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Abstract: This article aims to investigate the atmospheric corrosion of carbon steel in a marine
environment abundant in hydrogen sulfide (H2S) resulting from the decomposition of Sargassum
seaweed. To accomplish this, four sites with varying degrees of impact were chosen along the coast
of Martinique. The corrosion rates of steel were evaluated through mass loss measurements. After
one year of exposure, the corrosion rates were notably high, particularly in atmospheres rich in
Cl− ions and H2S, ranging from 107 µm to 983 µm. Complementing these findings, surface and
product morphologies were characterized using scanning electron microscopy (SEM) coupled with
energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). These analyses revealed
a significant degradation of the corrosion surface in the most affected atmospheres compared to
those unaffected by Sargassum seaweed strandings. Lepidocrocite (γFeOOH) was identified as the
predominant product regardless of the exposure atmosphere. However, goethite (αFeOOH) was
found to be present in atmospheres most impacted by H2S.

Keywords: atmospheric corrosion; Sargassum seaweed; carbon steel; H2S; Cl− ion; SEM/EDS; XRD

1. Introduction

The topic of atmospheric corrosion of steel has been extensively researched and docu-
mented for a significant period [1–5]. The interest in this material stems from its essential
role in various industries such as automotive manufacturing, construction, bridge building,
mechanical engineering, and household appliances, owing to its economic and mechanical
benefits such as ductility, formability, weldability, and strength [6]. The corrosion mecha-
nism of steel is influenced by several environmental factors, including climatic conditions
(humidity, temperature, etc.), the presence of atmospheric pollutants, as well as the expo-
sure method and the surface condition of the material. Exposure to a marine atmosphere
induces corrosion in steel, resulting in the development of a complex corrosion layer com-
prising oxides and oxyhydroxides. The proportions and morphological characteristics of
this layer evolve over time with prolonged exposure. In the initial stages of corrosion,
the presence of water on the steel surface triggers the formation of unstable iron II and
III hydroxides, which subsequently transform into goethite (α-FeOOH) in the presence of
sulfate ions or akaganeite (β-FeOOH) in the presence of chloride ions [7]. Additionally,
lepidocrocite (γFeOOH) has been reported during the early stages [8].

Over the medium term, the corrosion layer can be divided into two successive
sub-layers: (i) a dense, protective inner sub-layer primarily composed of goethite and
maghemite [9] and (ii) an outer sub-layer containing lepidocrocite, goethite, and magnetite
(Fe3O4) [10–12]. In the long term (approximately a century of exposure), the literature
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mentions three types of corrosion surface morphology: (i) a single, relatively uniform
layer; (ii) two sub-layers, with the internal layer mainly comprised of goethite, magnetite,
maghemite (γ-Fe2O3), ferrihydrite (Fe2O3·mH2O), or feroxyhyte (δ-FeOOH), and the ex-
ternal layer, which is more fissured, containing significant quantities of lepidocrocite and
akaganeite [12]; and (iii) finally, in some samples, a third morphology is observed, which
includes an outer “over-layer” containing impurities like quartz grains, in addition to the
two aforementioned sub-layers.

For approximately a decade, the island of Martinique in the French West Indies has
experienced significant occurrences of Sargassum seaweed strandings. Upon decomposition,
these seaweeds emit substantial amounts of hydrogen sulfide (H2S) into the atmosphere.
Hydrogen sulfide is recognized as a potent oxidizing agent for various metals and metal
alloys [13–15]. The anaerobic decomposition of stranded seaweed produces sulfides [16], a
process similarly observed in sargassum accumulations. In these conditions, the growth of
sulfate-reducing microorganisms under hypoxic or anoxic environments reduces sulfate
compounds, releasing H2S [17]. It is generally estimated that up to 50% of organic carbon in
marine environments is mineralized through sulfate reduction under anaerobic conditions,
leading to sulfide production [17]. Consequently, the decomposition of sargassum seaweed
results in significant and effective H2S formation. This new phenomenon makes steel corro-
sion more severe in an environment with a tropical climate (constant high temperatures
(evaluated between 25 ◦C and 35 ◦C), high humidity, (75%) and high salinity) that is already
conducive to corrosion. Recent studies have shown that atmospheric pollution linked to
Sargassum seaweed has a strong impact on the corrosion of copper [18] and zinc [19]. This
research revealed high corrosion rates for copper and zinc in the presence of sargassum
algae, levels never reported before in the scientific literature. The corroded surfaces were
primarily composed of CuS and ZnS. However, no study has yet been carried out on steel
corrosion in marine atmospheric conditions rich in H2S.

