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Abstract—Autonomous vehicles (AV) are known for their ability
to perform challenging or risky tasks that would be difficult
for humans. In unpredictable environments, AV missions often
require real-time path re-planning, adapting to terrain changes,
and balancing conflicting objectives like safety, risk assessment,
travel time, distance and energy consumption. We have chosen to
focus on Unmanned Surface Vehicles (USV) surveillance missions
centered around area coverage and using LiDAR (Laser Imaging
Detection And Ranging) or camera imagery.

To tackle these challenges, we propose an offline/online ap-
proach for monitoring missions. It exploits a multi-objective
Optimization (MOO) framework. In the offline phase, a set of
alternative paths is computed using MOO and archived. The
archive is in fact a Pareto front. One of these paths is selected
as the initial path for the USV, while the online phase handles
dynamic path re-planning in response to encountered obstacles
during the mission. The re-planning process efficiently and quickly
adapts the drone path by reusing the archived data.

Our experiments involve a standard commercial USV and its
LiDAR system. Our results demonstrate the benefits of using pre-
computed solutions from the offline phase for dynamic path re-
planning during the online phase.

keywords—USV Path planning, Embedded decision making, path
re-planning, multi-objective optimisation

I. INTRODUCTION

Autonomous drones have become highly valuable in per-
forming dangerous, challenging or repetitive tasks [5], [18].
For example, they are usable for defense tasks [19] or environ-
mental missions [24]. USVs offer several key benefits. They are
not bound by the constraints that affect human operators, such
as temperature, space limitations, or environmental disruptions.
Additionally, they excel in environments where human inter-
vention is unsafe. Moreover, they are cost-effective and can
operate continuously.

Our project aims to deploy an autonomous drone for port
surveillance. Each reconnaissance tour conducted by the drone
is referred to as a mission. It involves tracking and adapting
a calculated trajectory before the mission. This pre-computed
trajectory is defined by a sequence of waypoints. These
paths aim to minimize the distance traveled by the drone
while also minimizing the area of the port facility that is
not under surveillance. The drone is equipped with LiDAR
(Light Detection and Ranging) which enables it to detect any
anomaly in its environment. This LiDAR also assists the drone
in detecting obstacles along its path. In the event that the

drone encounters an obstacle, it must navigate around it while
continuing its surveillance mission to the best of its ability.

The deployment process is divided into two parts. The first
one, offline, pre-computes a set of acceptable trajectories for
the drone. One of these solution paths is chosen to launch the
mission. Following this is the online phase, which involves
the adaptation of the pre-calculated trajectory by the drone
embedded resources in its environment. During its tour,
the drone collects data about its surroundings to achieve
monitoring while avoiding unexpected obstacles.

1) Problem statement: However, in the online phase, the
obstacle avoidance solution defined earlier does not take
into account the two objectives for which the pre-calculated
trajectories are optimized. This avoidance method may lead
the drone to pass through areas that it has already monitored
or was going to monitor later in its mission. In this case,
the path re-planning method increases the distance it travels
without reducing the area not covered by its LiDAR. Usual
USV re-planning algorithms [2] focus on obstacle avoidance
and traveled distance and not on extra criteria such as our
covering metric.

2) Contributions of this paper: During the offline part
of the project, we pre-compute a set of trajectories before
selecting one for the mission. Once the offline phase is
completed, these solutions are not exploited further. We have
developed a new method that leverages these pre-calculated
trajectories to better address the two objectives mentioned
earlier. This new method is capable of generating a new set
of solutions adapted for collision avoidance, referred to as
”repaired” solutions. Repaired solutions are to be embedded
for online efficient re-planning. We detail this new obstacle
avoidance method along with a comprehensive evaluation. This
evaluation was conducted in comparison with a multi-objective
approach and a simple re-planning approach that allows the
drone to adjust its trajectory when encountering an obstacle
[13]. We also assessed the response time of this new method
and identified the parameters that impact the quality of its
results and its computation times. Finally, we developed an
embedded version of this new method. These evaluations were



based on real-world data from a surface drone used in our
laboratory. We also performed our evaluations on multiple
port facilities. For obstacle avoidance, our new embedded
algorithm is preferred to classical algorithm in 91% of the test
cases.

