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Scientific Significance Statement

The role of sulfur (S) regarding the stability of marine dissolved organic matter remains unclear. Direct measurements of dis-
solved organic S (DOS) compounds are scarce in the ocean, making it difficult to decipher the bioavailability and dynamics of
DOS. A combination of size exclusion chromatography and cathodic stripping voltammetry highlights the possibility of such
quantification in a new way. Our results show that low-molecular-weight hydrophilic reduced sulfur substances (RSS) are
major contributors to the DOS pool. RSS are produced by phytoplankton to prevent oxidative and metal stresses. These com-
pounds are partly remineralized by microheterotrophs to fulfill their S requirement. This microbial alteration of DOM pro-
duces a very stable pool of secondary metabolites hydrophilic LMW DOS possibly composed of thioamidated RSS. In deep
waters, the homogenous concentration of RSS highlights their recalcitrance to long-term mineralization.

Abstract
The low-molecular-weight (LMW) reduced sulfur substances (RSS) composition of dissolved organic matter (DOM)
was examined along the GEOTRACES US-GP15 section in the Pacific Ocean. We demonstrate that LMW RSS con-
stitutes a significant fraction of nonvolatile dissolved organic sulfur (DOS). While thiols such as glutathione were
below our detection limit (300 pM), RSS containing two carbon (C) sulfur (S) bonds were present at concentrations
in the hundreds of nM range. RSS accumulation was observed in subtropical waters. The most likely source of these
RSS is microbial alteration of sulfurized DOM with production of secondary thioamidated metabolites. RSS are ini-
tially produced by cyanobacteria to mitigate copper and oxidative stress induced by UV-B irradiance. A preferential
remineralization of RSS over dissolved organic carbon (DOC) in the upper 350 m suggests a partial lability of LMW
DOS. Deeper, homogeneous concentrations and C : S ratio indicate increasing stability of this LMW DOS.
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Among the � 660 Gt of carbon (C) contained in marine
dissolved organic matter (DOM), � 640 Gt are refractory to
bacterial remineralization and persists for thousands of years
in the ocean (Hansell et al. 2009). Several hypotheses
explaining the high stability of DOM over time were pro-
posed, notably the concept of intrinsic recalcitrance, which
suggests that reactivity is determined by the molecular proper-
ties and composition of DOM (Jiao et al. 2010; Lechtenfeld
et al. 2015; Baltar et al. 2021). It was shown that a low-
molecular-weight C to nitrogen ratio reflects a high lability of
DOM but it is still not clear regarding sulfur (S). In marine
waters, dissolved S is mainly under its oxidized form: sulfate.
However, several oceanic microheterotrophs cannot reduce
sulfate (Tripp et al. 2008; Dupont et al. 2012), despite a high S
demand (Matrai and Eppley 1989). These microorganisms
depend on a pool of � 6.7 Gt of dissolved organic S (DOS,
Ksionzek et al. 2016) to fulfill their metabolism. Conse-
quently, microheterotrophs play a key role in controlling the
dynamic of DOS in the ocean (Ksionzek et al. 2016;
Levine 2016) and S content in DOM may reflect a certain level
of lability. However, in the deep ocean, DOS seems refractory
to microbial degradation and only scarce data suggest that S is
selectively remineralized compare to C in refractory DOM
(Koch et al. 2017; Longnecker et al. 2020; Ibrahim and
Tremblay 2023). Abiotic sulfurization of DOM in sulfate-
reducing sediments and its subsequent release into the ocean
was proposed as a pathway of production of refractory DOS
(Pohlabeln and Dittmar 2015). During early diagenesis, in
sulfide-bearing sediments, organic matter reacts abiotically
(reactions additions during H and/or O removal/addition) with
inorganic species (sulfides, polysulfides), forming organic S
compounds (Damsté et al. 1989; Vairavamurthy et al. 1995;
Schmidt et al. 2009). Abiotic sulfurization is a well-known pro-
cess contributing to the protection of labile organic matter
from microbes in fossil deposits (Sinninghe et al. 1998; Kok
et al. 2000; Amrani et al. 2007; Bushnev and Burdel’Naya 2009).
The release of refractory DOS from superficial sediments
(Pohlabeln and Dittmar 2015) could balance the slow and con-
tinuous mineralization of DOS in refractory DOM (Ksionzek
et al. 2016) and induces a change in the chemical nature of
DOS as observed by Longnecker et al. (2020). Phillips et al.
(2022) indicate that the diffusion of sulfurized dissolved
organic matter (DOM) plays a negligible role in the overall dis-
tribution of DOS. This is in line with the recent findings from
Ibrahim and Tremblay (2023) that the primary origins of water-
column and sedimentary DOS are distinct.

