Protection against Atmospheric Corrosion of Zinc in Marine Environment Rich in H2S Using Self-Assembled Monolayers Based on Sargassum fluitans III Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Selection of Sites
2.3. Gravimetric Analysis
2.4. Electrochemical Measurements
2.5. FTIR and XRD Analysis
3. Results and Discussion
3.1. FTIR Spectroscopy Analysis
3.2. Effect of Immersion Time on Film Formation
3.3. Evaluation of Zinc Thickness Loss
3.4. Electrochemical Results
3.5. XRD Results
4. Conclusions
- IR analysis confirmed the presence of Sargassum fluitans III extract adsorbed onto the metal surface, supporting successful formation of the extract-based self-assembled monolayer through the SAMs process.
- A study of the zinc immersion time within the extract revealed a saturation point between 6 and 8 h of contact, indicating an optimized time frame for material modification and potential improvement in the coating efficiency.
- The mass loss measurements, obtained after three months of exposure in two different sites, showed a significant reduction in the loss of zinc thickness after treatment with the extract-based coating. The formation of SAMs demonstrated a substantial reduction in the corrosion effects caused by the protective film, which improved the performance and durability of the zinc.
- These protective properties were validated through electrochemistry by comparing the impedance curves of zinc samples both with and without the coating. The curves for coated zinc showed enhanced impedance, implying a more effective shield against corrosion compared to the uncoated material.
- DRX analysis confirmed the absence of ZnS on the zinc surface. As ZnS is generally associated with corrosion in H2S-rich environments, this indicates that the Sargassum fluitans III extract-based coating used in this study possesses a protective effect under such conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morcillo, M.; Chico, B.; Fuente, D.; Simancas, J. Looking Back on Contributions in the Field of Atmospheric Corrosion Offered by the MICAT Ibero-American Testing Network. Int. J. Corros. 2012, 2012, 824365. [Google Scholar] [CrossRef]
- Fuentes, M.; de la Fuente, D.; Chico, B.; Llorente, I.; Jiménez, J.A.; Morcillo, M. Atmospheric Corrosion of Zinc in Coastal Atmospheres. Mater. Corros. 2019, 70, 1005–1015. [Google Scholar] [CrossRef]
- Thierry, D.; LeBozec, N.; Le Gac, A.; Persson, D. Long-Term Atmospheric Corrosion Rates of Hot Dip Galvanised Steel and Zinc-Aluminium-Magnesium Coated Steel. Mater. Corros. 2019, 70, 2220–2227. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Lebrini, M.; Pellé, J.; Rioual, S.; Amintas, O.; Boulanger, C.; Lescop, B.; Roos, C. Study of Atmospheric Corrosion of Zinc in a Tropical Marine Environment Rich in H2S, Resulting from the Decomposition of Sargassum Algae. Mater. Corros. 2024. [Google Scholar] [CrossRef]
- Faustin, M.; Lebrini, M.; Robert, F.; Roos, C. Corrosion Studies of C38 Steel by Alkaloids Extract of a Tropical Plant Type. Int. J. Electrochem. Sci. 2011, 6, 4095–4113. [Google Scholar] [CrossRef]
- Lebrini, M.; Suedile, F.; Salvin, P.; Roos, C.; Zarrouk, A.; Jama, C.; Bentiss, F. Bagassa Guianensis Ethanol Extract Used as Sustainable Eco-Friendly Inhibitor for Zinc Corrosion in 3% NaCl: Electrochemical and XPS Studies. Surf. Interfaces 2020, 20, 100588. [Google Scholar] [CrossRef]
- Suedile, F.; Robert, F.; Roos, C.; Lebrini, M. Corrosion Inhibition of Zinc by Mansoa Alliacea Plant Extract in Sodium Chloride Media: Extraction, Characterization and Electrochemical Studies. Electrochim. Acta 2014, 133, 631–638. [Google Scholar] [CrossRef]
- Cáceres, L.; Frez, Y.; Galleguillos, F.; Soliz, A.; Gómez-Silva, B.; Borquez, J. Aqueous Dried Extract of Skytanthus Acutus Meyen as Corrosion Inhibitor of Carbon Steel in Neutral Chloride Solutions. Metals 2021, 11, 1992. [Google Scholar] [CrossRef]
- Ortega Ramirez, A.T.; Barrantes, L.; Casallas Martin, B.D.; Cortés Salazar, N. Application of Green Inhibitors for Corrosion Control in Metals. Review. Dyna 2021, 88, 160–168. [Google Scholar] [CrossRef]
- Shang, Z.; Zhu, J. Overview on Plant Extracts as Green Corrosion Inhibitors in the Oil and Gas Fields. J. Mater. Res. Technol. 2021, 15, 5078–5094. [Google Scholar] [CrossRef]
- Suedile, F. Extraction, Caractérisation et Etude Electrochimique de Molécules Actives Issues de la Forêt Amazonienne pour la Protection du Zinc Contre la Corrosion., des Antilles et de la Guyane. 2014. Available online: https://theses.fr/2014AGUY0745 (accessed on 1 August 2024).
