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Scientific Significance Statement

Climate change is transforming coastal ecosystems; however the extent of its impact is not fully understood. This study offers
insights into the growth of bivalve species at the end of this century by integrating the sclerochronological approach provided
by shell measurements with the climatological aspect presented by projections of the state-of-the-art climate model. This inno-
vative method introduces a promising strategy for forecasting future trends in bivalve growth phenology, which may be
extended to other marine species across various coastal environments.

Abstract
The impact of climate warming on coastal benthic fauna is already observed, but forecasting their long-term
fate remains challenging. This study uses δ18Oshell data of specimens of five bivalve species collected at six loca-
tions and results from kilometer-scale atmosphere–ocean climate model for the time intervals of 1987–2017
and 2070–2100, to estimate changes in bivalve growth phenology. All species will benefit from climate
warming during winter, experiencing a longer growing season than currently. The growth of Aequipecten oper-
cularis, Flexopecten glaber, and Pecten jacobaeus will decrease in summer, resulting in up to 3 months of reduced
growth per year. Glycymeris pilosa and Venus verrucosa in the southern Adriatic Sea will be more affected than
those in the north, with up to 4 months longer annual growth. These findings can inform adaptation plans for
bivalve management in the Adriatic Sea but also in areas where the studied species are present.
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Understanding the impact of climate warming on fisheries
and aquaculture systems has been highlighted as a priority
in the latest report of the Intergovernmental Panel on
Climate Change (https://www.ipcc.ch/assessment-report/ar6/,
last accessed: 22 January 2024). However, predicting the impact
of climate change on bivalve species remains challenging.
Recent studies (Froehlich et al. 2018; Cubillo et al. 2021; Tan
et al. 2022; Gallagher and Albano 2023) have attempted to
forecast the global effects of climate change on coastal benthic
fauna, yet they relied on regional and global models which
often fail to accurately reproduce the thermohaline and biogeo-
chemical conditions in coastal environments (Holt et al. 2009;
Reale et al. 2020). Bivalves record temperature and salinity
changes in their shells in the form of stable oxygen isotopes
(δ18Oshell; e.g., Goodwin et al. 2003; Vihtakari et al. 2016;
Kubota et al. 2017). In settings characterized by stronger varia-
tions in ocean temperature than salinity δ18Oshell data can thus
provide reliable temperature estimates (Mook and Vogel 1968;
Schöne et al. 2004; Wanamaker et al. 2007). Consequently, a
sclerochronological approach can provide insight into bivalve
growth seasonality (e.g., Vihtakari et al. 2016; Branscombe
et al. 2021; Ezgeta-Bali�c et al. 2022).

The Adriatic Sea, which presents a complex coastal topog-
raphy along its eastern coast (Fig. 1) is a particularly interest-
ing region for the reproduction and projection of the growing
season duration of bivalves. The Adriatic Sea and Coast
(AdriSC; Denamiel et al. 2019) kilometer-scale climate model,

with resolutions an order of magnitude higher than the avail-
able regional climate models (e.g., Med-CORDEX ensemble;
Soto-Navarro et al. 2020), has been specifically designed to
accurately represent the Adriatic coastal dynamics under his-
torical (1987–2017) and extreme warming (2070–2100) time
interval for a representative concentration pathways (RCP) 8.5
greenhouse scenario conditions. Previous research has indeed
demonstrated that the horizontal resolutions of 3-km in the
atmosphere and 1-km in the ocean used in the AdriSC model
are essential to reproduce the bora wind (Grisogono and
Beluši�c 2009) driving the Adriatic dense water dynamics
(Denamiel et al. 2021a) and the Adriatic thermohaline circula-
tion (Prani�c et al. 2023). Recent studies (Peharda et al., 2019a,b;
Johnson et al., 2021; Uvanovi�c et al. 2021; Ezgeta-Bali�c
et al. 2022) have demonstrated that five bivalve species living
in the Adriatic Sea (i.e., Aequipecten opercularis, Flexopecten
glaber, Pecten jacobaeus, Glycymeris pilosa, and Venus verrucosa)
form their shells near oxygen isotopic equilibrium with the
ambient seawater. These species were chosen because of their
longevity (G. pilosa) and commercial importance (other four
species). Consequently, their δ18Oshell values can be used for
robust water temperature reconstructions and, combined with
the AdriSC climate model results, trustable reproduction and
projection of the expected growth of these five species under
historical and extreme warming conditions can be achieved,
as demonstrated in studies by Abe (2021) in Japan and Steeves
et al. (2018) along the Atlantic Canadian coast.