The above opposing hypotheses are based on a limited
amount of data as the determination of organic S in DOM is
complex. On the one hand, total organic S concentrations
can be calculated as the difference between total S determined
by reductive pyrolysis and sulfate seawater concentration
(Cutter et al. 2004; Longnecker et al. 2020). On the other
hand, solid-phase extractions (SPE) along with mass spectrom-
etry also provide an estimation of DOS concentrations

(Ksionzek et al. 2016; Phillips et al. 2022). However, this may
lead to a bias since SPE fractionate DOM and cannot access
the fraction of LMW hydrophilic DOM (Dulaquais
et al. 2023). Alternatively, direct determination of reduced sul-
fur substances (RSS), such as thiourea, cysteine and/or gluta-
thione, can be assessed either directly using cathodic stripping
voltammetry technics (Al-Farawati and van den Berg 1997,
2001; Laglera and van den Berg 2003; Pernet-Coudrier
et al. 2013) or after SPE and subsequent derivitization in line
with high-pressure liquid chromatography (HPLC, Swarr
et al. 2016). These RSS are present in the environment at a
wide range of concentrations (pM to μM) and protect eukary-
otic cells for from oxidative damage and exposure to toxic
metals (Mopper and Kieber 1991; Leal and Van Den Berg 1998;
Ercal et al. 2001; Rijstenbil 2002; Sunda et al. 2002; Jacob
et al. 2003; Laglera and van den Berg 2003; Dupont
et al. 2006; Dryden et al. 2007; Tilliette et al. 2023). RSS, espe-
cially thiols, may be exuded by phytoplankton (Leal
et al. 1999; Swarr et al. 2016) but they seem mostly originate
from heterotroph metabolism (Laglera and Tovar-
S�anchez 2012; Mahanta et al. 2019; Moran and Durham
2019). Although RSS play a major role in biogeochemical
interactions between S and marine microorganisms (auto-
trophs and heterotrophs) and have broader ecological roles
such as for metal detoxification and microbial signaling
(Moran and Durham 2019), their contribution to the pool of
DOS in open ocean has, to our knowledge, been quantified
only twice by Swarr et al. (2016) and Whitby et al. (2018).

The objective is to evaluate the spatial and vertical contri-
bution of RSS detected by adsorptive cathodic stripping
voltammetry (Ad-CSV) to the nonvolatile DOS pool in the
Pacific. We study the sources and fate of thiols at large scale. A
combination of Ad-CSV and size exclusion chromatography
with organic carbon detection (SEC-OCD) datasets contributes
to a better understanding of the role of low-molecular-weight
(LMW) RSS in the oceanic DOS cycle.

Experimental section
Samples were collected during the cruise GEOTRACES US-

GP15 (Fig. 1a). Bulk, high-molecular-weight (HMW) and
LMW DOC concentrations were measured by SEC-OCD
(DOC-Labor®) (Huber et al. 2011; Dulaquais et al. 2018;
Fourrier et al. 2022a, 2022b). The analysis of RSS was per-
formed on bulk samples by Ad-CSV at a deposition potential
of 0 V (vs. Ag/AgCl) with a deposition time of 180 s (Pernet-
Coudrier et al. 2013). Further details on the methods used in
this study are provided in the Supporting Information.

Results and discussion
DOC concentrations and fractionation in the Eastern
Pacific

Bulk DOC concentrations ranged from 34.9 � 1.0 μMC at
2633 m depth (20�S; 152�W) to 71.2 � 2.2 μMC in the
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euphotic layer at 55 m depth in the northern subtropical gyre
(17.5�N; 152�W). DOC concentrations measured in this study
were compared with data from CLIVAR P16N cruise (150�W;
OCADS database, 2006). The vertical distributions of DOC
concentrations as a function of depth (m) presented in Fig. 2
include data from the CLIVAR P16N cruise as well as data
measured in this study (GEOTRACES transect US-GP15).
Data were paired and the distribution clearly shows an overlap
between the two datasets along the water column. The scatter
plot of the paired data set (n = 271) shows a distribution
along a 1 : 1 line taking into account the measurement uncer-
tainties (Fig. 2b). A strong correlation (p < 0.05) with a R2