We first detail the background of the various methods and
algorithms used during the offline and online phases. Then
define the approach for our new obstacle avoidance method is
presented next. Finally the various experiments that allow us to
evaluate our new method are detailed. These experiments aim
to (i) assess the necessity of using a multi-objective approach
for our obstacle avoidance problem, (ii) evaluate the quality of
the results of our approach compared to a trajectory correction
that reuses the algorithms from the offline phase, and (iii) show
that the method can be efficiently embedded.

II. BACKGROUND

A. Mission model

In this paper, we are reusing the model developed in our
previous publication [13]. As shown in Fig. 1, the environment
in which the online and offline parts operate is defined by
a grid, associated to a connected graph. The vertices of this
graph cover the area under surveillance. They are potential
waypoints, i.e. stages of the mission path. The drone can
move from one node to any of its four adjacent cardinal
nodes. The drone’s detection range allows it to detect potential
obstacles within a predefined radius around the node where it
is stationed. This range is defined by its LiDAR characteristics,
which also enables it to collect data about its surroundings.
Each node of the graph that is reachable by the LiDAR along
the drone trajectory is considered as covered as shown on the
upper left corner of 1. The number of covered nodes is used
to measure the covered area.

The trajectory of a mission is defined by a succession
of waypoint nodes within the graph. The USV goes from one
waypoint to the next following a shortest path between the
corresponding nodes.

A mission is defined by a trajectory and the values of the
objectives associated with that trajectory. Each mission is a
compromise between the two objectives, namely the length
of the trajectory (Length) and the uncovered area (Uncov).
A mission trajectory always starts on the same waypoint and
finishes when the drone is back on his starting point.

In our model, the dynamics of the environment corresponds
to modifications of the graph. An arising obstacle is defined
by two ending nodes, and degrades the graph by making
inaccessible all the points forming the shortest path between
these two nodes.

B. Trajectories exploration

1) Multi-objective optimisation approach: The USV
performs surveillance by conducting tours, also called a
mission. A tour is defined by two objectives: the distance

Fig. 1. Path for monitoring mission with covering by a LiDAR

Fig. 2. Example of minimised objective Length (red) and Uncov (blue) in the
port facility of Brest.

covered (Length) during the tour and the area not covered by
the onboard LiDAR of the port installation (Uncov). Those
two parameters means that a mission is multi-objectives.

These two objectives are to be minimized in an optimal
case. We aim to minimize the surface area not covered by the
drone while minimizing the distance traveled. These objectives
are contradictory since reducing the uncovered surface area
requires the drone to cover more distance. On the other hand,
by reducing the distance traveled, we increase the surface area
not covered.

There are two extreme missions, one where the drone does
not move to minimize the distance traveled, and one where
the drone covers the entire port installation at the expense of
the distance traveled. In the two examples presented in Fig. 2,
we observe these two extreme cases represented in the port of
Brest, red path for the minimisation of Length, and blue for
the minimisation of Uncov.

To find the best trajectory, we use a evolutionary algorithm
named PAES (Pareto Archived Evolution Strategy)[14].
PAES is a multi-objective optimization algorithm capable of
defining a set of solutions close to the Pareto optimal front, as
represented by the line in Fig. 3. It maintains an archive of
non-dominated solutions. A solution is dominated if another
solution is better than the former for all objectives [4]. On
contrary a non dominated solution, is a solution without any
other solution dominating all its objectives simultaneously.
For example, with our two objectives (Length, Uncov), a
fictitious trajectory s1 (14.0,12.0) dominates s2 (17.4,24.0)
because it is shorter than s2 and covers more surface than s2.



Fig. 3. Example of a Pareto front formed by non dominated solutions.

Every solution over the Pareto front line as seen in Fig. 3 is
considered as a bad trade-off and is a dominated solution. The
algorithm utilizes its archive of non-dominated (Pareto front)
solutions to evaluate the new solutions generated by random
mutation. At the end of its search, PAES returns its archive
content set.

2) Evaluation and decision: To assess the quality of
an archive, a widely used metric is hypervolume [4]. This
metric calculates the volume of solution space dominated
by a Pareto front, as seen on the upper blue part of Fig. 3.
The larger this volume, the more it signifies that the front
covers higher-quality solutions. Thus, it also allows for the
comparison of two solution sets for the same problem. The
hypervolume notably allows observing the evolution of two
solution archives. Subtracting the hypervolume of archive A
from archive B helps determine if archive A covers more
solutions than archive B.

