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INTRODUCTION

In ocean ecosystems, particularly in tidal coastal wa-
ters, the levels of turbidity (May et al., 2003) and mixing 
(Carter et al., 2005) are highly variable, serving as the 
primary drivers of key biological rates among unicel-
lular eukaryotes, such as the cell-encounter, sinking, 
and growth rates (Karp-Boss et al., 1996). Contrary to 
the traditional view of pelagic phytoplankton cells as 

passive particles (Zehr et al., 2017), it is now evident 
that they actively regulate their sedimentation process 
and encounter rates through adaptations that are widely 
distributed across the phytoplankton phylogeny (Wirtz 
& Smith,  2020). This active control likely contributes 
significantly to the observed diversity in their size and 
shape (Naselli-Flores et al., 2007; Padisák et al., 2003) 
as well as the success of the morphology-based func-
tional groups approach (Kruk & Segura, 2012).
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Abstract
Phytoplankton cells are now recognized as dynamic entities rather than as 
passive and isolated particles because they can actively modulate impacts of 
selection factors (nutrients, light, turbidity, and mixing) through a wide range 
of adaptations. Cell shape and/or chain length modulation is one of these 
processes but has predominantly been studied as an adaptation or an accli-
matation to a specific growth limitation (light, nutrients, predation, etc.). In this 
study we have demonstrated that cell shape and size may have greater roles 
than previously known in phytoplankton ecology and species adaptation by 
permitting cell-to-cell signaling and more complex ecological processes that 
result from it. By exploring microscale biophysical interactions that lead to 
specific cell reorientation processes, we demonstrated that cell geometry not 
only modulates cell sinking rates but can also provide fast sensor responses 
to the cells' environment. Although gyrotaxis has been described in detail for 
motile phytoplankton cells, our findings illustrate that the reorientation pro-
cess described here can occur even in non-motile cells within their natural en-
vironment. An additional consistent behavior was also recently described for 
a diatom species (Pseudo-nitzschia delicatessima), and with this study, we 
extend this observation to Pseudo-nitzschia pungens and Pseudo-nitzschia 
fraudulenta. Our observations emphasize the generality of this process, 
which adds a new level of complexity to our understanding of cellular interac-
tions and their network of sensors.
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The evolutionary trajectory of phytoplankton spe-
cies has given rise to three overarching processes to 
regulate their vertical distribution and encounter rate. 
The first involves the acquisition of motility capaci-
ties, a well-described process for flagellated phyto-
plankton such as dinoflagellates. The second process 
is based on the regulation of cell buoyancy, which is 
achieved through a variety of morphological and phys-
iological modifications (e.g., cell size, surface-volume 
ratio, lipid accumulations, gas vesicles, density regu-
lation of vacuoles, etc.; Raven & Beardall, 2022). This 
process and its regulation, according to the environ-
mental conditions, has been described for numer-
ous phytoplankton species (Walsby,  1978), including 
diatoms (Eppley et  al.,  1967; Gemmell et  al.,  2016; 
Gross et  al.,  1997, Anderson & Sweeney, 1978). The 
last group of processes is based on cell shape and mi-
croscale biophysical interactions that lead to specific 
cell orientations (Visser & Jonsson,  2000) and influ-
ence encounter rates in low-Reynolds-number flows 
(Słomka & Stocker, 2020). For instance, assuming cells 
have neutral buoyancy, their elongation can modulate 
their encounter rates by up to one order of magnitude 
(Arguedas-Leiva et al., 2022) through their orientation 
(Li et al., 2013; Talapatra et al., 2013). Recent studies 
have also reported consistent behaviors of two diatom 
species with an oblong shape, adding new complex-
ity to cell-to-cell interactions and their ecology (Font-
Muñoz et al., 2021).