equal to 0.93 between DOC from CLIVAR P16N and our mea-
surements demonstrates that concentrations of DOC
measured are consistent with the existing literature. Devia-
tions from the 1 : 1 line mainly correspond to samples from
surface waters (15–185 m) and mesopelagic waters (200–
1000 m). These differences between the two datasets could be
due to temporal changes in biological production or bacterial
degradation (Cherrier et al. 1996; Thingstad et al. 1997; Morris
et al. 2005; Carlson et al. 2007). This result confirms the rele-
vance of using SEC for DOC determination in oceanic envi-
ronment (Fourrier et al. 2022a). Preliminary results of DOC
size fractionation along the section are presented Fig. 2a. It
clearly shows that HMW DOC was only significant (3% � 2%
of bulk DOC) in the upper 100 m of the water columns. The
LMW hydrophilic DOC, that mostly escapes SPE using styrene
divinyl benzene polymer resin (PPL) sorbent (Dulaquais
et al. 2023), accounted for 28.8% � 5.8% of bulk DOC all
along the water column. All the RSS that can be detected by
the Ad-CSV method we used (glutathione, cysteine, N-acetyl

cysteine, thioacetamide, thiourea) eluted in this fraction.
These results imply that RSS are LMW hydrophilic com-
pounds and may not be accurately recovered from seawater
samples after SPE using PPL sorbent.

Reduced sulfur species in the Eastern Pacific
Electrochemical analyses of RSS using 180 s of deposition

time revealed the systematic occurrence of a peak at �0.193 V
(vs. Ag/AgCl) in all analyzed samples (n = 395). This peak is
typical of the thioacetamide (TA) electrochemical response
and can be related to thioamidated compounds with thio-
amide and thiocarbonyl functional groups. Quantification of
this peak using TA as external standard (referred as TA-like in
the next sections) revealed concentrations ranging from
117.6 � 14.1 nMeqTA at 125 m in the equatorial area to
1140.4 � 136.8 nMeqTA at 25 m in the north subtropical gyre
(Fig. 3). The TA-like distribution showed high concentrations
in the upper 100 m (652 � 213 nMeqTA, n = 48), decreasing
in the upper mesopelagic zone (343 � 180, n = 95 at depth
deeper than 100 m) and reaching stable concentration
(235 � 41 nMeqTA; n = 252 at depths deeper than 600 m)
(Fig. 3). In deep waters (> 600 m), neither significant variation
or correlation with hydrographic (e.g., temperature, salinity,
O2) nor biogeochemical (nutrients) parameters were observed.
The distribution of TA-like compounds we report in this study
suggests a biogenic production of these RSS in surface and par-
ticularly in oligotrophic waters (Fig. 3). The rapid decrease of
TA-like at the 100-m horizon indicates a partial lability
of freshly produced TA-like compounds. The homogenous
concentration in the deep sea (Fig. 3) indicates that a fraction
of the TA-like pool becomes refractory to long-term

Fig. 1. (a) Location of the transect overlaid on a composite background map of chlorophyll a distribution (Chl a, μg L�1; 8 daily 4-km over September–
November 2018, MODIS-Aqua Satellite). Yellow boxes show Chl a data by week based on boat advance for the GEOTRACES US-GP15 cruise. (b) Time-
averaged map of solar irradiance (310 nm) in the study area (mW m�2 nm�1; daily 1�). Figure generated using Giovanni (giovanni.gsfc.nasa.gov).
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remineralization during microbial alteration of DOM in the
mesopelagic zone. Biologic origin of TA-like compounds is in
agreement with the previous work of Leal et al. (1999). Direct
production/excretion may not be the main production path-
way of TA-like compounds. These compounds are probably
thioamidated secondary metabolites from S-containing mole-
cules such as, but not restricted to, methanobactin (Kenney
et al. 2018), thioholgamide (Kjaerulff et al. 2017), and
thioalbamide (Frattaruolo et al. 2019).

Differently to TA-like compounds, electrochemical signal
of cysteine-like and glutathione-like compounds were only
detected one and three times at subnanomolar levels. The
low-detection rate of these thiols may be related to their
subnanomolar to picomolar concentrations in oceanic

waters (Swarr et al. 2016; Whitby et al. 2018) as our limit of
detection was 0.3 nM at the deposition time we used
(Pernet-Coudrier et al. 2013). The difference of abundance
between TA-like and these thiols can be related to their spe-
cific reactivity and stability.

This difference may partly originate from the internal C�S
bonds of these compounds with TA-like compounds having a
double C�S bound (among others thioamide and
thiocarbonyl functional groups), while cysteine-like and
glutathione-like have single C�S bound. The stability of C�S
single bonds (< 300 kJ mol�1) is low in oxygenated environ-
ments. Indeed, radical substitutions can lead to dissociation of
the C�S bond within thiols (Rudyk and Eaton 2014). Among
TA-like compounds, thioamide have a C�S double bond

Fig. 2. (a) Vertical profiles of DOC (μMC) vs. depth (m) for the campaigns CLIVAR P16N (Swan et al., 2009; deep blue dots), and GEOTRACES USGP15
(this study; gray dots). High-molecular-weight (HMW) DOC (> 10 kDa; green dots) and low-molecular-weight (LMW) DOC (< 0.3 kDa; yellow dots) are
also represented for this study. (b) Comparison between the two datasets for global DOC. The observed data were paired with historical data by station
and depth.

