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Abstract

In this work, a novel guidance principle for underactuated autonomous underwater vehicles is introduced.
This new method relies on the kinematic coupling between non-actuated and actuated degrees of freedom. It
uses a newly introduced matrix called the Handy Matrix denoted H. The method allows reassigning unused
degrees of freedom of the task to useful non-actuated DOF. The algorithm and design rules leading to the
construction of H are also provided. Two different solutions based on matrix H are compared on a standard
seabed scanning task.
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1. Introduction

The emergence of new offshore underwater energy
production technologies creates new applications for
Autonomous Underwater Vehicles (AUVs). Notably,
the need of frequent inspections and maintenance of
these systems raises new dynamic maneuvering prob-
lems and requires enhanced mobility and agile vehi-
cles. Also, the question of the cost and energy effi-
ciency of these vehicles need to be addressed as they
must remain both cheap and efficient to be a relevant
solution for these applications.
Maneuvering problems are usually broken down
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into path-following and trajectory-tracking problems.
In path following, the vehicle is controlled towards a
desired path with no time constraint. Path-following
control mainly focuses on the geometric part of the
task, most often with open-loop dynamic control. Pi-
oneering work on path following control of land ve-
hicles can be found in (Samson, 1993; Micaelli and
Samson, 1993). It was later on extended to ma-
rine vehicles in (Encarnacao and Pascoal, 2000) and
(Lapierre et al., 2003; Lapierre and Soetanto, 2007).
These works use a Serret-Frenet frame moving on the
path and centered on the point of the path closest
to the vehicle. A different approach can be found
in (Breivik and Fossen, 2005) using a parallel trans-
port frame (Bishop, 1975) parameterized by a path
variable and a chosen propagation function. Addi-
tional, more recent works on path following methods
can be found in the thorough review by (Hung et al.,
2022) or in (Degorre et al., 2023) and the multiple
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references therein.
On the other hand, trajectory tracking includes

both the geometric and dynamic parts of the task.
In this case, the vehicle is aiming for a specific target
on a path moving with prescribed dynamics. Ex-
amples of trajectory-tracking applications in the ma-
rine context can be found in (Alonge et al., 2001) or
(Ashrafiuon and Muske, 2008).
Trajectory tracking has been chosen in this work as

it allows for smoother and more accurate control of
the vehicle all along the task than path following at
the cost of higher computational complexity. Trajec-
tory tracking is more suited for applications requiring
high degrees of maneuverability.
This work is interested in the class of underwa-

ter vehicles considered underactuated either because
they carry less thrusters than the number of degrees
of freedom (DOF) solicited in the task or because
their propulsive arrangement does not match with
the task DOF requirements. In such a case, they are
underactuated in the reduced configuration space of
the task (Fossen, 2021) and are often referred to as
ill-actuated. These vehicles represent a cheaper, more
energy-efficient solution than the fully or over actu-
ated ones but have reduced mobility that requires to
be analyzed.
The goal of the guidance principle and controller

introduced in this work is to make the best use of the
actuated DOF of an underactuated vehicle to com-
plete the trajectory-tracking task. Different solutions
have been found to enhance the mobility of underac-
tuated AUVs and use their capabilities at best. Most
often, the control law of the vehicle can be designed
to compensate for the lack of actuation over one DOF
with another actuated one . This is notably the case
with ill-actuated vehicles. Several examples of such
compensating control laws can be found in the litera-
ture like in (Ashrafiuon and Muske, 2008; Elmokadem
et al., 2019) where Sliding Mode Control is applied to
an underactuated vehicle and where the sliding sur-
faces are designed to create this kind of behavior or
in (Chen et al., 2023).
Guidance principles can also be used, outside of the

control law, to create such compensating behaviors.
The most notorious guidance method for marine ve-
hicles is Line-of-sight (LOS) guidance (Breivik and

Fossen, 2005). This method is inherited from tradi-
tional naval techniques and was originally designed
for the control of underactuated surface ships actu-
ated in surge and yaw but not in sway. The idea
behind LOS guidance is to point the ship towards
the destination and use sway motion to sail towards
it. This method is most effective when rallying fixed,
relatively far away waypoints of the horizontal plane
(setpoint regulation) but has later been extended to
path following and trajectory tracking tasks (Calvo
et al., 2008; Borhaug et al., 2008; Caharija et al.,
2016) both in 2D and 3D LOS algorithms are used to
calculate new angle references for pitch and yaw (in
3D) or just for yaw (in 2D) relatively to the lateral
(sway) and vertical (heave) errors. Then, any con-
troller can be used to control the rotational DOFs of
the vehicle towards the new reference values. (Fossen
and Aguiar, 2024) discusses kinematic guidance laws
rooted in the line-of-sight (LOS) principle. These
methods are applicable to vehicles capable of control-
ling pitch and yaw angles. Our approach, in contrast,
offers increased flexibility concerning underactuation.
The guidance principle introduced in this work fol-