Since PAES returns a set of non-dominated solutions,
it is necessary to use decision-making algorithm such as
TOPSIS (Technique for Order of Preference by Similarity to
Ideal Solution) [17] to determine the actual mission to be
launched.

TOPSIS is a widely used multi-criteria decision-making
method that evaluates alternatives based on their proximity to
the ideal solution and their distance from the negative ideal
solution. An ideal solution is a solution with the best known
value for each objective within a set of solution, even if these
values are not associated to a single solution. The anti-ideal is
the opposite, with worst known objective values. These two
points define the range of values for the objectives associated
to the set of solutions.

C. Offline algorithm

The offline part allows for the generation of a trajectory
for the mission. It is computed before the mission without
any restriction in power and computation time related to
an embedded context. To achieve the computation of the
trajectory, we have customized the PAES meta-heuristic

framework. Our algorithm generates a random trajectory
waypoints that it mutates over a predetermined number of
generations. We have developed specific mutation operators
[13]. At the end of its mutation cycle, PAES provides an
archive of non-dominated solutions for the mission trajectory.
Each solution present in the archive is therefore considered as
an interesting trade-off for the mission.

By applying TOPSIS multi-criteria decision-making
algorithm to the archive of solutions, we can identify one
of the most suitable trajectories that balance the objectives
and constraints for the effective and efficient execution of the
mission.

III. APPROACH

The online part aims to adapt the solution defined during the
offline phase for the mission. The drone follows the trajectory
and performs supervision tasks. It can detect changes in the
environment during its progression. When these changes corre-
spond to obstacles located on its future path, it initiates a repair
attempt, i.e a re-planning for the mission. To perform this repair,
the drone can rely on a method that we named SPNW (Shortest
Path to Next Waypoint), which utilizes Dijkstra shortest path
algorithm [9]. Our work presented in this paper aims to develop
a new bypass method based on the reuse of the archive
produced offline. This new method called RFA (Recovering
From Archive) reuses the archive produced by PAES in the
offline phase.

A. The current shortest path method

When an obstacle arises, SPNW [13] is used to define a
new trajectory that connects the last waypoint reached by the
drone to the next waypoint in the trajectory waypoints list. This
new trajectory takes into account alterations to the environment
caused by obstacles and reported into the graph model. By
recalculating the shortest path into this modified graph, the
drone can navigate around the obstacle and continue its mission.
However, it only considers the length objective function when
planning a new path to the next waypoint. Therefore, it is
possible for SPNW to make the drone turn back or cross an
area that it has already covered or was going to cover in its
pre-computed path, as illustrated in Fig. 4.

B. Our proposal : RFA

RFA is our new method, its pseudocode is detailed in
the algorithm. 1. It builds upon the archive produced by
PAES during the offline phase. It generates a new repaired
archive by associating each solution from the archive with the
already covered trajectory of the mission. RFA then reuses the
multi-criteria selection algorithm to define a new trajectory to
complete the mission. By this way, this new trajectory choice
takes into account both the length and covering objective
functions for re-planning.

In the example shown in Fig. 5, the initial solution in



Fig. 4. SPNW producing a obstacle avoidance trajectory

Fig. 5. Repairing initial solution (blue) with RFA by using a solution from
the archive (orange)

blue is compromised by the obstacle (red obstacle line and
invalidated portion of the path). It is repaired using a solution
from the archive, represented by the orange trajectory. The
resulting repaired solution, consists of the initial point of the
initial trajectory Sinit, up to the waypoint wstopped before
the obstacle. It is then associated with the closest waypoint
wclosest from the archive trajectory S and continues to follow
the remainder of that trajectory back to the initial point.

Fig. 6. RFA generation of repaired archive A’

The operation is repeated on each trajectory contained
in the archive A to produce the repaired archive A′ (Fig.
6). The newly generated solutions are then evaluated using
the objective functions Length and Uncov used in the offline
phase for the evaluation of solutions produced by PAES.
Once A′ is filled with the repaired solutions based on A, RFA
uses TOPSIS to select a trajectory in A′ to achieve the mission.