Fig. 3. Spatial and vertical distribution of sulfur compounds of thioacetamide type (TA; nMeqTA L�1) along the GEOTRACES US-GP15 section (152� W).
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conjugated to a nonbonding doublet of the nitrogen atom
making them more stable, potentially explaining their detec-
tion in all the analyzed samples.

Surface waters (< 100 m) of the subtropical gyres and equa-
torial area showed RSS concentrations significantly higher
than in the subpolar gyre displaying a north to south meridio-
nal gradient of concentration (Fig. 3). Subpolar, north sub-
tropical, equatorial, and south subtropical surface waters
displayed concentrations of 537 � 168 (n = 10), 640 � 256
(n = 13), 646 � 199 (n = 18) and 853 � 41 (n = 7) nMeqTA,
respectively. The mean irradiance at 310 nm along the
section during the cruise (Fig. 1b) shows a north to south gra-
dient of surface waters exposition to UV-B. These observations
are in line with the biological importance of RSS in the regula-
tion of oxidative (Ercal et al. 2001; Rijstenbil 2002; Sunda
et al. 2002) and copper (Whitby et al. 2018) stresses. Further-
more, it is likely that high levels of TA-like observed in the
subtropical gyres reflect high production of RSS by cyano-
bacteria combined with continuous alteration and accumula-
tion in these stratified domains.

Cellular oxidative damages on lipids, proteins, and DNA
result from direct UV-B solar exposure or by indirect oxidative
damages from reactive oxygen species (ROS) induced by UV-B
irradiance (He and Häder 2002). Inside the phytoplankton
cell, thiols can react with ROS lowering the intracellular con-
centration of hydroxyl, peroxyl and superoxide radicals
(Weiss 2005; Regoli and Giuliani 2014). Production of RSS
compounds is a possible way for microorganisms to protect
themselves from post-transcriptional oxidative modification
of proteins (Rudyk and Eaton 2014). Large phytoplankton
(diatoms) develop mostly in the subpolar gyre (Harrison
et al. 1999) and the equatorial zone (Chavez et al. 1990) of
the Pacific, while cyanobacteria (mainly Prochlorococcus and
Synechococcus) dominate phytoplankton in the subtropical
gyres (Winn et al. 1995; Ras et al. 2008). The surface gradient
of RSS we measured from north to south (Fig. 3) may indicate
the meridional variation in how the various phytoplankton
communities respond to mitigating the production of ROS
induced by UV-B radiation. On the one hand, for the subtrop-
ical gyres, increased sunlight exposure would lead to higher
levels of ROS (Mopper and Kieber 2000). Consequently, there
would be an increase in the biological production of RSS as a
response to the induced oxidative stress (Latifi et al. 2009).
This cellular response was observed in various thiol-related
studies in the literature (Apel and Hirt 2004; Dupont
et al. 2004; Bertini 2007; Fahey 2013). On the other hand,
cloud cover and less sunlight in the subpolar gyre would not
catalyze as much ROS production (Scully et al. 1996;
Johannsson et al. 2017) resulting in a lower RSS production.
Furthermore, diatoms that develop in the subpolar gyre and
the equatorial zone may be less sensitive to these stresses com-
pared to cyanobacteria from the subtropical gyres. These latter
prokaryotic species have a single membrane that would make
them more sensitive to oxidative stress and solar irradiation

compared to diatoms (Murphy 1983; Tyrrell 1991; Lesser 2006;
Llabrés and Agustí 2006; Agustí and Llabrés 2007).