lows the same idea as LOS Guidance but at the kine-
matic level. The idea is to use the kinematic cou-
plings of the model to calculate new angular speed
references based on linear speed commands on one
or several other degree(s) of freedom. The controller
makes use of a virtual reference point (VRP) on the
vehicle called the tracking point. Several examples
applying this technique to marine craft can be found
in the literature (Berge et al., 1999; Alonge et al.,
2001). Using a VRP has a natural stabilizing effect
on the vehicle, just like pulling a shopping trolley is
more stable than trying to push it. In this work, the
VRP is taken at the bow of the craft under the water
line, which enhances the roll and yaw stability of the
vehicle.
The model manipulations leading to this new guid-

ance principle are performed online in ongoing mis-
sion using a newly introduced handy matrix H and
the algorithm provided to calculate it. This method
can be seen as an extension of the work started
in (Alonge et al., 2001) and deployed to fixed and
vector thrusters AUVs in (Chocron and Delaleau,
2019b,a). Yet, these examples use asymmetrical
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space reduction to introduce new compensation be-
haviors and are therefore hardly generalizable. Also,
one of the advantages of this method is that it can
creates several solutions to solve underactuation for
a given system and task as will be seen in this exam-
ple where either roll or yaw actuation can be used to
compensate the non-actuated sway motion. Parallel
work, dealing with 3D path following using a simi-
lar approach can be found in (Degorre et al., 2024)
alongside a formal stability proof.
This paper is organized as follows. Section 2 gives

a brief introduction to kinematic and dynamic mod-
els of the underactuated AUV. Then, Section 3 intro-
duces the model-based feedback linearizing controller
and the consequences of underactuation on the con-
trol inputs calculation. Finally, Section 4 introduces
the main contribution of this work; the handy matrix,
while Section 5 compares several simulation results
using the proposed method.

2. Model of the Underactuated Autonomous
Underwater Vehicle

This section briefly introduces the kinematic and
the dynamic models of the underactuated AUV.
Modeling of marine vehicles has been intensively
studied throughout the last decades and the inter-
ested reader is referred to (Fossen, 2021; Antonelli,
2018) for more details about the establishment of the
model. Also, note that the model parameters and
the characteristics of the vehicle will be considered
precisely known in the following work. Notably, the
added mass and friction coefficients are considered
precisely estimated. More details about these con-
cepts can be found in (Lamb, 2005; Korotkin, 2009;
Gartner et al., 2022).
The AUV chosen in this study is the RSM 1

Robot developed at IRDL-ENIB2 and displayed in
Figs. 1 and 2. The AUV has a cylindrical hull and
is equipped with four fixed thrusters, two longitudi-
nal at the stern and two vertical in the middle of the

1RSM : Robot sous marin (in French), i.e. Submarine
Robot.

2Institut de recherche Dupuy de Lôme (UMR-CNRS 6027),
École nationale d’ingénieurs de Brest.

Figure 1: The RSM robot
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Figure 2: The propulsive configuration of the RSM robot.
Points P1–P4 represent the four thrusters.

hull; see (Chocron et al., 2018) for the parameters
corresponding to the RSM AUV model.

2.1. Framework

For convenience, two coordinate frames are de-
fined: R0 and RB : R0(O, x0, y0, z0) is the usual
Earth-fixed North-East-Down (NED) reference frame
and RB(OB , xB , yB , zB) is a mobile frame tied to the
vehicle and centered at OB . The two frames are de-
picted on Fig. 3. Note that point OB could be chosen
anywhere on the vehicle but is usually taken some-
where in the main planes of symmetry of the vehicle.
In this example, OB is chosen at the center of buoy-
ancy in the center of the cylindrical hull and is differ-
ent from the center of gravity PG which is positioned
slightly below for roll and pitch stability.
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Figure 3: Earth-fixed R0(O, x0, y0, z0) and body-fixed
RB(OB , xB , yB , zB) frames. The xB axis of the body-fixed
frame is aligned with the cylinder axis.

The task of the vehicle is called seabed scanning
and is defined in R0 as a succession of horizontal rails
and turns at constant depth (see Fig. 4). The tracking
point E (see Fig. 2) must follow the trajectory and
the vehicle must stay tangential to the path at all
times. The task thus requires four independent DOFs
for the point E: surge, sway, heave and yaw.

2.2. Kinematic Model

The position and orientation of the vehicle in the
inertial frame are denoted as η = [η>1 , η

>
2 ]> where

η1 = [x, y, z]> is the position vector and η2 =
[φ, θ, ψ]> is the orientation vector expressed with Eu-
ler angles in the roll-pitch-yaw convention. Addi-
tionally, the velocity of the AUV w.r.t. R0 and ex-
pressed in RB is denoted as ν = [ν>1 , ν

>
2 ]> where

ν1 = [u, v, w]> is the linear velocity vector and
ν2 = [p, q, r]> is the angular velocity vector.
The kinematic model is given by:

η̇ = J(η2)ν (1)

where η̇ denotes the first time derivative of the vector

Figure 4: The seabed scanning trajectory (top view)

η and J(η2) is defined in (Fossen, 2021) as:

J(η2) =

[
J1(η2) 0

0 J2(η2)

]
(2a)

J1(η2) = R(x0, φ)R(y0, θ)R(z0, ψ) (2b)

