The queen scallop Aequipecten opercularis: a slow domoic acid depurator?
Abstract
Domoic acid (DA) is a dangerous phycotoxin produced by several strains of diatoms of the genus Pseudo-nitzschia, and responsible for Amnesic Shellfish Poisoning (ASP) in humans. The increasingly intense ASP-outbreaks along the English Channel over the last three decades have forced persistent harvest closures of economically important and highly contaminated bivalve stocks exhibiting slow DA-depuration rates, like the king scallop Pecten maximus. Under this scenario, other pectinid species, such as the queen scallop Aequipecten opercularis have been empirically proposed as alternative resources to redress the high economic losses due to the banning of the exploitation of P. maximus. Nevertheless, the kinetics of DA depuration in A. opercularis have not been assessed so far, and its direct extraction after ASP-episodes could represent a serious threat to public health. Hence, the main objective of this work was to estimate the DA-depuration rate in the digestive gland (DG) of naturally contaminated scallops A. opercularis after a toxic Pseudo-nitzschia australis bloom subjected to experimental depuration in the laboratory for 30 days. This study also intended to go further in the knowledge about the anatomical distribution of DA in scallop tissues, and corroborate the implications of autophagy in DA-sequestration in the DG of this species as recently hypothesized. In the DG, the DA-depuration rate (0.018 day−1) suggested that even with toxin burdens as low as 40 mg⋅kg−1 in the DG, queen scallops may remain contaminated for about 70 days, thus longer under intensely contamination scenarios. The subcellular analyses corroborated DA-sequestration mainly through late-autophagy within residual bodies in the DG, without differences in the frequencies of anti-DA labeled residual bodies across the entire depuration process. These results revealed that A. opercularis cannot be considered a fast DA-depurator, and represent a baseline knowledge for decision-making about harvesting natural beds of queen scallops after toxic Pseudo-nitzschia blooms. The findings of this work also represent a cornerstone for further research to accelerate DA-depuration in this species.
Origin | Files produced by the author(s) |
---|