Fig. 1. Geographical location of the eastern Adriatic coast, locations of the bivalve sampling sites and description of the two datasets depending on
both sampling site locations and bivalve species.

Zemunik Selak et al. Projecting expected bivalve growth

2

 23782242, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lol2.10393 by C

ochrane France, W
iley O

nline L
ibrary on [06/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.ipcc.ch/assessment-report/ar6/


In this study, we propose a more comprehensive assess-
ment of the impact of extreme warming on the growth of five
bivalve species along the eastern Adriatic coast, based on a
methodology that may be generalized to other marine species,
coastal seas, and climate scenarios. Our primary objective is to
provide a preliminary assessment of the locations and species
that will potentially either benefit from climate change or not
be suitable for fisheries and aquaculture. Based on these
results, we will further discuss the potential adaption plans for
the commercial exploitation of bivalves along the eastern
Adriatic Sea.

Material and methods
AdriSC climate model

The AdriSC climate model (Denamiel et al. 2019) is the
first atmosphere–ocean kilometer-scale climate model
implemented in the world. It is based on the coupling
between the weather research and forecasting (Skamarock
et al. 2005) model at up to 3-km horizontal resolution (using
58 vertical levels) and the regional ocean modeling system
(Shchepetkin and McWilliams 2009) at up to 1-km horizontal
resolution (using 35 vertical levels). Two different AdriSC cli-
mate simulations were performed.

The historical simulation was forced with reanalysis prod-
ucts and covers the time interval 1987–2017 (Denamiel
et al. 2021b; Prani�c et al. 2021). The evaluation of the model
demonstrated that the AdriSC 1-km ocean results could repro-
duce key processes driving the Adriatic thermohaline circula-
tion (Denamiel et al. 2022; Prani�c et al. 2023). Additionally,
in this study, the evaluation was extended by using the obser-
vations collected at the bivalve sampling sites (Supporting
Information Table S1; Fig. S1) and, overall, confirmed the
skills of the AdriSC model in reproducing the temperatures
along the eastern Adriatic coast.

The extreme warming simulation, covering the time inter-
val 2070–2100, was performed under the RCP 8.5 greenhouse
emission scenario using the pseudo-global warming (PGW)
methodology to downscale the LMDZ4-NEMOMED8 regional
climate model (Hourdin et al. 2006; Beuvier et al. 2010) from
the Med-CORDEX ensemble (Soto-Navarro et al. 2020). The
PGW methodology (Schär et al. 1996; Denamiel et al. 2020)
consists in calculating the climatological changes based on
the differences between future scenario (here for 2070–2100)
and historical (here for 1987–2017) results from global or
regional climate model and imposing it, as forcing, on top of
the reanalysis products. Consequently, the main drawback
of the PGW methodology is that it might miss potential
changes in intra-annual and inter-annual variability. How-
ever, its main advantage consists in projecting the impact of
climate change on the atmosphere–ocean dynamics at an
unprecedented spatial resolution compared with traditional
global and regional models, and for a reduced numerical cost.

Stable oxygen isotope data
Along the eastern Adriatic coast, about 1650 carbonate sam-

ples from 32 shells collected at six different sampling sites were
previously extracted and analyzed for five bivalve species
(Peharda et al. 2019a, 2019b; Uvanovi�c et al. 2021; Ezgeta-Bali�c
et al. 2022) in order to analyze their stable oxygen isotope com-
position (δ18Oshell, reported on the Vienna Pee Dee Belemnite
scale as ‰ V-PDB). These species include three pectinids in
Dataset 1—the Mediterranean scallop, P. jacobaeus, the queen
scallop, A. opercularis, and the smooth scallop F. glaber—as well
as, in Dataset 2—the long-lived hairy bittersweet (Dataset 2.1),
G. pilosa, and the commercially important warty venus
(Dataset 2.2), V. verrucosa. The sampling sites, depths, gears,
periods and number of specimens, as well as the previously
published studies are fully described in Fig. 1 and Table 1 and
in section S1 of the Supporting Information.