J2(η2) =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

 , θ 6= ±π
2

(2c)

where R(χ, λ) is the rotation matrix of angle λ
around axis χ.
Finally, the guidance method introduced in this

work requires the definition of a tracking point E of
coordinates [εx, εy, εz]> in RB that will be controlled
towards the task. The tracking point or virtual ref-
erence point (VRP) can represent an effector, the fo-
cal point of a camera or any point of interest. The
idea of using a VRP appears in the marine context
in (Berge et al., 1999) and references therein. Using
a tracking point at the bow of the vehicle increases
the yaw stability, as if the vehicle were pulled by the
VRP. Similar idea appears in (Alonge et al., 2001).
In this work, let us consider E such that εy = 0,
εx > 0 and εz > 0. The VRP is chosen at the bow,
just under the (OB , xB , yB) plane. Considering the
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analogy of the shopping trolley introduced in (Berge
et al., 1999), the advantage of the VRP appears in-
tuitively. Choosing the tracking point at the bow of
the vehicle passively enhances yaw stability and it is
placed below the horizontal plane to create a sway-
roll kinematic coupling.
The linear and angular velocities of point E in RB

are given in the vector νE defined as:

νE = Tν (3)

where T is the transformation matrix given for E by:

T =

[
I3 S(E)
O3 I3

]
(4)

where In is the identity matrix of size n, On is the
zero matrix of size n, and S is the following skew-
symmetrical matrix used to calculate a cross product:

S

λ1λ2
λ3

 =

 0 λ3 −λ2
−λ3 0 λ1
λ2 −λ1 0

 (5)

Here

S(E) =

 0 εz 0
−εz 0 εx

0 −εx 0

 (6)

2.3. Dynamic Model
The dynamic model of an underwater vehicle

is (Fossen, 2021; Antonelli, 2018):

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ (7)

whereM is the matrix of mass and inertia, C(ν) is the
matrix of Coriolis and centripetal terms, D(ν) is the
damping matrix, g(η) is the vector of gravitational
and buoyancy forces and moments and τ is the vector
of propulsive efforts. Note that the matrices in (7) are
defined as:

M = Ma +Mb and C = Ca + Cb

whereMb and Cb refer to the effects of the mass of the
rigid body whileMa and Ca are due to hydrodynamic
added mass (Fossen, 2021). The vehicle is considered
of cylindrical shape and only the quadratic damping

terms are collected inD(ν)ν. The vector g(η) notably
expresses the roll and pitch restoring moments due to
the relative positions of OB and PG in RB . The roll
and pitch angles are naturally damped and converge
to zero when not actively actuated. In the following
analysis, and notably in the proof of Theorem 1, the
roll and pitch motions can be considered zero-mean
bounded motions when not actively controlled.

2.4. Propulsive Configuration of the Vehicle
The RSM Robot appears ill-actuated for the

seabed scanning task presented in Section 2.1. In-
deed, being equipped with four fixed independent,
non-redundant thrusters, the RSM Robot has four
actuated DOFs: surge, heave, roll and yaw, and two
non-actuated DOFs: sway and pitch. Yet, the task in
this example requires independent surge, sway, heave
and yaw actuation (Chocron and Delaleau, 2019b).
Therefore, compared to the task, the vehicle lacks
sway actuation and has an additional roll motion
useless for the task. Even if the vehicle has the
proper number of actuated DOFs, the tracking prob-
lem is non-trivial because of the mismatch between
the propulsive topology and the task requirements.
The propulsion forces generated by the four

thrusters are:

τ =
[
X 0 Z K 0 N

]> (8)

The vector τ is given by the four thruster forces and
the thruster configuration matrix (TCM) B intro-
duced in (Fossen and Johansen, 2006). From this
it follows that:

τ = Bu (9)

where u ∈ IR4 is the vector regrouping the thrust
forces of each thrusters, one per line. Considering
that the points of application of the four thrust forces
are in the (OB , xB , yB) plane, the TCM is given for
this configuration as (Chocron and Delaleau, 2019a):

B =


1 1 0 0
0 0 0 0
0 0 1 1
0 0 −R R
0 0 0 0
R −R 0 0

 (10)
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where R is the radius of the AUV body-cylinder.
Note that the shape of τ introduced in (8) is di-

rectly induced by the shape of B. Indeed, in the
absence of redundancies in the propulsive topology
and with every thruster aligned with a frame axis,
the non-actuated DOFs of τ (zero components) are
direct consequences of the rows of zeros in B (rows
2 and 5). Thereby, regardless of the thrust values
of u, the propulsive arrangement does not generate
any sway force or pitch moment.
Also, in the underactuated case, B is not invert-

ible by design, making thrust allocation non-trivial.
In order to calculate the required thrusts for each
thrusters of a given τ , the Moore-Penrose pseudo-
inverse B† can be used (Penrose, 1955). The pseudo-
inverse gives a minimum error solution for u in (9).
Another solution is to reduce the space of definition
of the B matrix removing the rows corresponding to
non-actuated DOF (rows 2 and 5 in the present ex-
ample) (Vega et al., 2015). Because of the lines of
zeros in B, these two solutions are equivalent but the
first one is used:

u = B†τ (11)

with B† the Moore-Penrose pseudo-inverse of B.