This study investigates the corrosion mechanisms of carbon steel in an uncontrolled
tropical marine environment contaminated with H2S from the decomposition of sargassum
seaweed. The primary objective is to elucidate the specific role of the H2S/Cl− ion combi-
nation in this corrosion process. To achieve this, carbon steel samples were exposed to four
distinct atmospheres with varying degrees of sargassum seaweed impact and consequent
H2S presence for a duration of one year. Corrosion progression was evaluated through
mass loss measurements. Characterization of corrosion products was conducted using X-
ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy
dispersive X-ray spectroscopy (EDS).

2. Materials and Methods
2.1. Selection of Sites

As mentioned earlier, the aim of this study is to investigate the corrosion of steel under
conditions similar to those observed for copper and zinc [18,19]. The specific details of the
four selected sites, as well as the concentrations of H2S and chloride ions, have been detailed
in these same previous publications [18,19]. The H2S concentration monitoring device
allows continuous, real-time measurement of H2S concentrations. Data are transmitted
remotely every ten minutes to a central database that consolidates all measurements taken
by the network. Table 1 summarizes the annual average concentrations of H2S and Cl− ions
recorded at the sites. In this regard, we will briefly mention the sites: Vert-Pré, Diamant,
Frégate Est, and Vauclin. Based on these findings, we have identified four distinct types of
exposure conditions:

• Type 1: A chloride-rich atmosphere with a minimal concentration of H2S (Diamant);
• Type 2: A tropical atmosphere with low levels of both H2S and chloride (Vert-Pré);
• Type 3: An atmosphere abundant in H2S with minimal chloride concentration (Frégate

Est);
• Type 4: An atmosphere abundant in H2S (though less than type 3) and also containing

high levels of Cl− possibly at concentrations similar to type 1 (Vauclin).



Metals 2024, 14, 676 3 of 10

Table 1. Average annual concentrations of H2S and Cl− ions in the different sites.

Site H2S (ppb) Cl− (mg m−2 day−1)

Diamant 7 481
Vert-Pré 15.5 46

Frégate Est 2995 60.5
Vauclin 223

2.2. Preparation and Sample Exposure

Carbon steel DC01, whose chemical composition is provided in standard EN 10130/
10139 (Table 2) [20,21], was utilized. The exposed samples measured 100 × 70 × 1 mm.
Before exposure, all samples underwent mechanical polishing with SiC to grade 1200 to
smoothen the surface and eliminate irregularities. Subsequently, they were rinsed with
distilled water and ethanol, air-dried, and weighed to the nearest 10−4 g using an Adam
Nimbus 210-001 microbalance (Grosseron company, Coueron, France). The samples were
then subjected to outdoor atmospheric conditions on inclined desks at 45 ◦C in accordance
with standard EN 13523-19 [22]. The maximum exposure duration was 12 months, with
collection intervals every 3 months.

Table 2. Chemical composition of DC01 carbon steel.

Chemical Composition (%)

C Mn p S

≤0.12 ≤0.60 ≤0.045 ≤0.045

2.3. Gravimetric Measurements

The steel samples, after exposure, were chemically treated in accordance with standard
NF EN 8407 [23] to eliminate corrosion products. In this standard process, the samples
were treated with a mixture of hydrochloric acid (500 mL) and hexamethylenetetramine
(3.5 g) in distilled water to obtain 1000 mL, for 10 to 40 min at room temperature. Before
any chemical treatment, the surfaces of the samples were mechanically brushed to remove
any detached corrosion products. The treatment was carried out in an ultrasonic bath to
optimize the process. This chemical cleaning process was repeated several times for each
sample until a mass plateau was reached. The average corrosion rate was calculated from a
triplicate sample.

2.4. Characterization and Identification of the Corrosion Product

The morphological and chemical analyses of the corrosion products were conducted
by XRD and EDS/SEM following the procedures outlined in previous publications [18,19].