In this study, seawater salinity and temperature time-series
reproduced by the AdriSC model at different sampling sites
were employed to compute the expected δ18Oshell chronology
(hereafter δ18Oexp) for the time intervals 1987–2017 and
2070–2100. For Dataset 1, the AdriSC results were extracted
and averaged over the entire region (off Istra; see Fig. 1) and
depth ranges covered by the beam trawl, while, for Dataset
2, the values were extracted at the model grid points with the
nearest location and depth of the sampling sites. Validation of
the AdriSC data on in situ temperature loggers is provided in
section S2 of the Supporting Information. Model and δ18Oshell

data are available in the Open Science Framework repository
(Denamiel et al. 2023).

As the mineralogy of the bivalve species differs (i.e., calcitic
and aragonitic for respectively Datasets 1 and 2), different
paleothermometry equations were used. For Dataset 1, the
Friedman and O’Neil (1977) formula derived from the O’Neil
et al. (1969) equation was used to compute the expected
δ18Oshell (δ18Oexp) chronology with the AdriSC tempera-
ture (T in �C):

δ18Oexp ¼ 1000þδ18Owater
� �� e 2780� Tþ273:15ð Þ�2�0:00289½ � �1000

ð1Þ

Because the oxygen isotope composition of the water was not
monitored over the lifespan of the studied specimens,
δ18Owater values (reported relative to V-SMOW) were
reconstructed from the AdriSC salinity (S, at transect marked
in Fig. 1, Peharda et al. 2019a) using the equation derived
from Stenni et al. (1995):

δ18Owater ¼0:366 S�12:568, r2 ¼0:964 ð2Þ

The conversion from the V-SMOW scale to V-PDB was done
with the equation of Coplen et al. (1983):

δ18Oexp�V�PDB ¼0:97002 δ18Oexp�V�SMOW�29:98 ð3Þ
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For Dataset 2, the empirically developed equation of
Grossman and Ku (1986) with a V-SMOW to V-PDB scale cor-
rection of �0.27‰ (after Dettman et al. 1999) was used to
compute the expected δ18Oshell chronology based on the
AdriSC temperature (T in �C):

δ18Oexp ¼20:6�T
4:34

þδ18Owater�0:27 ð4Þ

Except at Barbariga where Eq. 2 was used, the δ18Owater

values were reconstructed from the AdriSC salinity with the
equation given in Purroy et al. (2018):

δ18Owater ¼0:23 S –7:54 ð5Þ

The species-specific range of δ18Oshell values was deter-
mined from the minimum and maximum δ18Oshell values
measured in the studied specimens (Judd et al. 2018). The
shell growth phenology was given by the number of days dur-
ing which δ18Oexp fell within the range of δ18Oshell values in
each year, averaged over the historical (1987–2017) and
extreme warming (2070–2100) periods. Analogously, monthly
growth days were computed as the number of days when
δ18Oexp fell within the corresponding range in each month of
a year, averaged over both periods.

Results
For each dataset (1, 2.1, and 2.2), the impact of climate

change on the eastern Adriatic bivalve growth periods is quan-
tified, separately for the present (1987–2017) and future

(2070–2100) for each species at each sampling site. This
assessment considers the range between the minimum and
maximum δ18Oshell, applied to the probability density func-
tions of δ18Oexp, along with annual and monthly days of shell
growth.