During the repair process of a solution by RFA, the
newly generated trajectory is checked again to ensure it will
not also be blocked by the obstacle. To do this, we reuse the
shortest path algorithm presented earlier. The solutions in the
repaired archive are therefore guaranteed not to go through the
obstacle. If some of the solutions present in the initial archive
have the same issues as the initial solution, the number of
solutions in the initial archive allows for covering a very large
sample of different solutions and trajectories. Additionally, the
trajectory designed by SPNW is systematically included in the
archive since the initially selected trajectory for the mission
is used for repair on itself by RFA. This means that since the
archive used by RFA for repair also contains the solution used
by the drone for its route, the repair attempt by RFA produces
a solution based on the initial trajectory, repaired only by
SPNW. This will enable us to evaluate SPNW compared to
RFA based on our multi-criteria decision algorithm.

Algorithm 1: RFA (Recovering From Archive)

A: Pre-computed archive;
Sinit = (w1, w2, ..., wstopped, ..., wn): initial solution;
with wstopped: waypoint where Sinit is stopped;
foreach solution S ∈ A do

wclosest = argminw∈S distance(w,wstopped);
S′ = (w1, ..., wstopped, wclosest, ..., wn);
if S′ encounters an obstacle then

Correct the trajectory of S′ with SPNW;
end
Evaluate S′;
A = A ∪ {S′} \ {S};

end
Select solution from A with TOPSIS;

Since each solution repair performed by RFA uses the
SPNW algorithm, the computation time for our new re-
planning strategy is inevitably greater than that of SPNW.
This computation time increases linearly with respect to the
size of the archive used for the repair. In the case of an
archive of size n, e.g. 100, RFA will take at least n times
the computation time of SPNW to produce its repaired archive.

The offline PAES archive size is adjusted to the offline
computational effort. The larger the archive, the more efficient
the exploration process for alternative initial trajectory



computation. However, the exploitation of the embedded
archive is constrained by limited computation resources and
an execution time budget. Thus, it is possible to decrease the
size of the online archive by selecting a subset of elements
from the offline archive. There are several methods to achieve
this.

PAES adds solutions to its archive while respecting a
threshold on its size. It selects solutions according to diversity
criteria [14]. We can reuse this mechanism to build the
embedded archive. A simpler way consists of sorting the
offline archive members according to one of the objective
functions and sampling elements regularly with a frequency
adjusted to the targeted embedded archive size.

We opted for the second method as we have not yet
conducted a study to determine the potential of each solution
to repair the trajectory. This way, we ensure to have a sample
of solutions that is as representative as possible of our initial
archive.

As for the initial path computation, a large embedded archive
size allows for better exploration of the space of possible
re-planning trajectories, but at the expense of computation time
for the repair process. Therefore, it is necessary to find a good
trade-off while still meeting the reaction time requirements
which depend on the environment in which the USV operates.

IV. EXPERIMENTS

To assess the usefulness of our RFA method, we first check
the results obtained and compare them to a shortest path
based collision avoidance algorithm (SPNW) for our objectives.
Analysis the results allows to asses the usefulness of MOO
for obstacle avoidance during monitoring missions. We then
compare the quality and computation time of RFA with a
method that reuses PAES for a complete recalculation of the
trajectory. Finally, we look at the performances obtained with
RFA when embedding it on an ARM processor.

The various experiments presented here follow the same
test methodology applied on the same benchmark for path re-
planning with SPNW, RFA and PAES.

A. Testing environment and methodology

Our test cases for online re-planning are generated as
follows. We first produce an archive offline with PAES for a
given supervision mission and select an initial path for the
mission using TOPSIS. The USV will follow this path. Next,
we generate randomly an obstacle and include it into the
routing graph (see Section III). Each test case consists of an
archive of solutions produced by PAES in offline, along with
a solution selected by TOPSIS that is blocked by an obstacle.
The different re-planning algorithms are then used to avoid
the obstacle.