- Lebrini, M.; Robert, F.; Lecante, A.; Roos, C. Corrosion Inhibition of C38 Steel in 1 M Hydrochloric Acid Medium by Alkaloids Extract from Oxandra Asbeckii Plant. Corros. Sci. 2011, 53, 687–695. [Google Scholar] [CrossRef]
- Lambert, P.; Said-Ahmed, M.; Jama, C.; Lebrini, M. Molecules from Sargassum Algae as Green Inhibitor for C38 in HCl Medium: Extraction, Characterization and Electrochemical Study. Coatings 2023, 13, 2076. [Google Scholar] [CrossRef]
- Vazquez-Delfin, E.F.; Velazquez, V.A.; Ramirez, D.R. SargaZoom; Cinvestav Mérida: Mérida, Mexico, 2020. [Google Scholar]
- EN13523-19; Coil Coated Metals—Test Methods—Part 19: Panel Design and Method of Atmospheric Exposure Testing. iTeh Standard Preview: Brussels, Belgium, 2019.
- Ahmed, M.S.; Lebrini, M.; Lescop, B.; Pellé, J.; Rioual, S.; Amintas, O.; Boullanger, C.; Roos, C. Corrosion of Copper in a Tropical Marine Atmosphere Rich in H2S Resulting from the Decomposition of Sargassum Algae. Metals 2023, 13, 982. [Google Scholar] [CrossRef]
- Landolt, D. Corrosion et Chimie de Surfaces des Métaux (Traité des Matériaux, Volume 12)|Société Française de Métallurgie et de Matériaux; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 2003. [Google Scholar]
- Said Ahmed, M.; Lescop, B.; Pellé, J.; Rioual, S.; Roos, C.; Lebrini, M. Corrosion of Carbon Steel in a Tropical Marine Environment Enhanced by H2S from Sargassum Seaweed Decomposition. Metals 2024, 14, 676. [Google Scholar] [CrossRef]
- Popova, A.; Raicheva, S.; Sokolova, E.; Christov, M. Frequency Dispersion of the Interfacial Impedance at Mild Steel Corrosion in Acid Media in the Presence of Benzimidazole Derivatives. Langmuir 1996, 12, 2083–2089. [Google Scholar] [CrossRef]
- Khaled, K.F.; Amin, M.A. Corrosion Monitoring of Mild Steel in Sulphuric Acid Solutions in Presence of Some Thiazole Derivatives–Molecular Dynamics, Chemical and Electrochemical Studies. Corros. Sci. 2009, 51, 1964–1975. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Li, J.; Zhang, D.; Gao, L. In Situ Click-Assembling Monolayers on Copper Surface with Enhanced Corrosion Resistance. Corros. Sci. 2016, 113, 133–144. [Google Scholar] [CrossRef]
- Schreiber, F. Structure and Growth of Self-Assembling Monolayers. Prog. Surf. Sci. 2000, 65, 151–257. [Google Scholar] [CrossRef]
- Doneux, T. Etude de La Monocouche Autoassemblée de 2-Mercaptobenzimidazole; ULB: Bruxelles, Belgium, 2005. [Google Scholar]
- Aramaki, K.; Shimura, T. Self-Assembled Monolayers of Carboxylate Ions on Passivated Iron for Preventing Passive Film Breakdown. Corros. Sci. 2004, 46, 313–328. [Google Scholar] [CrossRef]
- Zamborini, F.P.; Campbell, J.K.; Crooks, R.M. Spectroscopic, Voltammetric, and Electrochemical Scanning Tunneling Microscopic Study of Underpotentially Deposited Cu Corrosion and Passivation with Self-Assembled Organomercaptan Monolayers. Langmuir 1998, 14, 640–647. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M. Self-Assembled Monolayers of n-Alkanethiolates on Copper Are Barrier Films That Protect the Metal against Oxidation by Air. J. Am. Chem. Soc. 1992, 114, 9022–9028. [Google Scholar] [CrossRef]
- Brzoska, J.B.; Shahidzadeh, N.; Rondelez, F. Evidence of a Transition Temperature for the Optimum Deposition of Grafted Monolayer Coatings. Nature 1992, 360, 719–721. [Google Scholar] [CrossRef]
- Beaux, J.; Caussé, N.; Esvan, J.; Delaunay, S.; Tireau, J.; Roy, M.; You, D.; Pébère, N. Impedance analysis of film-forming amines for the corrosion protection of a carbon steel. Electrochim. Acta 2018, 283, 699–707. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.A.; Reddy, M.N. Formation, Characterization and Corrosion Protection Efficiency of Self-Assembled 1-Octadecyl-1H-Imidazole Films on Copper for Corrosion Protection. Arab. J. Chem. 2017, 10, S3270–S3283. [Google Scholar]
- NF EN ISO 9223; Corrosion des Métaux et Alliages—Corrosivité des Atmosphères—Classification, Détermination et Estimation. AFNOR: Paris, France, 2012.