It should be also pointed out that the description of 
these processes is of primary importance because it in-
volves cellular constraints and metabolic costs. These 
adaptations should therefore have a feedback effect on 
the fitness of species with regard to their environment, 
their spatial distribution, and their phenology over the 
years. Attempts to map relevant phytoplankton traits 
over the past decades have thus quickly identified the 
following as key parameters of the mobility and the 
sinking rates of phytoplankton cells. Margalef  (1978) 
was one of the first researchers to divide phytoplank-
ton into two extreme classes on a continuum of life 
history between r and K strategies that could be rep-
resented along a gradient of decreasing nutrient con-
centrations and turbulence. However, the grouping of 
phytoplankton species based on their traits may be 
biased because trait values are only available for a 
limited number of species (Weithoff, 2003), and traits 
are not always vertically conserved in the phylogeny 
(Kruk et al., 2010) without taking intraspecific variabil-
ity into account (Brandenburg et al., 2018). Thus, it is 
risky to extrapolate a trait from one species to another. 
In this regard, few phytoplankton sinking-rate and cell-
orientation measurements are available (Walsby & 
Holland, 2006). After the description of a new relevant 
behavior for Pseudo-nitzschia delicatissima (Font-
Muñoz et al.,  2021), we wanted to estimate the intra- 
and inter-specific variability of these two biological 

processes within the Pseudo-nitzschia genus, which 
contains several toxic species and creates serious 
management problems in coastal waters. As a result, 
different methodologies were used for the two addi-
tional species to accurately describe their sinking rates 
and cell behaviors.

METHODS

Cultures

A total of seven and 12 strains of Pseudo-nitzschia 
pungens and P. fraudulenta, respectively, were used 
(Table 1). Cultures were maintained in 80 mL of sterile-
filtered oligotrophic seawater amended with nutrients 
(K/2) at 17°C, under a 12:12 light:dark cycle and a 
light intensity of 80 μE · m−2 · s−1, in algal incubators. 
The strains were initially identified using transmission 
electron microscopy (TEM) and confirmed by molec-
ular analysis. Genomic DNA was extracted using the 
DNeasy Plant Mini Kit (cat. no. 69104 and 69106), and 
polymerase chain reaction (PCR) was performed with 
the PN PNS-F1 primer: GGA-TCA-TTA-CCA-CAC-
CGA-TCC and PSN-R1: CCT-CTT-GCT-TGA-TCT-
GAG-ATC-C; Noyer et al., 2015). Cultures were diluted 
once a week to stay in their exponential growing phase 
with high cell densities (>108 particles · L−1). All of the 
following experiments were performed in triplicate for 

TA B L E  1   Location and isolation time of the cultivated strains.

Strain label Location
Sampling 
date Species

P19_1/PN_P1 Cabourg May 2019 P. pungens

P19_3/PN_P2 Luc-sur-Mer April 2019 “

P19_4/PN_P3 “ “ “

P19_5/PN_P4 “ “ “

P19_6/PN_P5 “ “ “

P19_7/PN_P6 “ “ “

P19_12/PN_P7 “ “ “

P20_1/PN_F1 “ June 2020 P. fraudulenta

P20_2/PN_F2 “ “ “

P20_3/PN_F3 “ “ “

P20_4/PN_F4 “ “ “

P20_5/PN_F5 “ “ “

P20_6/PN_F6 “ “ “

P20_7/PN_F7 “ “ “

P20_8/PN_F8 “ “ “

P20_9/PN_F9 “ “ “

P20_10/PN_F10 “ “ “

P20_11/PN_F11 “ “ “

P20_12/PN_F12 “ “ “
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each strain and on different dates to check culture sta-
bility and repeatability of the results.

Measurements

Particle concentrations and cell shape (elongation and 
length) and their physiology (number of cell per chain, 
complexity, etc.) were characterized by pulse shape-
based flow-cytometry (Cytosense, CS-2015-77). The 
large tube diameter (800 μm) of this flow cytometer per-
mitted a reliable count of particles up to 250 μm without 
breaking any cells in the chain. Measurements were 
taken with two different settings. The first one had a 
duration of 10 min and a low sampling flow (5 μL · s−1), 
permitting some image acquisition for the detected 
events (analyzed volume of 3 mL). The second analysis 
was carried out with a higher flow rate (10 μL · s−1) but 
without image acquisition, to increase the number of 
detected events and the accuracy of the density es-
timates (analyzed volume of 6 mL). Sub-populations 
were easily defined with a manual gating (Figure  1). 
Then, the cell densities were diluted for the following 
experiments in order to use similar densities (106 parti-
cles · (L−1) in all experiments.

