=aJ5xc1QB7EX
https://doi.org/10.48550/arXiv.2308.08468
https://doi.org/10.48550/arXiv.2308.08468
https://doi.org/10.1109/MLHPC54614.2021.00007
https://doi.org/10.48550/arXiv.2207.10289
https://arxiv.org/abs/2207.10289 [physics]
https://doi.org/10.48550/arXiv.2211.13944
https://arxiv.org/abs/2211.13944 [cs, math]
bruno raffin

SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA Sofya Dymchenko, Abhishek Purandare, and Bruno Raffin

A Melissa DL Architecture

Figure 5: The Melissa framework architecture consisting of
launcher (orchestrates the process through the cluster’s batch
scheduler), clients jobs (where simulations are executed), and
a server (trains NN and manages reservoirs).

The launcher controls the workflow by interacting with the cluster’s
batch scheduler. It initiates the server, a Python-based code using
PyTorch for multi-GPU training. The server manages the training
process and defines the simulation instances, known as clients.
The server then sends a request to the launcher for submitting
clients based on allocated resources. Once a client starts, it connects
dynamically to the server.

The server maintains a memory buffer called the reservoir, which
goal is to reduce training bias and avoid GPU starvation. Newly
received data from the clients are stored in the reservoir, replacing
older data randomly. If all reservoir samples are new, client execu-
tions are paused temporarily. The server asynchronously creates
random batches from the reservoir for NN training, allowing each
reservoir sample to be reused multiple times. See [28] for a detailed
description of the reservoir algorithm.

B General setup details
B.1 2D HeatPDE with Melissa
The experiments consider the classical heat equation (HeatPDE) on
a 2D rectangular domain:

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= 𝛼
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

(13)

𝑢 ((𝑥1 = 0, 𝑥2), 𝑡) = 𝑇1, 𝑢 ((𝑥1 = 𝐿, 𝑥2), 𝑡) = 𝑇2 (14)
𝑢 ((𝑥1, 𝑥2 = 0), 𝑡) = 𝑇3, 𝑢 ((𝑥1, 𝑥2 = 𝐿), 𝑡) = 𝑇4 (15)
𝑢 (𝑥, 𝑡 = 0) = 𝑇0 (16)

where𝑢 (𝑥, 𝑡) is the field temperature, 𝛼 is the thermal diffusivity
and [𝑇0,𝑇1,𝑇2,𝑇3,𝑇4] are the initial and 4 boundary temperatures.
The solution is approximated with an in-house solver that imple-
ments a finite difference method with an implicit Euler scheme. The
temperature field is discretized on a𝑀 ×𝑀 Cartesian grid and gen-
erated for 𝑇 = 100 time steps representing △𝑡 = 0.01 seconds each.
In this study, the thermal diffusivity is fixed to 𝛼 = 1𝑚2 .𝑠−1, and

changing this parameter is left for future work. The temperature
parameters are the solver input parameters Λ = R5 that we tend to
sample, which values we bound to interval [100, 500] K.

The surrogate is trained to directly predict the temperature field.
As the initial temperature field is described by the input parameters
vector exhaustively, the NN input is not the field itself but just the
vector and timestep: 𝑢\ (_, 𝑡) = 𝑢_ (𝑥, 𝑡). The NN architecture is a
multilayer perceptron consisting of an input layer of 6 neurons, 𝐿
hidden layers of 𝐻 neurons with ReLU activation, and an output
of𝑀2 neurons. It is trained using Adam optimizer with a learning
rate of 1𝑒−3.

In Melissa, we set the simultaneous job limit to𝑚 = 10 and the
Reservoir watermark value to 300, meaning that the NN training
does not begin until the buffer contains at least 300 unique samples.

B.2 Experiment orchestration
To facilitate a broad analysis study, we employ Snakemake[31],
a workflow management system that enables the execution and
management of scalable, reproducible analysis studies. In our case,
the workflow creates configuration files for Melissa runs across
chosen grid. To ensure the reproducibility3 of our experiments, we
utilize Nix [13] package manager. The experiments were conducted
on the Grid5000 [3] cluster using OAR scheduler [8]. Each Melissa
client as well as the server run one 48 processes MPI job, each one
scheduled on a 48 core node.

C Experiments additional details
Here we provide the Table 1 with exact hyperparameters used in
the study, and 6 is the visualisation of correlation matrix.

Table 1: The fixed hyperparameters details according to vary-
ing (*) parameter: (1) the model size is varied, (2) 𝜎 or 𝑃 or 𝑁
is varied, (3) 𝑟𝑠 or 𝑟𝑒 or 𝑟𝑐 is varied.

𝜎 𝑃 𝑁 𝑟𝑠 𝑟𝑒 𝑟𝑐 𝐻 𝐿

Study (1) 10.0 300 200 0.5 0.7 3 * *
Study (2) */5.0 */200 */200 0.5 0.9 3 16 1
Study (3) 5.0 200 200 */0.1 */1.0 */5 16 1

3Code is available at https://gitlab.inria.fr/melissa/ai4s-sc2024-heatpde.git

https://gitlab.inria.fr/melissa/ai4s-sc2024-heatpde.git
bruno raffin

Active Learning for Data-efficient Surrogate Training SC24 Workshop: AI4S’24, November 18, 2024, Atlanta, GA

i j t l(i)jt
U (l(i)) (i)

jt

NN Iteration (i)

Parameter Index (j)

Timestep (t)

Sample Loss (l(i)jt)

Uniform (U)

Batch Loss ((l(i)))

Loss Deviaiton ((i)
jt)

0.99

0.05 0.03

-0.31 -0.28 -0.15

-0.35 -0.35 -0.03 0.21

-0.40 -0.37 -0.14 0.76 0.28

-0.02 -0.01 -0.36 0.27 -0.03 0.02

Correlation Matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
orrelation C

oefficient

Figure 6: Correlation between per-sample and per-batch dy-
namics: indicated on the left axis. The upper triangle and
diagonal values are omitted for readability. “Uniform” value
is an indicator of whether the sample was produced by uni-
form mixing, “loss deviation” is the proposed metric, which
is not dependent on NN iteration but still positively corre-
lates with per-sample loss.

bruno raffin

	Abstract
	1 Introduction
	2 Background
	2.1 Simulation-based deep learning
	2.2 The Melissa DL framework

	3 Active learning steering of data creation for on-line surrogate training
	3.1 Loss-deviation based acquisition metric
	3.2 Adaptive Multiple Importance Sampling
	3.3 HPC implementation details

	4 Experimental study
	4.1 Study description
	4.2 Results discussion

	5 Related work
	6 Conclusion
	References
	A Melissa DL Architecture
	B General setup details
	B.1 2D HeatPDE with Melissa
	B.2 Experiment orchestration

	C Experiments additional details