To enhance the relevance of the results, we rely on
concrete test cases. For this purpose, we utilize data from a

Fig. 7. Map of Brest (left), Tropez (center) and Granville (right) used for our
test cases

TABLE I
WAYPOINT DENSITY FOR EACH HARBOR MAP, IN WAYPOINTS/SQUARE

KILOMETER

Brest Tropez Granville
waypoint density
(#waypoints/km2) 1731.77 197.17 9290.21

commercial Marine Drone 1800 USV [23]. This drone has
a maximum speed of 4.2 m/s but typically moves at 1.3
m/s. It has a LiDAR range of 100m. Concerning areas to be
monitored, our test cases include three port facilities: Brest,
Tropez, and Granville, illustrated in Fig. 7. For each port
facility, we generate 200 different scenario, resulting in a total
of 600 test cases used as benchmark for our experiments.

For the grid parameters, we have determined it to be 70
waypoints by 70 waypoints. In the case of Brest, where the
width (west-east distance) is 3500m, this places a waypoint
every 50m in width. The height of the map (south-north
distance) is 2500m, which results in a waypoint every 35m.
Each map has the same grid size, but because the maps are not
of the same size, the waypoint density is different. Waypoint
density of each map is displayed on Table I.

B. RFA vs SPNW

The initial assessment of the new RFA bypass method aims
to determine whether a multi-objective approach is necessary
for solving our problem. To do this, we compare the solutions
generated by RFA with the bypass solutions produced by
SPNW for re-planning. SPNW searches for the shortest path
to the next waypoint. Thus it doesn’t take into account the
covering objective of the mission.

We aim to determine if the solutions produced online by
RFA have a better Length and Uncov trade-off than the so-
lutions produced by SPNW. To achieve this, we use TOPSIS
online to select a solution to complete the mission from the
RFA embedded archive. By adding the solution produced by
SPNW in the archive before the selection by TOPSIS, we can
determine if TOPSIS selects the solution produced by SPNW or
by RFA. The origin (RFA or SPNW) of the selected solution
indicates which method offers the best trade-off for the test
case. The average results for each port (200 test cases per
port) in Fig. 8 show the substitution rate (in blue) of RFA
as compared to SPNW. It also presents the percentage of RFA
dominant solutions over SPNW (in orange). These columns



Fig. 8. Substitution percentage of RFA to SPNW on same test case depending
on waypoint density (number of waypoint by map size)

of dominant solutions represent cases where the selection
algorithm (TOPSIS) selects a trajectory proposed by RFA and
this trajectory has lower Length and Uncov values than the
solution proposed by SPNW.

We observe that the results are less favorable to RFA for the
Granville map test cases (85%) as compared to the Brest and
Tropez maps (resp. 95% and 93%). This can be explained by
the difference in waypoint density among these different maps.
Each map has the same number of waypoints, namely 70*70,
which amounts to 4900 waypoints per map. Waypoints density
of each map is relayed in Table I.

RFA re-planning is preferred to SPNW for 91% on average of
our 600 test cases. This shows the usefulness of the approach
for taking into account both Length and Covering objectives
during re-planning.

In our previous paper [13], we achieved substitution results
of 76%. The variance with our current results can be explained
by the improvements made to RFA since our initial work.
Additionally, it is mainly attributed to the grid size difference.
In our previous work, it was 50*50, whereas here it is 70*70.

Although the computation time of SPNW is much
shorter than that of RFA (2.12 ms versus 564 ms), in our
real test case using the Marine Drone 1800, RFA produce a
correction while the drone has advanced at most by 0.732 m.

C. RFA vs PAES

As shown in previous section, MOO is of interest for
re-planning with multiple objectives. However, running a full
MOEA algorithm online could be too much resource and
time consuming. We check with this second experiment the
qualitative and execution time values of PAES (MOEA used
in the offline phase) when performing re-planning. Both RFA

TABLE II
QUALITY LOSS (HYPERVOLUME VALUE REDUCTION) AS COMPARED TO

PAES (REFERENCE VALUE FOR HYPERVOLUME, WITH AN ARCHIVE SIZE OF
100) FOR DIFFERENT RFA ARCHIVE SIZES

PAES RFA 100 RFA 50 RFA 10
Hypervolume loss / 14.43% 16.54% 25.69%
Computation
time (ms) 53141.56 564.01 373.06 211.86

and PAES produce Pareto sets. In order to compare them
qualitatively, we compute the hypervolume value (the higher
it is, the best the set is, [4]) with both algorithms for each
test case. This way we are able to observe the difference of
quality between our two methods (PAES and RFA for online
re-planning).