3. Controller

This section introduces the controller used in this
work for the fully-actuated case first, and then for the
underactuated case focusing on the consequences of
underactuation. The control law is a model-based
feedback linearizing controller, the AUV model is
used in the controller to cancel the nonlinear terms
and build a linear closed-loop system. This method
has been extensively studied for the control of nonlin-
ear systems with known models (Fossen, 2021; Mar-
tin and Whitcomb, 2018). Here, it is associated
with PID-control but similar results could be ob-
tained with Sliding Mode Control or any other control
method (Yoerger and Slotine, 1985).

3.1. Feedback Linearization
Feedback linearization (Isidori, 1989; Nijmeijer and

van der Schaft, 1990) is common practice when work-
ing with nonlinear systems such as the underwater

vehicles. The control effort vector denoted τc will
be based on the inverse dynamic model of the vehicle
(7). In order to exactly linearize the model and create
a simple linear closed-loop system, the matrices are
evaluated at the current state of the vehicle. Other
similar solutions use the desired state or an other
state reference for linearization and some nonlinear
terms can remain in the closed-loop system (Fjellstad
and Fossen, 1994).
Here, the control vector is given in RB by:

τc = M (ν̇c +K(νc − ν)) + C(ν)ν +D(ν)ν + g(η)
(12)

where νc is a velocity reference to be detailed below
and K is a definite strictly positive gain matrix. The
control law (12) clearly leads to the linear closed-loop
system:

ν̇ = ν̇c +K(νc − ν) (13)

Therefore, the control vector τc ensures convergence
of the velocity of the vehicle towards the new speed
reference νc. The speed reference itself is a control
function designed to ensure convergence of the track-
ing point towards the desired trajectory, based on
position/orientation errors. The reference is typically
given by:

νc = T−1ν̃E (14a)

ν̃E = J−1

[
η̇d +Kp(ηd − ηE) +Ki

∫ t

0

(ηd − ηE)dσ
]

(14b)

In the sequel one will denote ex, ey, and ez the three
position errors in R0, i.e., the three first components
of vector ηd − ηE . Equation (14) is a typical PI con-
troller written in the inertial frame calculated with
the error between the position and the orientation
ηE of the tracking point E and the desired state ηd
with Kp and Ki two strictly definite positive matri-
ces. An anticipation term, η̇d, is used to complete the
controller and make sure that when the position er-
ror is zero the reference speed is equal to the desired
speed of the vehicle. Note that this control structure
and notably the anticipation term require that the
trajectory is at least C2. Using the kinematic model
equations (1) and (3) the speed reference at point E
in R0 is transformed into the velocity control vector
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νc expressed in the body-fixed frame RB at the center
of the vehicle OB .
Again, this model-based structure leads to a virtual

linear kinematic closed-loop system:

η̇E = η̇d +Kp(ηd − ηE) +Ki

∫ t

0

(ηd − ηE)dσ (15)

Therefore, the speed reference νc can be seen as the
virtual input of the kinematic controller ensuring con-
vergence of the tracking point towards the desired
trajectory. Roughly speaking, this control structure
can be seen as a two-level cascaded controller where
the outer stage is kinematic and generates the speed
reference used in the dynamic inner stage. A block
diagram of the two-stage controller can be seen on
Fig. 5. Such structures are often used when work-
ing with nonlinear systems and are often referred to
as cascade control or hierarchical control (Lévine and
Rouchon, 1994). It is notably useful when the input
and output of the system are defined in two rotat-
ing frames. The model-based cascade structure and
the integral action of controller ensures good perfor-
mance and natural robustness to (nearly) constant
ocean currents (Degorre et al., 2024). Note also that
the use of an integral term at the kinematic level pro-
vides robustness against the most common forms of
disturbances experienced by marine craft. It notably
allows rejecting constant forces created by ocean cur-
rent or wind on the surface. The feedback linearizing
controller (14) guarantees exponential convergence
of the velocity tracking errors to zero. This is the
key assumption for the Lypaunov stability analysis
of the kinematic control law. In practice, there will
be parametric and structural uncertainties. If the
model is uncertain, it is recommended to replace
the feedback linearizing control law with a sliding-
mode controller (Yoerger and Slotine, 1985) or super-
twisting adaptive sliding-mode controller (Shtessel
et al., 2010). However, independent of the velocity
controller, the kinematic controller is exponentially
stable.
While the structure of the controller naturally pro-

vides robustness to external disturbances a switching
term and sliding surface could be added in the inner
loop to increase robustness.