The protocol detailed in Font-Muñoz et  al. (2021) 
was used to estimate the particle size distribution and 
their orientations according to the mixing conditions. 
Briefly, experiments were carried out in a small volume 
(~100 mL) flow-through chamber from a LISST-100X 
(Sequoia Scientific). This configuration made it possible 
to take simultaneous measurements of cell orientation 
and transmission after a mixing period (100 s), creating 
randomly oriented cells as an initial condition. To study 
the effect of light conditions on cell orientations, the light 

and dark periods were alternated. The cells were first 
illuminated with white light (10 μmol photons · m−2 · s−1) 
for 50 min, followed by 45 min of complete darkness and 
a 1-h light period.

To supplement the cell orientation measurements, 
video-microscopy 2D observations of the sinking cells 
were also performed (Figure  S1 in the Supporting 
Information). To suppress convective currents, a 
salinity-stabilized water column was produced in a flask 
(250 mL) following the method described by O'Brien 
et al. (2006). According to the initial and final salinities 
used (30 and 32, respectively), the vertical gradient 
was 0.66 · cm−1. A laser sheet (width of 400 μm, Laser 
Newport, 402 nm powered at 30 mA) was created in the 
flask, and images were acquired with a CMOS sensor 
(resolution 1 × 106 pixels) and a telecentric lens (4X). 
The sensitivity gain was set at 100. A frame rate of 2 
images · s−1 was used, and the image resolution was 
set to 1.825 pixels · μm−1. The observed volume was 
1.3 μL. To avoid a residual convection created by laser 
illumination and a lethal impact on the cells, a shutter 
synchronized with the camera was also used to reduce 
the exposure time. The time lag between creation of 
the gradient and recording of the image was close to 
5 min. The quality of the density gradient was checked 
during the post-processing of the video sequences by 
the absence of horizontal displacement. A threshold of 
2 μm · s−1 was used to remove bias sequences.

Data processing

Laser in-situ scattering and transmissometry (LISST) 
measurements (abundances of 32 size classes rang-
ing from 2.73 to 250 μm) were processed as detailed 

F I G U R E  1   Clusters of chain lengths (number of cells per length) for Pseudo-nitzschia fraudulenta and P. pungens (a and b, 
respectively) according to the length of the forward scatter pulse shape signal and the total red fluorescence for the event (FWS and FL 
Red, respectively). The number of cells per cluster ranged from 1 to 4 (C1, C2, C3, and C4+, respectively, with the longest chains having 
the highest fluorescence). Cluster densities were estimated by subsampling all flow cytometric measurements to obtain the same number of 
events per cluster. For P. fraudulenta, the maximum significance length was only two cells per chain in our cultures whereas for P. pungens, 
the C4+ cluster includes chains with at least four cells.
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in Font-Muñoz et  al.  (2020, 2021). Measurements of 
nearly elongated particles were r and k interpreted in 
terms of the relative variation of two size bands (r1 and 
r2 extracted from the LISST size classes) associated to 
the major and minor cell axis length. The size bands 
were identified by K-means clustering because several 
close size classes can have the same temporal vari-
ations. In addition, due to the 2D projection of LISST 
measurements, the ratio between the signal from each 
of these two size bands is a scalar proxy for the mean 
cell orientation. A temporal variation of the mean cell 
orientation will lead to an anticorrelation between the 
signal for each size bands (the major axis being more 
or less visible according to the 2D projection). A wave-
let analysis was then used on this ratio to extract its 
temporal variability. As explained in a previous work 
(Font-Muñoz et al.,  2021), a significant temporal vari-
ability of ratio involved a consistent evolution of the ori-
entation of the bulk of the suspended particles.

Recorded videos obtained by video-microscopy 
were analyzed using two Python libraries: Scikit-image 
(0.18.1, van der Walt et al.,  2014) and Trackpy (0.4.2, 
Crocker & Grier,  1996). Images were segmented to 
extract one object per particle using a Sobel operator 
(Kroon, 2009) and a watershed algorithm (Neubert & 
Protzel, 2014). The properties of the object (size, gray 
levels, etc.) were then used to clear incorrect detec-
tions (particles smaller than the expected cell size, etc.) 
associated with detrital particles, particles out of the 
field of view, or weakly illuminated particles. To calcu-
late the trajectories for each particle, a simple algorithm 

(assuming a Brownian diffusion between frames) was 
used with two parameters: The highest displacement 
allowed between two frames (d) and the number of 
frames (n) for which a particle can be undetected. 
According to the image frame rate and the observed 
sinking rates, d and n were fixed to 27 μm·s−1 and two 
images, respectively.