3. Results and Discussion
3.1. Assessment of Carbon Steel Thickness Loss after One-Year Exposure

The thickness loss was assessed through the measurement of mass loss to examine the
corrosion behavior of carbon steel. These findings can aid in comparing corrosion processes
documented in our locations with those observed elsewhere worldwide. Equation (1) was
employed for calculating the thickness loss:

ε =
∆m
S·d (1)

ε is the thickness loss (µm), ∆m (g) is the mass difference between the initial mass and the
mass after exposure and corrosion product removal, d is the density of the carbon steel
(7.85 g·cm−3), and S is the exposed area (cm2).
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Figure 1 shows the average carbon steel thickness losses as a function of exposure time
at the four sites studied. The results for Diamant and Vert-Pré are shown in Figure 1a and
those for Frégate Est and Vauclin in Figure 1b.
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Figure 1. Thickness loss of carbon steel exposed in 4 sites: (a) Diamant and Vert-Pré, and (b) Frégate
Est and Vauclin for 12 months.

The measured thickness losses of carbon steel after one year at Vert-Pré, Diamant,
Frégate Est, and Vauclin stand at 107.2 µm, 850 µm, 883 µm, and 983 µm, respectively.
These figures demonstrate a significant deviation from the corrosion rate data provided
by the ISOCORROG [24], ICP/UNECE [25], and MICAT projects [26]. These projects aim
to evaluate corrosion rates over one year across various sites in South America, Spain,
and Portugal, encompassing diverse atmospheric conditions, including rural, marine,
urban/industrial, and mixed. For carbon steel, the recorded corrosion rates typically fall
within the range of 2.8 to 138 µm. The exceptional values observed in our study can be
attributed to the unique combination of factors present, notably the presence of a marine
atmosphere abundant in H2S, along with Martinique’s tropical climate and close proximity
to the sea (ranging from a few meters to a few kilometers). The corrosion rates recorded
at Diamant, Frégate Est, and Vauclin surpass the upper limits of class CX as defined
by ISO 9223 [27], indicating extremely corrosive environmental conditions. It is worth
noting that there are currently no comparable data available in the literature for marine
atmospheres, highlighting the novelty and significance of our findings in this regard. Our
experimental data were fitted by a prediction model involving a well-known logarithmic
function [28–31]. In this model, the corrosion dynamic of carbon steel is described by the
following Equation (2).

ε(t) = ε1year· tn (2)

In the equation provided, t represents the exposure time in years and constant ε1year
traditionally denotes the thickness lost after one year of exposure, while n serves as the
exponent characterizing the protective efficacy of corrosion products. For all four sites,
the n parameters are statistically significant at the 5% level, suggesting that exposure
has a significant effect on metal loss. The models for Vauclin and Vert-Pré show that
both parameters ε1year and n are statistically significant. The calculated n values for the
sites Frégate Est, Diamant, Vert-Pré, and Vauclin are 0.7181, 0.8300, 0.5162, and 0.3724,
respectively. The values of n are all less than 1 for each site, indicating a sub-linear
relationship between exposure and metal loss. This means that metal loss increases at a
decreasing rate as exposure increases. According to Morcillo et al. [32], n values greater
than 0.5 indicate the formation of a protective layer of corrosion products on the metal
surface. Our experimental values are above 0.5, except for Vauclin, indicating the formation
of a protective layer of corrosion products on the metal for the other sites. At Vauclin, the
low value of n is linked to a decline in the corrosion rate attributed to significant dissolution
of the steel after six months of exposure. The R2 values for Frégate Est, Diamant, Vauclin,
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and Vert-Pré are 0.9562, 0.9718, 0.9420, and 0.9619, respectively, indicating that the models
fit the data reasonably well. This finding suggests that chloride (Cl−) and hydrogen sulfide
(H2S) compounds exert significant influence on corrosion kinetics independently, while
their combined presence results in considerably heightened damage. Furthermore, these
results underscore that corrosion dynamics are predominantly influenced by the material
itself, irrespective of the environmental conditions. It is noteworthy that no significant
impact of seasonal variations on the corrosion kinetics is observed.

3.2. Characterization of Corrosion Products by SEM/EDS Analysis

For a comprehension of the carbon steel corrosion dynamics in the presence or absence
of H2S due to sargassum degradation, we conducted SEM/EDX measurements on the
corroded surfaces. Figure 2 displays SEM images of the surfaces after exposure durations
ranging from 3 to 12 months at four exposure sites.
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Figure 2. SEM images after 3, 6, 9, and 12 months of exposure in Vert-Pré (a–d), Diamant (e–h),
Frégate Est (i–l), and Vauclin (m–p). The scale bar corresponds to 500 µm.