For Dataset 1, A. opercularis, F. glaber, and P. jacobaeus are
likely to be adversely affected by extreme warming due to
less favorable conditions for their growth (Fig. 2). Specifi-
cally, A. opercularis experiences a shortening of the growing
season under extreme warming, as indicated by the shift
from historical conditions, where both winter (right) and
summer (left) peaks in δ18Oexp distribution supported
growth, to a scenario where only the winter peak aligns
with favorable conditions. For F. glaber and P. jacobaeus, in
which current growth ranges are shifted toward even colder
conditions, this tendency is even more pronounced. In fact,
for F. glaber, the growth range does not include the warm
season peak even in the historical distribution, hence, no
growth can be expected during summer, which is likely to
be even longer in the future. In terms of annual growth
days, P. jacobaeus is likely to experience the most severe
drop under extreme warming with only 255 d of favorable
conditions compared with 319 d under historical condi-
tions. For F. glaber and A. opercularis the decrease in the
duration of the main growing season is less severe
(i.e., from 230 to 152 d and from 259 to 224 d, respec-
tively). The monthly overview of the growth shows that the
colder season is likely to become more favorable for the
growth of all species. A. opercularis will potentially benefit
the most between February and March, with � 24 more
days of shell growth per month while, under historical

Table 1. Description of the different Datasets used in the study. The last column specifies the time interval covered by the isotope
data of the studied shells.

Dataset Species Sites Coordinates Depths Gears
#

Specimens
Time

interval

1 A. opercularisa Istria 45�0805800 to 45�2300800N
13�1700500 to 13�2400400E

25–35 m Beam trawl 2 2016–2018
F. glabera 2
P. jacobaeusa,b 2 2016–2018

3 2009–2013
2.1 Glycymeris pilosa Barbarigab 44�59007.4700N

13�44019.2200E
10–11 m SCUBA divers 3 2011–2013

Pag Bayc 44�27042.000N 15�01036.000E 5–7 m 4 2006–2015
Pašman Channelc 43�56052.6800N 15�23015.0300E 2–3 m 2 2013–2015
Dračec 42�56010.5400N 17�28023.7100E 4–5 m 3 2003–2012

2.2 Venus verrucosad Barbariga 44�59007.4700N 13�44019.2200E 10–11 m 3 2010–2014
Pag Bay 44�29042.900N 14�59016.000E 4–6 m 3 2012–2017
Kaštela 43�33001.4700N 16�20050.7900E 2.5–4 m 5 2011–2016

aEzgeta-Bali�c et al. (2022).
bPeharda et al. (2019a).
cPeharda et al. (2019b).
dUvanovi�c et al. (2021).
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conditions, shells deposited almost no material during this
period of the year. The growth of Dataset 1 species will,
however, substantially decrease during the warmer season

(from May to October). This will likely far more affect the
growth of A. opercularis and P. jacobaeus, with favorable con-
ditions occurring throughout the entire year during

Fig. 2. Impact of climate change on shell growth of the bivalves species, Aequipecten opercularis (A.O.), Flexopecten glaber (F.G.), and Pecten jacobaeus
(P.J.) (= Dataset 1 species) along Istria (IS) for conditions during 1987–2017 (= “Historical,” blue) and for conditions during 2070–2100 (= “Extreme
warming,” red). (A) Distributions of the reconstructed shell oxygen stable isotope data (δ18Oexp values) with conditions favorable to growth derived from
observed δ18Oshell (shaded), (B) duration of the annual growing season, and (C) duration of the monthly growing season.
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historical times, than F. glaber that was restricted to the
annual thermal minimum. Consequently, A. opercularis and
P. jacobaeus will potentially have an up to 3 months shorter
annual growing season.

In Dataset 2, δ18Oshell values for both G. pilosa (Fig. 3) and
V. verrucosa (Fig. 4) range from negative to positive. This is in
contrast with Dataset 1 species which displayed only positive
values. Consequently, Dataset 2 species can thrive in warm

Fig. 3. Dataset 2.1: Glycymeris pilosa (G.P.) at Barbariga (BA), Pag Bay (PB), Pašman Channel (PC), and Drače (DR). For explanation see caption
of Fig. 2.
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waters and are expected to have a longer growing season
under extreme warming. Further, Dataset 2 species in the
southern Adriatic (e.g., Kaštela Bay and Drače) are likely to
benefit more from extreme warming than those living in the

north. Indeed, the temperatures along the eastern Adriatic
coast will likely be warmer by up to 2�C, and about 0.4�C on
average, in the south than in the north (Supporting Informa-
tion Table S2; Fig. S2). Additionally, the warming is likely to