Kinematic Guidance Dynamic Stage Vehicle
ηd η̇d νc τc η ν

η ν
ηE η̇E

Figure 5: Block diagram of the two-stage controller in the
general case

3.2. Consequences of Underactuation in the Control
Law

In order to design a guidance principle compensat-
ing the non-actuated DOF of the vehicle, it is nec-
essary to understand the consequences of the limi-
tations of the propulsive topology on the controller.
This section shows the problem raising from the ap-
plication of the general controller introduced in Sec-
tion 3.1 on the underactuated RSM robot. In order
to perfectly follow the task, the vehicle should be able
to generate independent surge, sway, heave and yaw
efforts (Chocron and Delaleau, 2019b). Note that,
even if the vehicle were able to perfectly track the
yaw reference tangent to the path, sway actuation
is mandatory, at least in the turns, to counteract
dynamic and hydrodynamic effects. Yet, it cannot
generate any sway force at point OB . Consequently,
regardless of the desired sway speed at the tracking
point OE , the control sway force is zero. At the kine-
matic level, one can consider that the corresponding
control sway speed will always be zero as well. Ob-
viously, same goes for the pitch of the vehicle but
this DOF is not part of the task and is mechanically
stabilized.
Considering the corrective velocity vec-

tor at the tracking point given in (14)
ν̃E = [ũE , ṽE , w̃E , p̃E , q̃E , r̃E ]>, the kinematic
part of the controller can be rewritten as:

uc = ũE − εz q̃E (16a)
vc = ṽE + εz p̃E − εxr̃E (16b)
wc = w̃E + εxq̃E (16c)
pc = p̃E (16d)
qc = q̃E (16e)
rc = r̃E (16f)

But, because of the underactuated propulsive topol-
ogy of the RSM robot, the sway and pitch control
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speeds vc and qc at the center of the vehicle (Ob) are
zero. Consequently, the kinematic stage becomes:

uc = ũE − εz q̃E (17a)
0 = ṽE + εz p̃E − εxr̃E (17b)
wc = w̃E + εxq̃E (17c)
pc = p̃E (17d)
0 = q̃E (17e)
rc = r̃E (17f)

The main problem caused by underactuation in this
case appears clearly in (17): because the sway correc-
tive speed ṽE only appears in (17b) and has no con-
trol input in (Ob) it will be neglected in the calcula-
tion of the final control vector τc. This problem leads
to faulty behaviors like parallel convergence. The
vehicle would stabilize in parallel to the trajectory,
canceling all errors but the lateral one. A simulation
snapshot of this phenomena is provided on Fig. 6. On
the snapshot, the vehicle is stabilized parallel to the
trajectory, all errors are canceled but the lateral one
which is neglected because of underactuation. In or-
der to take the lateral error and thus the sway control
speed at the tracking point into account, a kinematic
guidance matrix is introduced in Section 4 and added
to the controller.

4. Handy Matrix and Main Result

This section is the main contribution of this work.
It introduces the kinematic guidance principle and
the associated “Handy” matrix H used to compen-
sate for the lack of sway actuation. This guidance
method is based on well-known kinematic model ma-
nipulations integrated in the control law using the H
matrix. As with LOS guidance and many other com-
pensation mechanisms, a rotational DOF is used to
cope for the lack of sway actuation and generate the
required sway control velocity at the tracking point
E.

4.1. Kinematic Guidance Principle
The idea of the kinematic guidance principle is to

harness the kinematic couplings between the sway ve-
locity at the tracking point E and the rotational ve-
locities of the vehicle to compensate for the first with

Figure 6: Simulation snapshot of parallel convergence due to
neglecting ṽE in the controller — The vehicle is moving parallel
to the trajectory (dashed) and the lateral error at point E (red
dot) is neglected
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one of the latter. In this case, considering the propul-
sive capabilities of the vehicle and the position of the
tracking point only roll and yaw can be used to con-
trol sway. The kinematic couplings appear clearly in
(17b). Hence, using (17d) and(17f), the two solutions
are obtained:

1)p̃c = − 1

εz
(ṽE − εxr̃E) (18a)

2)r̃c =
1

εx
(ṽE + εz p̃E) (18b)

In the first case, the new roll reference velocity p̃c
becomes a function of the sway control velocity at
the tracking point, ṽE , and therefore of the lateral
tracking error while in the second case it is the yaw
reference velocity r̃c that becomes a function of the
sway controller ṽE . Propagated to the dynamic part
of the controller, these manipulations imply that the
roll (respectively yaw) control moment is now a func-
tion of the sway control speed at the tracking point.
Doing so means that the lateral error is no longer
neglected and avoids parallel convergence. Actually,
the behavior created by the H matrix is very close
to the behavior created by other guidance methods.
With LOS guidance for instance, the LOS reference
angle (and therefore the corresponding control input)
is a function of the transverse error which creates this
behavior.
It also appears that the new reference velocities p̃c

and r̃c are no longer functions of the corresponding
control velocities, p̃E and r̃E respectively. Therefore,
control over the DOF used for compensation is lost
at the profit of the compensated one.
The new set of kinematic control equations is then

given either by

ũc = ũE (19a)
ṽc = 0 (19b)
w̃c = w̃E (19c)

p̃c = − 1

εz
(ṽE − εxr̃E) (19d)

q̃c = 0 (19e)
r̃c = r̃E (19f)

if roll is used for the sway compensation or by

ũc = ũE (20a)
ṽc = 0 (20b)
w̃c = w̃E (20c)
p̃c = p̃E (20d)
q̃c = 0 (20e)

r̃c =
1

εx
(ṽE + εz p̃E) (20f)

if yaw is used for the sway compensation.