In Diamant and Vert-Pré, the observed surface morphologies typically resemble those
commonly found in a marine atmosphere [33–35]. The evolution of the corrosion surface at
these two sites is relatively similar. However, corrosion in Diamant appears to progress
more rapidly. In fact, during the initial periods of exposure (3 to 6 months), the observed
corrosion surface is irregular and granular, with the formation of clusters of corrosion
products. Gradually, these clusters interconnect to form a compact layer. In the longer term,
this second layer of corrosion cracks and flakes off. These different stages seem to repeat
themselves over time. These morphological aspects can be explained by the consecutive
formation of corrosion products of different natures and/or by the mechanical stresses
intensifying within the thickening layer.
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SEM images of the steel surfaces in Frégate Est and Vauclin display initially compact
and highly rough structures (from the first months of exposure). With prolonged exposure,
the corrosion surface experiences escalating stress, leading to the formation of cracks and
detachment of the corrosion layer from the surface. Nevertheless, the metal substrate
remains protected, indicating strong adherence of the inner layers to the metal surface. In
contrast to the observations at the other two sites, the corrosion products formed appear to
be uniform in nature and lack a protective effect on the surface. This rapid growth in the
thickness of the corrosion products aligns with the gravimetric results. These observations
are consistent with the aggressive nature of our pollutant-rich marine atmospheres.

In order to ascertain the elemental composition of the corrosion surface, EDS analyses
were performed on surface areas measuring a few square millimeters. The quantitative
analysis results following 1-year exposure are depicted in Table 3.

Table 3. EDS elemental composition in Vert-Pré, Diamant, Frégate Est, and Vauclin after 1 year of
exposure (atomic percentage).

Site Fe O Cl S

Vert-Pré 20.3 79.2 0.3 0.2
Diamant 30.5 69.0 0.4 0.2

Frégate Est 28.2 64.5 / 7.3
Vauclin 20.8 77.3 1.1 0.8

In all sites, the predominant elements on the surface are iron and oxygen. This suggests
that the corrosion products consist mainly of iron oxides and hydroxides. Chlorine levels
are insignificant, even at a short distance from the sea, likely due to extensive leaching
from the surface. The presence of trace amounts of sulfur can be attributed to the emission
of H2S after the sargassum has washed up and/or to aerosols containing sulfur from
the sea. In Frégate Est and Vauclin, the presence of sulfur may indicate the formation
of amorphous iron sulfide. However, sulfur levels are relatively moderate and show
fluctuations over time. This could suggest an adsorption process of H2S on the surface of
the limited substrate. However, considering the corrosion rates measured at these sites, it
is evident that the presence of this element, even in small quantities, significantly impacts
the corrosion kinetics of the steel.

3.3. XRD Characterization of Corrosion Products

The surface corrosion products were also examined by XRD analysis. Figure 3 dis-
plays the diffractograms of DC01 steel samples exposed at the four sites for a duration of
12 months.

In Vert-Pré (Figure 3a) and Diamant (Figure 3b), lepidocrocite (γFeOOH) appears
as the primary phase observed, accompanied by smaller quantities of magnetite (Fe3O4).
Additionally, goethite (αFeOOH) is detected at the Vert-Pré site. These corrosion products
have been previously identified in analogous marine environments [33–35]. The absence
of chlorinated products is likely attributed to their solubility, unlike the stable basic salts
observed with other metals.

To explain the process of formation and growth of the iron corrosion layer in a marine
atmosphere, several mechanisms have been proposed in the literature [36–40]. These
mechanisms lead to the formation of thermodynamically stable corrosion products through
reactions such as hydrolysis, nucleation, crystallization, precipitation, dehydration, and
dehydroxylation [41]. These reactions depend particularly on temperature, exposure time,
and the pH of the surface.

In our case, the initially favorable process is the electrochemical oxidation of iron by
dissolved O2, as described by Equations (3) and (4).