RESULTS

Culture and the chain length

Flow cytometry data revealed specific and stable struc-
tures of the cultivated populations during the experiment 
(Figure 2). Pseudo-nitzschia fraudulenta cultures were 
dominated by individual cells (>97% of the particles in 
cluster 1C). The average length of all particles could be 
estimated with the pulse shape length of the forward 
scatter (FWS) signal, but the analysis of flow cytometry 
(FCM) images with individual cells provided more accu-
rate measurements (Figure 3). Their length and width 
in our cultures were estimated to 39 and 8 μm, respec-
tively. Conversely, P. pungens cultures were character-
ized by a broad diversity in terms of chain length (from 
1 to more than 5 connected  cells), with a maximum 
chain length longer than 0.5 mm and an average length 
of 150 μm. The largest fraction of cells was included in 
the cluster of 4 cells (4C+ cluster). Individual cells (1C 
cluster) constituted less than 50% of the suspended 
particles and a limited fraction of the cells. Given that 

F I G U R E  2   Relative abundances of chain length for all strains and replicates (r1 to r3) of P. punges and P. fraudulenta cultures (a and b 
respectively). Clusters were made for chain lengths ranging from 1 to 3 cells per chain (C1 to C3). The 4C+ cluster included all chains with 
four cells and more.
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the particle length of these P. pungens strains was 
longer than the LISST size range (with a maximum 
measurable length for a particle of 250 μm), several 
attempts were made to remove the long chains using 
prefiltration. However, since the width of the chains was 
the same as for individual cells, it made filtration use-
less and precluded their orientation analysis with the 
LISST method. Furthermore, laser diffractometry only 
provided information on the orientation dynamics of a 
suspension of similar non-spherical particles (e.g., indi-
vidual cells or chains of the same length; Font-Muñoz 
et al., 2020). Unfortunately, only the LISST experiments 
with the P. fraudulenta strains could be analyzed using 
this method.

Orientation of sinking particles

The K-means analysis identified size classes for 
Pseudo-nitzschia fraudulenta minor and major axes 
measuring 6 and 30 μm, respectively (Figure  S2 in 
the Supporting Information). These measurements 
were fully consistent with size estimates obtained 
through optical microscopy and flowcytometry. Similar 
to the observations for P. delicatissima (Font-Muñoz 
et al., 2021), a few minutes after the end of the initial 
mixing and a period of random orientation, cells were 
mainly reoriented in a vertical position. The orienta-
tion of P. fraudulenta displayed a clear difference as-
sociated with the light/dark phases (Figure  4). Some 

synchronic oscillations were observed only during the 
light phases and were characterized by a periodic vari-
ation with a period between 50 and 100 s. These oscil-
lations were linked to a periodic variation of the average 
cell orientation around their equilibrium position. The 
existence of such oscillations implies a synchroniza-
tion process that is described and discussed in a previ-
ous work (Font-Muñoz et al., 2021). It is worth noting 
that the oscillations appeared and disappeared quickly 
(in less than 1 min) after alternations of the light con-
ditions. During the dark phases, oscillations were al-
most always non-significant (Figure 5) compared with 
those under illuminated conditions, despite a great vari-
ability in their associated powers. The oscillation fre-
quencies were also surprisingly similar (close to 100 s) 
between the strains and species (P. delicatissima and 
P. fraudulenta).

Sinking rates

Unlike the method using the LISST, measurements of 
sinking rates by video-microscopy—being not limited 
by the particle length, orientation, and sinking rate of 
all cells and chains—were analyzed for both species. 
The horizontal advection observed in the flask was one 
order of magnitude lower than the vertical sinking rates 
(Figure  S3 in the Supporting Information). Pseudo-
nitzschia pungens chains were mainly oriented hori-
zontally (α = 0) during their sedimentation (Figure  6a) 