- Panchenko, Y.; Strekalov, P. Formation, Retention, and Waste of Products of Atmospheric Corrosion of Metals. 2. Kinetics of Corrosion and Waste. Prot. Met. 2005, 41, 557–567. [Google Scholar] [CrossRef]
- Evans, U.R. Electrochemical Mechanism of Atmospheric Rusting. Nature 1965, 206, 980–982. [Google Scholar] [CrossRef]
- Odnevall, I.; Leygraf, C. Formation of NaZn4Cl(OH)6SO4 · 6H2O in a Marine Atmosphere. Corros. Sci. 1993, 34, 1213–1229. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, X.; Persson, D.; Thierry, D. In Situ Infrared Reflection Absorption Spectroscopy Studies of Confined Zinc Surfaces Exposed under Periodic Wet-Dry Conditions. Electrochem. Solid-State Lett. 2001, 4, B19–B22. [Google Scholar] [CrossRef]
- Graedel, T.E. Corrosion Mechanisms for Zinc Exposed to the Atmosphere. J. Electrochem. Soc. 1989, 136, 193C. [Google Scholar] [CrossRef]
- Tolosa, H. Etude Thermodynamique et Électrochimique de La Corrosion Atmosphérique Des Métaux à Usage Électrique. Ph.D. Thesis, Montpellier 2 University, Montpellier, France, 1992. [Google Scholar]
- Sun, J.; Sun, C.; Zhang, G.; Li, X.; Zhao, W.; Jiang, T.; Liu, H.; Cheng, X.; Wang, Y. Effect of O2 and H2S Impurities on the Corrosion Behavior of X65 Steel in Water-Saturated Supercritical CO2 System. Corros. Sci. 2016, 107, 31–40. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, Y.; Liang, J.; Chen, L.; Song, X. The Coupling Effect of O2 and H2S on the Corrosion of G20 Steel in a Simulating Environment of Flue Gas Injection in the Xinjiang Oil Field. Materials 2018, 11, 1635. [Google Scholar] [CrossRef] [PubMed]
- Svensson, J.-E.; Johansson, L.-G. The Synergistic Effect of Hydrogen Sulfide and Nitrogen Dioxide on the Atmospheric Corrosion of Zinc. J. Electrochem. Soc. 1996, 143, 51. [Google Scholar] [CrossRef]
Sites | H2S (ppb) | Cl− Deposited (mg·m−2·day−1) |
---|---|---|
Diamant | 5 | 470 |
Frégate est | 2590 | 56 |
Immersion Time | Rt (Ω·cm2) | 10−4 Q (Ω−1·cm−2·sα) | α | χ2 | θ (%) | |
---|---|---|---|---|---|---|
Without SAMs | Blank | 251 ± 2.08 | 2.4 ± 0.08 | 0.752 ± 0.002 | 2.8 × 10−3 | - |
With SAMs | 2H | 1476 ± 4.21 | 1.87 ± 0.03 | 0.792 ± 0.011 | 2.3 × 10−3 | 0.83 |
4H | 2243 ± 3.75 | 1.57 ± 0.01 | 0.803 ± 0.002 | 1.5 × 10−3 | 0.89 | |
6H | 2454 ± 1.73 | 1.17 ± 0.06 | 0.815 ± 0.006 | 1.9 × 10−3 | 0.90 | |
8H | 2517 ± 5.43 | 0.92 ± 0.02 | 0.831 ± 0.008 | 3.2 × 10−3 | 0.90 |
Sites | Surface State | Loss of Thickness (μm) |
---|---|---|
Diamant | Without coating | |
With coating | ||
Frégate est | Without coating | |
With coating |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambert, P.; Said-Ahmed, M.; Lescop, B.; Rioual, S.; Lebrini, M. Protection against Atmospheric Corrosion of Zinc in Marine Environment Rich in H2S Using Self-Assembled Monolayers Based on Sargassum fluitans III Extract. Coatings 2024, 14, 988. https://doi.org/10.3390/coatings14080988
Lambert P, Said-Ahmed M, Lescop B, Rioual S, Lebrini M. Protection against Atmospheric Corrosion of Zinc in Marine Environment Rich in H2S Using Self-Assembled Monolayers Based on Sargassum fluitans III Extract. Coatings. 2024; 14(8):988. https://doi.org/10.3390/coatings14080988
Chicago/Turabian StyleLambert, Prescilla, Mahado Said-Ahmed, Benoit Lescop, Stéphane Rioual, and Mounim Lebrini. 2024. "Protection against Atmospheric Corrosion of Zinc in Marine Environment Rich in H2S Using Self-Assembled Monolayers Based on Sargassum fluitans III Extract" Coatings 14, no. 8: 988. https://doi.org/10.3390/coatings14080988