Fe → Fe2+ + 2e− (3)



Metals 2024, 14, 676 7 of 10

O2 + H2O + 4e− → 2OH− (4)

Fe2+ + 2OH− → Fe(OH)2 (5)

In principle, the combination of these two half-equations forms iron (II) hydroxide, as
described in Equation (5). However, the presence of atmospheric pollutants acidifies the
electrolytic layer, inhibiting the formation of this product. Misawa et al. [39] suggest that
under atmospheric corrosion conditions, various iron (II) hydroxo-complexes may form,
depending on the anions present in the medium.
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Lepidocrocite, which is predominantly present in the latter two sites, is the thermo-
dynamically favored product due to the relatively low concentrations of Cl− ions at the
substrate surface [33]. The mechanism by which this product is formed is described in
Equation (6) and involves two successive steps: hydrolysis of Fe2+ ions followed by oxida-
tion and precipitation, resulting in the formation of αFe(OH)+ hydroxo-complex. Alternat-
ing periods of humidity and drying accelerate this process of dissolution and precipitation.

Fe2+ Hydrolysis → Fe(OH)+
Oxidation

precipitation
→ γFeOOH (6)

Goethite is mainly detected in atmospheres farthest from the sea, which are therefore
very low in Cl− ions, typically like that of Vert-Pré. Ma et al. [42] proposed the formation of
this compound in two steps from lepidocrocite and through the formation of an amorphous
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ferric oxyhydroxide, as described in Equation (7). This process is favored during the drying
cycle and releases HCl into the medium.

γFeOOH
Chlorination
precipitation

→ FeOx(OH)2−2xCl
Solid state

precipitation
→ αFeOOH + HCl (7)

The increase in the thickness of the corrosion products over time leads to oxygen
depletion in the inner layers and a reduction in the magnetite to lepidocrocite, as described
by Equation (8) [43,44].

2 yFeOOH + Fe2+ → Fe3O4 + 2H+ (8)

Moreover, additional research [45,46] has demonstrated that, typically, magnetite
can form through the reaction of ferric species originating from dissolved oxyhydroxides,
in conjunction with ferrous species found in the electrolytic solution subsequent to the
cathodic reaction, as represented by Equation (9).

Fe2+ + 8FeOOH + 2e− → 3Fe3O4 + 4H2O (9)

In Frégate Est, both goethite and lepidocrocite were observed to coexist after 12 months
of exposure (see Figure 3c). However, lepidocrocite appears to predominate. In Vauclin,
magnetite and goethite are the primary products, although lepidocrocite is also present (see
Figure 3d). Despite the elevated concentrations of H2S in the atmospheres at these sites, iron
sulfide (FeS) was not detected via XRD analysis, in contrast to observations in submerged
corrosion studies [47,48]. Several investigations have demonstrated the instability of iron
sulfides at highly acidic pH levels [49]. The surface acidity in corrosion is induced by
the sulfuric acid generated from H2S oxidation, which also facilitates the transformation
of lepidocrocite into goethite [33]. Consequently, in Vauclin, the elevated acidity and
conductivity of the electrolytic solution accelerate the corrosion process. However, the
presence of magnetite indicates that the acidity of the electrolytic solution is lower than
that of Frégate Est, which is consistent with the higher H2S concentrations measured in the
latter site. According to Zittlau et al. [50], surface acidification is linked to the dissociation
of H2S. This is illustrated by Equations (10) and (11):

H2S → H+ + HS− (10)

2HS− → 2S2− + 2H+ (11)

4. Conclusions

This study investigated the impact of H2S released from the degradation of Sargassum
algae on the kinetics and morphology of carbon steel corrosion in four marine atmospheres
in Martinique. The findings underscored the significant influence of the H2S/Cl− inter-
action on carbon steel corrosion. Specifically, corrosion rates were markedly higher in
atmospheres with elevated concentrations of both H2S and Cl−. Conversely, atmospheres
abundant in either H2S or Cl− exhibited comparable corrosion rates. Notably, the atmo-
sphere distant from the sargassum beachings displayed a corrosion rate similar to that
observed in typical marine environments. The corrosion products formed included lepi-
docrocite, goethite, and magnetite, commonly found in tropical atmospheres. However,
their proportions varied depending on the atmospheric composition. Lepidocrocite pre-
dominated in Cl−-rich atmospheres, while goethite prevailed in H2S-rich environments,
attributed to the surface acidity induced by this compound. Collectively, these findings
underscore the highly corrosive nature of Martinique’s atmospheres.
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