First row in Table II shows average loss of hypervolume
when comparing RFA sets of different sizes to PAES set,
considered as the reference set. PAES is run with a fixed
archive size of 100. RFA set size is adjusted according to
the selection strategy described in Section III. For example,
running RFA with a size of archive 100 leads to an average
loss of quality compared to PAES (hypervolume value) of
14.43% for our benchmark of 600 test cases as compared
to PAES (thus with the same archive size). The quality loss
increases to 25.69% with a RFA set size divided by 10.
By analysing the test case results in term of objectives, we
observe a slight reduction in the covered area by the archive
produced by RFA:100 compared to the archive generated by
PAES. This reduction increases while the size of the archive
used by RFA decreases.

Additionally, we evaluate the computation times of
these two methods to determine the associated computational
effort. This corresponds to second row in Table II. Concerning
execution times, we note that the computation time of RFA:100
is 94 times faster than that of PAES (reducing from 53141.56
ms (PAES) to 564.01 ms (RFA) ). For the RFA:10 method,
the computation time is divided by 251, at the expense of the
quality of the produced archive. The archive degradation is
14.43% for RFA:100 and 25.69% for RFA:10.

In summary, RFA reduces execution times by almost
a factor of 100 while decreasing the hypervolume by 15%,
compared to a conventional complete repair based on the
solution used for the initial routing (PAES). This provides
opportunities to meet execution time constraints in larger
contexts than PAES while maintaining the optimization of
multiple objectives.

Furthermore the set size reduction mechanism can help to
adjust the computation budget in order to meet real times
constraints. For example, with the Marine drone 1800 moving
at 1.3 m/s and detecting an obstacle at 100 m, the USV will
move forward the obstacle for 6.89 meters before re-planning



TABLE III
COMPUTATION TIME OF RFA ON ARM PROCESSOR (CORTEX-A15) BY

ARCHIVE SIZE

RFA:100 RFA:90 RFA:80 RFA:70 RFA:60
x86
computation
time (ms)

314.2 314.1 306.4 292.1 272.8

ARM
computation
time (ms)

3802.0 3527.8 3582.2 3381.4 3136.5

RFA:50 RFA:40 RFA:30 RFA:20 RFA:10
x86
computation
time (ms)

251.6 228.5 207.0 187.7 150.9

ARM
computation
time (ms)

2963.4 2624.4 2396.5 2166.0 1787.2

with PAES while it will progress of 0.73 m with RFA:100
and 0.27 m with RFA:10. If it runs at its maximal speed
of 4.2 m/s, the progression with PAES is of 21.8 m, to be
compared with the 100 m range of the LiDAR. Even if the
execution time values for RFA seem reasonable for the real
test case, we have to check them with an embedded platform
that integrate a processor ARM for instance. This is the goal
of next experiment.

D. Embedding RFA

The next experiment aims to assess the feasibility of
implementing our new bypassing method. This has not been
conducted on the same test cases as the previous experiments.
Here, we have conducted 100 test cases on the map of Brest,
both on an ARM processor (Cortex-A15) and on an x86
processor (Intel Core i7-8750).

ARM architecture is very popular in embedded systems,
thanks to its cost and energy consumption. Since our goal is
to embed RFA, we developed a version for ARM platforms.
We then measure and compare the execution times for both
ARM and x86 versions for archive sizes from 10 to 100. The
benchmark used is a bit different as previously: there are 100
test cases, located at the port facility of Brest. As an ARM
platform, we emulated Cortex-A15 via QEMU, using a single
core since RFA is not parallelized.

The Table III presents the average computation time results
over the 100 test cases for the different archive sizes (100
to 10). Runtime are roughly multiplied by 12 as compared
to an Intel Core i7-8750 execution times. The difference in
computation time between x86 processor of this experiment
and experiment IV-B is attributed to the number of test cases
and their differences (This experiment was only conducted
at the port facility of Brest). This experiment was conducted
on 100 independent test cases unrelated to the previous
experiments. Our goal here is to show the variation of
computation time of our new method on the two processors.