F I G U R E  3   Distributions of minor (a) and major (b) axis values for the PN-F2 clusters with either one or two cells (black and gray, 
respectively). The parameters were directly extracted from the FCM images (minor axis), and the forward scatter pulse shape signal 
(major axis). For illustration, one image sample for each cluster was included with a scale bar.
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whereas P. fraudulenta cells appeared to be more ran-
domly distributed, with less visible vertical orientation 
than was observed with the LISST (Figure  6b). Due 
to the size of individual cell versus chains, their major 
axes and their orientations  were less well defined. 
Observations of recorded sequences demonstrated 
that cell chains were mainly oriented horizontally with 
a u-shape (Figures S4 in the Supporting Information). 
By selecting particles of P. pungens with a size smaller 
than 360 μm (less than 4 cells) on the video-microscopic 
image, in order to increase the proportion of individual 
cells, their orientation converged toward the observed 
orientation for P. fraudulenta cells. This size threshold 
appeared very large compared to the real cell size, but 
the diffraction associated with the fluorescence pro-
cess strongly increased the particle size.

Similarly, sinking rates were significantly different 
between the two species. The average sinking rates 

for Pseudo-nitzschia pungens and P. fraudulenta were 
estimated to be 3.22 and 1.82 μm · s−1, respectively. 
Small particles in P. pungens cultures had a lower sink-
ing rate (2.1 μm · s−1) than the observed average value, 
but their rate remained significantly higher than the one 
observed for individual P. fraudulenta cells.

DISCUSSION

Due to the impact of where and how cells are posi-
tioned in the water column on the growth of Pseudo-
nitzschia pungens and P. fraudulenta, this study was 
conducted to estimate intra- and inter-specific variabil-
ity of cell orientation and cell sinking rates. We clearly 
demonstrated that the communication process, lead-
ing to consistent oscillation of individual cells around 
a vertical orientation at equilibrium, was widespread 
among pennate diatoms and produced similar frequen-
cies. However, sinking rates appeared primarily driven 
by whether or not chains were produced. As a conse-
quence, sinking rates appear to be highly specific. This 
result leads us to conclude that each Pseudo-nitzchia 
species can be characterized by a specific clearance 
rate in the surface layer after a bloom event as well 
as by a specific contribution to marine snow formation 
(Arguedas-Leiva et al., 2022). Our results also shown 
that sedimentation of Pseudo-nitzschia chains was 
governed by the same dynamics as flexible fibers and 
that theoretical results could be applied.

Before explaining the processes leading to cell ori-
entation, we must say that with all the strains of the 
two selected species and our culture conditions, this 
experiment fell within the general framework of previ-
ous studies conducted at microscale. Given the cell 
densities, observed sinking rates, and chain lengths, 
the sedimentation of Pseudo-Nitzchia was character-
ized by low Reynolds numbers (Re between 2 × 10−2 
and 3 × 10−5 for 500 μm cell chains to individual cells, 
respectively) in diluted conditions (Botte et al., 2013, 
n(l/2)3 < 1; from 3.3 × 10−6 to 0.4 × 10−3 for particle 
lengths ranging from 30 to 150 μm). Consistent with 
theoretical models, solitary cells predominantly set-
tled vertically owing to their oblong cell shape, while 
chains (at least for P. pungens) tended to settle 
horizontally.

The reorientation process for chains into horizontal 
positions was, however, not straightforward because 
chain elongation was insufficient by itself. In the case 
of Pseudo-Nitzchia pungens strains, this reorientation 
was largely influenced by the degree of the flexibility 
of junctions between cells (Nguyen & Fauci,  2014). 
Higher flexibility allowed the sedimentation dynamics 
of the chains to mimic the sedimentation dynamics of 
a flexible fiber (du Roure et al., 2019). As described in 
previous studies, at low Reynolds numbers (<0.01), 
a long, uniform particle, such as a fiber, dynamically 

F I G U R E  4   Wavelet analysis of the dimensionless axis ratio 
over time during the light (a, c) and dark (b) periods for strain 
PN_F4. The power is indicated by the color bar, ranging from low 
to high power). The threshold above the 95% confidence interval 
of a red-noise spectrum is indicated with a thick black line. Lighter 
shades show the cone of influence where the edge effects may 
distort the Fourier analysis.
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deforms in response to the viscous stresses acting on 
it. The flexible fiber undergoes a torque that orients it 
toward a horizontal position (i.e., with its longitudinal 

axis perpendicular to the direction of gravity regardless 
of its initial configuration) and adopts a “U” shaped po-
sition (Li et al., 2013; Marchetti et al., 2018). This “U” 
shape is precisely what we observed for the diatom 
chains in our experiments (see Figure S4). Therefore, 
this work provides rare experimental evidence that the 
sedimentation of Pseudo-nitzschia chains is governed 
by the same dynamics as flexible fibers.