The compensation mechanism (19) or (20) has a
double effect. It allows generating the exact sway
speed calculated by the controller but, if the track-
ing point does not converge rapidly enough or if the
lateral error is too large (typically greater than half
of the hull length), it also progressively transfers the
error from a non-actuated DOF towards an actuated
one (provided there is one). Here, the error is trans-
ferred to heave if roll is used for compensation or to
surge if yaw is used. Both heave and surge being
actuated, the error will easily be canceled.

4.2. Introduction of the Handy Matrix H

The idea behind the handy matrix H is to repro-
duce the manipulations of the kinematic model intro-
duced in Section 4.1. To do so, a matrix is added in
the calculation of the new reference speed ν̃c. The
kinematic stage of the controller becomes:

ν̃c = HT−1ν̃E (21)

where H is the new non diagonal matrix defined (see
Section 4.3 for the calculation of H) by Hp in the first
case (where roll is used for compensation) and Hr in
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the second case (where yaw is used):

Hp =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1/εz 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1



Hr =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1/εx 0 0 0 1

 (22)

Handy matrix H can be seen as a non-diagonal
model-based gain matrix creating the new coupling
between different DOF raised at the beginning of this
work but this new control parameter has a fixed value
imposed by the kinematic couplings of the system.

Figure 7: Simulation snapshot of the two guidance solutions
Hp (Red) and Hr (Blue) — The blue vehicle stays upright but
is not tangent to the trajectory in the turn, while the red one
rolls to the side but stays tangent.

The two behaviors created by the matrices Hp and
Hr are illustrated on Fig. 7. The difference between

the two solutions appears clearly, with Hp (Red) the
vehicle rolls to the side to generate the necessary sway
speed in the turns but stays tangent to the trajectory
whereas, with Hr (Blue), the vehicle overshoots the
yaw angle to compensate for sway.

4.3. Calculation of the H Matrix
The computation of matrix H is detailed in this

section. The algorithm designed to calculate the ma-
trix uses two vectors defining the actuated DOF of
the vehicle, hOB

, and the DOF controlled at the
tracking point E, hE . Both vectors have a single
column and one row per DOF where a “1” means ac-
tuated or controlled and a “0” means non-actuated or
not controlled. The vectors are:

hOB
=


1
0
1
1
0
1

 and hpE =


1
1
1
0
0
1

 or hrE =


1
1
1
1
0
0

 (23)

The two possible choices hpE and hrE correspond to
using either roll or yaw, respectively, to compensate
for sway. In the first case, roll is used for compensa-
tion and yaw is controlled while in the second case it
is the opposite.
In order for the algorithm to provide a viable H

matrix and more widely for the compensation mech-
anism to work, three rules govern the choice of hOB

and hE :

1. The method can only be used if the tracking
point E is different from the center of RB , OB

and not located on the compensating rotation
axis.

2. The method only allows compensation for linear
velocities with angular velocities.

3. The method cannot be used to compensate a lin-
ear velocity with the angular velocity around the
same axis.

The computation of H makes use of the skew-
symmetrical cross-product matrix S(λ). Notably, for
point E of coordinates ε = [εx, 0, εz]>, it calculates
Σ:
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Σ = S([1/εx, 0, 1/εz]>) =

 0 −1/εz 0
1/εz 0 −1/εx

0 1/εx 0


(24)

Algorithm 1 Calculation of the Handy matrixH
H ← diag(hOB

)
e← [εx, εy, εz]>

ε← [0, 0, 0]>

for k = 1 : 3
if e(k) 6= 0

ε(k)← 1/e(k)
Σ← S(ε)
for i = 3 : 6

if hOB
(i) = 1 and hE(i) = 0

for j = 1 : 3
if hE(j) = 1 and hOB

(j) = 0 and j 6=
i− 3

H(i, j)← Σ(i− 3, j)

Outputs of this algorithm are given in (22). Over-
all, Algorithm 1 browses through the actuated rota-
tional DOF of the vehicle, finds one rotation in hOB

that has been disregarded in hE and checks whether
it is used to compensate a translation. When the
rotation and translation are found, the appropriate
ratio 1/εk (εk being the kth coordinate of E in RB)
is selected in Σ and placed at the corresponding place
in the bottom left corner of H.

4.4. Main Result
In the sequel, the following assumptions are made:

A.1 The reference signal ηd(t) is smooth and
bounded for all t > 0.

A.2 The angular rate vector ν2 = [p, q, r]> is mea-
sured and considered smooth and bounded for
all t > 0.

Theorem 1. The controller (12), with νc defined as
in (21) renders the origin ex = ey = ez = 0 globally
exponentially stable (GES) under Assumptions A.1–
A.2 using either Hp or Hr of (22).

Proof. See Appendix Appendix A.