It leads for our real example of USV to a reaction distance

of 4.94 m (resp. 2.31 m) at a realistic drone speed of 1.3 m/s
for an archive size of 100.

The implementation used is a direct port of the x86 version
to ARM. It is entirely possible to optimize RFA in order to
reduce computation time, particularly by running in parallel the
archive repair phase. This phase is the most time consuming
of RFA (execution time of decision making with TOPSIS is
negligible as compared to it). It can be achieved in parallel
for each member of the archive, with an expected speedup
close to the number of cores used for this phase since data
processed for each member are independent.

V. RELATED WORK

Numerous studies have explored Unmanned Surface Vehicle
(USV) path planning using various metaheuristic approaches
such as Ant Colony Optimization [1], Genetic Algorithms
as shown in [8] and [7]. Our focus lies in addressing a
multi-objective port surveillance problem. While many Multi-
Objective Optimization (MOO) metaheuristics have been
proposed (see [4] for an extensive survey), most of these
Multiple Optimization Evolutionary Algorithms (MOEA)
necessitate substantial computations at each generation and,
eventually, extensive memory resources. On the other hand,
PAES [14] provides a single solution at each generation, thus
facilitating seamless algorithm integration.

In the context of online obstacle avoidance method
for a surface drone within a port facility, some previous
works has enabled obstacle detection with LiDAR [11],
considering only the covering area for the monitoring mission.
Nevertheless, there are existing studies on obstacle avoidance
through the search for the shortest path [25]. Studies relying
on Pareto fronts generated by a genetic algorithm for obstacle
avoidance also exist, as demonstrated in [21] [10], but these
propose predefined planning scenarios involving pre-detected
obstacles. While obstacle avoidance methods using genetic
algorithms do exist [22], they do not share our objective of
applying the same framework to real-time obstacle avoidance.
In this paper, we propose to leverage the results of the offline
genetic algorithm to maintain a multi-objective environment
during potential obstacle avoidance. This approach avoids a
complete re-run of the genetic algorithm as in [16].

There have been prior works on multi-objective frameworks
in the field of surface drones and path optimization [1] [21]
[8] [7] [16] [10] [25]. However, not all of them employ
genetic algorithms to produce solutions. In our approach,
we rely on the reuse of an archive of solutions. The paper
in [16] addresses the same issue of multiple objectives,
performing online trajectory re-planning with additional
constraints. However, their focus is on adhering to marine
collision avoidance rules rather than optimizing a coverage
metric. Furthermore, they do not encounter the computational
constraints associated with deploying solutions on an ARM
processor, as is the case in our specific scenario. Real-time



avoidance on an ARM processor requires operating under
resource-constrained computational power [3]. While our
project tackles with multi-objective optimization that have
been widely studied and implemented individually, there is no
existing work that proposes embedded online solution in the
context of the drone mission.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new path re-planning
technique for obstacle avoidance for an USV during supervision
missions. This new method uses a multi-objective approach
and relies on pre-calculated solutions during the offline phase.
This way, the drone is able to establish a new trajectory
efficiently and in real time, while taking into account both
Length and Covering path optimisation objectives. We
compared this new method to a classical obstacle avoidance
approach based on a shortest path algorithm, demonstrating the
effectiveness of a multi-objective approach. We also compared
it to a repair method that embeds the offline algorithms for
re-planning. This allowed us to demonstrate the efficiency
of our approach which requires much less computation
time. Furthermore, we deployed our new Pareto set based
method on an ARM processor to show its embedding potential.

Our next goal is to refine our dynamic obstacle avoidance
method. We plan to study which solutions from the initial
archive can be the most useful for embedded dynamic re-
planning, in relation with the path chosen for launching the
mission. We expect this will help reduce RFA computation
time by limiting the size of the embedded archive. Furthermore,
additional planning criteria such as COLREGS (collision at
sea prevention rules [6]) [16] could to be integrated to our
method. This requires an extension of our model to include
the dynamics of the obstacle [15]. Last, our offline/online
approach can be applied with various MOO algorithms that
produce Pareto sets such as popular NSGA2 [12], also coupled
with other decision making algorithms than TOPSIS, e.g. [20].
The efficiency of the approach should be tested with these
components.
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