By accepting the flexible fiber model, some theo-
retical properties can be used, such as how the fiber 
shape at equilibrium depends on the relative magni-
tude of the gravitational force and the elastic restoring 
force. Due to the observed shape of our chains (a “U” 
shape with a relatively wide opening at the top of the U), 
a small ratio between these forces can be assumed. 
Consequently, the theoretical steady velocity should be 
close to the settling velocity of a rigid chain horizon-
tally oriented (du Roure et al., 2019) and significantly 
below the settling velocity expected for such a vertically 
oriented chain. Pseudo-nitzschia pungens cells, there-
fore, significantly decrease their sinking rates. This pro-
cess could be very common in natural environment due 
to the high local shear variability (in space and time) 
in coastal waters, and similar orientations have al-
ready been observed in the marine environment under 
weak shear conditions (Nayak et  al.,  2018; Talapatra 
et al., 2013).

F I G U R E  5   Power spectrum (dimensionless) and oscillation periods provided by the wavelet analysis for the different strains of Pseudo-
nitzschia fraudulenta (square symbols) during the dark and light periods (filled and open symbols, respectively). Data located in the edge 
influence were removed. The results obtained with one P. delicatissima strain (Font-Muñoz et al., 2021) are indicated as a reference (circle 
symbols), and the average value is given for P. fraudulenta (X symbol). The dotted line indicates the significant detection level for the 
oscillations.

F I G U R E  6   Cell orientation estimated by video-microscopy 
for Pseudo-nitzschia pungens and Pseudo-nitzschia fraudulenta 
(gray and light gray, respectively). Values range from 0 to π/2 for 
the horizontal and vertical orientations, respectively.
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Our results also demonstrate that it is challenging 
to link the modulation of the chain length to one spe-
cific factor. For example, assumptions about the evo-
lutionary advantages of long chains solely for light 
harvesting during periods of low mixing may be too 
simplistic. Although it has been suggested that a hori-
zontal orientation could improve light harvesting by up 
to 24% compared to a random orientation (McFarland 
et al., 2020), our observations indicate that the actual 
benefits would be nuanced. First, without considering 
buoyancy regulation the sinking rate of the chains re-
mains positively correlated with their length at the inter-
specific level. Their increase would thereby decrease 
the light resource by deepening their average distribu-
tion. Second, because individual cells were observed 
to be regularly tilted around the vertical orientation, 
they significantly reduced the expected light limitation 
(Font-Muñoz et al., 2021).

In addition, modification of the chain length was 
strongly related to the cell growth rate (some cellu-
lar divisions are required for the increase in length). 
Therefore, the formation of chains or their elongation 
as a specific response to an environmental pressure 
may only occur at the daily scale, and a fast response 
(at least for the length increase) to external factors is 
unlikely. The modulation of chain length in the environ-
ment is complex and related to the large set of factors 
encountered by the cells over the preceding few days 
Bjærke et al. 2015.

Finally, although existing knowledge had already 
established the influence of cell orientation on sink-
ing rates, movement trajectories, and cell concen-
trations (Botte et al., 2013; Font-Muñoz et al., 2019; 
Metzger et al., 2005), our results reveal that the com-
munication process leading to consistent oscillations 
is widespread among pennate diatoms and occurs 
with frequencies that are surprisingly close to those 
observed with Pseudo-nitzschia delicatessima (Font-
Muñoz et  al.,  2021). Assuming the conservation of 
a biological trait across phylogeny should underline 
its relevance, this biological response seems to be 
of primary interest. Although we have yet to describe 
the ecological consequences of such a process and 
unravel the cellular process involved in such a fast 
response, our observations highlight that the per-
ception capacities of cells are more developed than 
expected. It is conceivable that many of the previ-
ously described communication processes (photore-
ceptors, chemical exudation, calcium signaling, etc.) 
collectively set a sophisticated sensor network to per-
ceive the surrounding environment and to permit ac-
climation processes at different time scales. The fast 
change in expression due to the turbulence observed 
by Amato et al. (2017) pushes this theory in that direc-
tion, and cells seem to be more and more distant from 
passive particles.
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