Cyanobacteria are also likely major producers of RSS for
metal detoxification and acquisition (Singh et al. 1999;
Tilliette et al. 2023). Among RSS, thiols are a major class of
ligand particularly for the complexation of dissolved copper
(dCu). Thiols limits the toxicity of this element to phyto-
plankton by lowering ambient copper ion (Cu2+) concentra-
tions (Florence and Stauber 1986; Rijstenbil et al. 1998;
Morelli and Scarano 2004; Dulaquais et al. 2020). Alterna-
tively, they can increase the bioavailability of dCu (Walsh
et al. 2015). Thereby, thiols enhance acquisition or reduce
toxicity of Cu2+ depending on phytoplankton species. The
distribution of total dCu and labile dCu along GP15
section reported by Moriyasu et al. (2023) provides further
perspective onto the links between RSS, Cu, and UV irradia-
tion. According to authors, labile dCu (the more bioavailable
fraction) accumulates in the stratified subtropical waters. This
accumulation is probably induced by a continuous photo-
chemical decomposition of an inert fraction of dCu. In these
waters, cyanobacteria that have a low resistance to Cu toxicity
(Brand et al. 1986) may enhance their production of RSS to
keep Cu2+ at subpicomolar levels. This mechanism is in agree-
ment with the high RSS concentrations we report in the sub-
tropical domains. In addition, the previous works from
Whitby et al. (2018) and Ruacho et al. (2020) in the Pacific
showed higher dCu and Cu2+ in the surface waters of the sub-
polar gyre than in the equatorial waters. In these conditions,
phytoplankton may experience a higher copper stress, in
terms of scarcity, in the equatorial waters than in the subpolar
waters. This would have induced the higher production of RSS
for Cu2+ acquisition in the equatorial waters compared to the
subpolar gyre resulting in the difference of concentration of
RSS we observed (Fig. 3).

Contribution of RSS to DOS in the Eastern Pacific
To compare the DOS contained in RSS to bulk DOS, TA-like

concentrations in nMeqTA were directly converted into nM of
equivalent nonvolatile reduced DOS (RSS-DOS) by assuming
1 mol eq-TA = 1 mol DOS. This assumption relies on the
mechanism of TA quantification by the CSV method we used
(see Supporting Information) and consider that almost all S
functional groups in RSS are electroactive. Briefly during CSV
analysis, the sulfur is adsorbed on the working electrode, for-
ming a S Hg complex. Then, during the voltammetric strip-
ping scan, the complex is reduced creating a quantitative
current proportional to the amount of electroactive S atoms
adsorbed. A scheme is proposed in Supporting Information
Fig. S2. The resulting TA-like DOS (117.6–1140.4 nM RSS-
DOS, Fig. 4a) concentrations are lower than the scarce data
reported in the literature for the West Atlantic total organic
sulfur (43.8–1275.1 nM, TOS; Longnecker et al. 2020) and
higher than DOS isolated by SPE using PPL (SPE-DOS) in the
East Atlantic (59–201 nM-SPE-DOS; Ksionzek et al. 2016). Our
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result indicates that RSS-DOS (LMW hydrophilic) is a major
contributor to bulk DOS and is at least as large as the SPE-DOS
reservoir (LMW hydrophobic). The lower SPE-DOS concentra-
tions than TA-like DOS is probably due to the incapacity of
SPE using PPL to isolate LMW thiols and other RSS (Pohlabeln
and Dittmar 2015; Gomez-Saez et al. 2017), resulting in a low
recovery of hydrophilic DOS by the SPE technic.

We then calculated the C : S ratios of LMW hydrophilic
DOM (e.g., LMW DOC : RSS-DOS). Ratios ranged from
15 � 10 to 121 � 50 (Fig. 4b). These C : S are significantly
lower than those reported for the West Atlantic TOS (38.0–
1472.6, Longnecker et al. 2020) and DOM isolated by SPE
(SPE-DOM) in the East Atlantic (92.7–351.4; Ksionzek
et al. 2016) and the Pacific (160–303; Phillips et al. 2022) fur-
ther suggesting LMW hydrophilic compounds as a major res-
ervoir of DOS. The C : S ratios of LMW DOM were low in the
shallowest waters and reached a threshold of 50 at 350 m.
The sharp increase of C : S from the euphotic layer to the mid
mesopelagic zone indicates a selective consumption of S com-
pared to C in LMW DOM by microheterotrophs to fulfill
their S requirement. Deeper C : S ratios kept a quasi-
homogenous values of 56 � 9 (n = 240) down to the most
abyssal waters (Fig. 4). It indicates a strong stability of this
DOS reservoir, without preferential remineralization of S
over C with time at these depths. This apparent discrepancy
with Ksionzek et al. (2016) and Longnecker et al. (2020) may
indicate difference of lability between the DOS pools and
oceanic basins. It could also reflect the long-term removal of
nonlabile DOS (Ksionzek et al. 2016). According to size reac-
tivity continuum, LMW DOM is often consider as less labile
than high-molecular-weight compounds (Benner and
Amon 2015; Walker et al. 2016). Our data suggest that LMW

hydrophilic DOS is an important pool of bioavailable DOS
for microheterotrophs. This study suggests that the refrac-
tory nature of LMW DOM is not intrinsic but emerges from
biological processes occurring in the mesopelagic zone in
line with Dittmar et al. (2021).
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