5. Simulation Results

This section compares the two behaviors created by
the two different compensation strategies correspond-
ing toHp andHr and the newly introduced controller
(12) with two standard controllers found in the lit-
erature: a LOS controller (Breivik and Fossen, 2005)
and a Sliding Mode Controller (Elmokadem et al.,
2016). These two control methods have been chosen
for comparison with the proposed methods because
they are very well established in the literature. LOS
guidance is the most common and intuitive guidance
principle, while SMC is a very well documented con-
trol method for non-linear systems in general. The re-
sults are provided by the Matlab EAUVIVE 3 (IRDL-
ENIB 4) numerical simulator. A numerical model of
the RSM robot displayed on Fig. 1 is used in the
following examples. Both tests are performed on the
seabed scanning task introduced earlier. It is com-
posed of a succession of horizontal rails at constant
depth connected with circular turns. These rails must
be followed by the tracking point E and the vehicle
is constrained to stay tangent to the trajectory at all
times. The parameters used in the simulations are
shown in Tab. 1. The control parameters were first
estimated with a pole placement technique and then
empirically adjusted through trial and error.

Table 1: Simulation Parameters

Parameters Value Added mass Value
parameters

Mass 18.7 kg Xu̇ -1.88
Length 0.6m Yv̇ -18.8
Radius 0.2m Zẇ -18.8
PG [0, 0, 0.0125]> Kṗ 0
OE [0.2, 0, 0.2]> Mq̇ -0.564
K 8I6 Nṙ -0.564
Ki 2I6 Xuu -20.4
Kp 8I6 Yvv -156
Zww -156 Kpp -0.388
Mqq -8.41 Nrr -8.41

3EAUVIVE: Enhanced AUV In Virtuo Experiment.
4See Footnote 2.
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5.1. Comparison of the two compensation strategies

Here, the two compensation strategies introduced
earlier are compared on the seabed scanning task. In
the first case, a roll speed is generated using Hp to
compensate sway error at point E. In the second
case, a yaw speed is generated using Hr to compen-
sate the same error. The position and orientation
errors of the two robots are given in Figs 8 and 9.
To keep the kinematic equivalence between the two

solutions, the coordinates of point E were chosen as
εx = εz = 0.2 m and εy = 0. Simulations show that
the position of E is critical. Notably, if the offset (or
lever) εz (respectively εx) gets too small, the perfor-
mances are deteriorated.
As can be seen on Fig. 8, the performances of the

two robots in terms of position tracking are compa-
rable. The position errors are almost equal for both
vehicles. The main difference between the two cases
can be seen in the orientations on Fig. 9. Indeed,
in the first case roll is disregarded in favor of sway
and therefore roll disturbances can be observed on
Fig. 9.(a). As well, a slightly larger pitch excursion
is observed in the first case due to coupling effects in
rotation when roll is different from 0. Nonetheless,
neither roll nor pitch are part of the required DOF,
such disturbances are therefore acceptable, especially
as roll and pitch are mechanically stable in this sys-
tem. When it comes to the yaw angle, performances
are better in the first case using Hp. Using Hr the
yaw error rises up to 25◦ (twice as low in the first
case). It is hardly acceptable considering that yaw
is part of the requirements on this trajectory. This
difference is easily understandable considering that
tracking of the yaw angle is disregarded in the sec-
ond case.

5.2. Comparison with SMC and LOS

The new controller is compared with a Sliding
Mode Controller (SMC) and a Line Of Sight guidance
principle (LOS) of the literature. The SMC used for
comparison is very similar to the controller proposed
in (Elmokadem et al., 2016). The LOS controller is
drawn from (Breivik and Fossen, 2005). In this exam-
ple, the second compensation strategy Hr has been
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Figure 8: Comparison of the position errors in the inertial
frame R0 using the two guidance solutions Hp (Red) and Hr

(Blue). Top: Error on the x0 axis, Middle: Error on the y0
axis, Bottom: Error on the z0 axis
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Figure 9: Comparison of the orientation errors using the two
guidance solutions Hp (Red) and Hr (Blue). Top: Roll error,
Middle: Pitch error, Bottom: Yaw error
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chosen. Therefore, all three vehicles use yaw to com-
pensate for the lack of sway. Note that the SMC in-
cludes this compensation behavior directly in the in-
put calculation instead of relying on a guidance stage
like the Hr matrix-based and the LOS controllers do.
Figs. 10 and 11 show that the new controller (Red

line) demonstrates equally good trajectory tracking
performances as the LOS (Blue) and SMC (Green)
controllers. The three positions are almost perfectly
tracked with the three controllers and the only re-
markable difference appears on the yaw angle; The
Hr matrix controller generates a smaller defection
during the turns but the difference is not significant.
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Figure 10: Comparison of the position of the vehicle using the
three control methods. Blue line: LOS controller, Green line:
SMC, Red line: Kinematic guidance principle using the Hr

matrix. Top: Position on the x0 axis, Middle: Position on the
y0 axis, Bottom: Position on the z0 axis

6. Conclusion

A novel kinematic guidance principle for trajectory
tracking of underactuated AUVs has been introduced
in this work. It exploits the kinematic couplings be-
tween non actuated translations and actuated rota-
tions to compensate the ill-actuation of the AUV.
The guidance level of the controller calculates rota-
tional reference velocities out of linear corrective ve-
locities which are then used to calculate control forces
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Figure 11: Comparison of the attitude of the vehicle using the
three control methods. Blue line: LOS controller, Green line:
SMC, Red line: Kinematic guidance principle using the Hr

matrix. Top: Roll, Middle: Pitch, Bottom: Yaw

and moments. It notably creates two solutions for
the widespread problem of tracking horizontal rails
at constant depth lacking one actuated translations.
The controller relies on a new matrix, H, which al-
lows controlling one translation of a virtual tracking
point with one rotation. The algorithm calculating
H is provided as well as design rules for using the
method. The model-based cascade structure of the
controller ensures good performance (GES) and nat-
ural robustness to external disturbances. The con-
troller is shown to be as efficient as two well-known
methods in the literature and provides a new solu-
tion, more practical than other methods, using roll
instead of yaw for compensation and therefore allow-
ing additional accurate yaw tracking.
One drawback of the method is that the behav-

ior of the compensating degree of freedom is hardly
predictable. Depending on the sway error to can-
cel, when using roll for instance, the vehicle can roll
over and end up upside down, which can be damag-
ing for some system or jeopardize some applications.
Some further works will study the possible strategies
to limit the damaging behavior of the compensating
DOF.
Further works will also be needed to determine

the optimal position of the tracking point E for a

13



given application, as well as other applications for
this method. Furthermore, the method proposed in
this work can easily be generalized and can offer sev-
eral solutions for one problem as in this example.
In some applications, one could imagine switching,
during the mission, between the different solutions
to modify the behavior of the vehicle locally and
notably its attitude. This guidance principle could
be straightforwardly associated with different con-
trol laws to enhance its robustness to external dis-
turbances or model approximations.
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Appendix A. Proof of Theorem 1

The stability of the control loop is proven for the
seabed scanning task using the second compensation
solution Hr. The vehicle is considered sufficiently
stable in roll and pitch to ensure φ = 0 and θ =
0 during operation because of the buoyancy of the
vehicle and the relative positions of the centers of
gravity and buoyancy5. Note that, when using the
second compensation strategy Hp, the roll angle of
the vehicle is actively disturbed by the controller but
its natural stability ensures that it converges back
to zero when sway has converged. In this context,
using (12) and (21), the closed-loop system can be
expressed as6:

THrT
−1(J̇(η̇, η)−1η̇d + J(η)−1η̈d)

+K(THrT
−1J̇(η̇, η)−1η̇d − J(η)−1η̇E)

= J̇(η̇, η)−1η̇E + J(η)−1η̈E (A.1)

Using (15) and after some calculations and trigono-
metric combinations, the two first lines of (A.1) lead

5If this is not the case, stability of the control loop can be
established using more elaborated tools like Kelemen’s Theo-
rem (Kelemen, 1986; Lawrence and Rugh, 1990).

6Pleas note that J̇ stands for the time-derivative of the
matrix J .
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to:

ëx + (Kp +K)ėx + (Ki +KKp)ex +KKiχx

+ r(ėy +Kpey +Kiχy) = 0 (A.2a)
ëy + (Kp +K)ėy + (Ki +KKp)ey +KKiχy

− r(ėx +Kpex +Kiχx) = 0 (A.2b)

where ex = xd−xE and ey = yd−yE are the position
errors of the tracking point along axes x0 and y0 of the
inertial frame respectively, and χ̇x = ex, and χ̇y = ey
are their respective integrals. The stability of the
controller is shown using a Lyapunov function and
an simple argument stemming from linear systems
theory. To do so, the following intermediate variable
are introduced:

σx = ėx +Kpex +Kiχx (A.3a)
σy = ėy +Kpey +Kiχy (A.3b)

Note that (A.3a) can be understood as a linear input-
output system with input σx, output ex, and transfer
function:

H(s) =
s

s2 +Kps+Ki
(A.4)

It is always possible to guaranty that the poles of this
transfer function have strictly negatives real parts
with an appropriate choice of the gains Kp and Ki.
The same remarks applies to (A.3b) with σy and ey.
The time evolution of the quantities σx and σy are
respectively described by the dynamical system:

σ̇x = −Kσx − rσy (A.5a)
σ̇y = −Kσy + rσx (A.5b)

Note that the complete dynamical system (A.3)–
(A.5) let naturally appear a cascade structure. Con-
sider the Lyapunov function candidate for the equi-
librium point (σx, σy) = (0, 0) of (A.5a)–(A.5b):

V =
1

2
(σ2

x + σ2
y) (A.6)

This function is C1, strictly positive definite and radi-
ally unbounded; its first order time derivative reads:

V̇ = σ̇xσx + σ̇yσy

= −Kσ2
x − ψ̇σxσy −Kσ2

y + ψ̇σxσy

= −K(σ2
x + σ2

y) (A.7)

is thus, for any strictly positive gain K, strictly nega-
tive definite and, moreover, V̇ 6 −αV with α > 2K.
Consequently, the equilibrium point (σx, σy) = (0, 0)
is globally exponentially stable (GES)7. Finally, as
the transfer function (A.4) is stable, convergence of
σx and σy to 0 implies convergence of ex and ey
to 0.

7Note that in (Khalil, 2002, Lemmas 9.2 and 9.3) shows that
exponential stability provides robustness to small uniformly
bounded disturbances.
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