Fig. 4. Dataset 2.2: Venus verrucosa (V.V.) at Barbariga (BA), Pag Bay (PB), and Kaštela Bay (KB). For explanation see caption of Fig. 2.
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be stronger at shallower than at deeper sites. This will poten-
tially result in an up to 4 months longer annual growing sea-
son for V. verrucosa in Kaštela Bay than at Barbariga under
extreme warming. Furthermore, for G. pilosa (Fig. 3), δ18Oexp

distributions in historical and extreme warming conditions at
Barbariga and Pag Bay show nearly equal peaks in summer
and winter, while a more distinct peak during the winter sea-
son is present at Pašman Channel and Drače. This indicates
both different historical thermohaline conditions and varying
impacts of climate change at each location. Additionally, the
effect of extreme warming will be the strongest in Pašman
Channel, with a more than 3 months longer growing season.
The growth of this species was restricted from May to
November in historical times and it will likely be extended
to the entire year, especially in the central and southern
Adriatic (Pašman Channel and Drače) while, in the north
(Barbariga and Pag Bay), the shell growth will still be relatively
limited during winter months. V. verrucosa has fairly similar
growth conditions as G. pilosa (Fig. 4). In Kaštela Bay, where
conditions were most optimal for growth during the past,
with 244 d of shell growth per year, this species will presum-
ably have the ability to grow throughout the entire year. The
increase is also evident in the northern locations (from 174 to
240 growth days at Barbariga and from 172 to 257 growth
days at Pag Bay), although less pronounced as for G. pilosa.
Consequently, species from Dataset 2 would clearly benefit
from climate warming, which predicts an extended growing
season and favorable thermal conditions for growth.

Discussion
Our preliminary study is based on the unique combination

of δ18Oshell data of five bivalve species and the AdriSC
kilometer-scale atmosphere–ocean climate model results for
historical and extreme warming conditions. Overall, it reveals
a substantial influence of extreme warming on the expected
duration of all bivalve growing seasons that can be summa-
rized as follows:

• At all sites the five studied species will likely benefit from
climate warming during the colder season, i.e., they will
grow longer than currently between November and April.

• The expected growing season of scallops (Dataset 1 species)
will likely substantially decrease during summer,
i.e., between May and October, resulting in an up to
3 months shorter growing season.

• G. pilosa and V. verrucosa (Dataset 2 species) in the south
and at shallower habitats will likely be more impacted by
climate warming than those living in the north and deeper
habitats, resulting in an up to 4 months’ longer growth
season.

However, this study presents several limitations. First, the
evaluation of the AdriSC temperatures (Table S1; Fig. S1)

shows that the results should be interpreted with some cau-
tion, particularly at Drače, where the model results deviate the
most from the observations. Second, the climate uncertainty
derived from ensembles of simulations forced by multiple
global climate models under multiple warming scenarios
(Semenov and Stratonovitch 2010) is not considered. Third,
the δ18Oshell thresholds defining the conditions favorable for
bivalve growth are derived from a small number of specimens,
particularly for Dataset 1 (e.g., only two specimens of
A. opercularis and F. glaber; Table 1), which might impact their
accuracy. Fourth, in contrast to the study by Abe (2021), our
results do not account for the impact of extreme warming on
the food availability (Norkko et al. 2005) derived from either
the primary production (e.g., Bonitz et al. 2018) or the acidifi-
cation (e.g., Tan et al. 2019). Lastly, no adaption of the inves-
tigated species to the new climate is assumed as no
information is available, although some bivalve species are
found to better adapt if inhabiting zones prone to higher tem-
perature oscillations (Zhang et al. 2020). Despite the crucial
need to reproduce these processes in complex coastal environ-
ments (Mishra et al. 2023), no kilometer-scale biogeochemical
climate model has yet been implemented (Ani and
Robson 2021). Therefore, our analyses could only use the
reconstructed δ18Oexp values. The reconstructed δ18Oexp values
are, however, in a good agreement with the measured δ18Oshell

values, as demonstrated in previous research (Peharda
et al. 2019a,b; Uvanovi�c et al. 2021; Ezgeta-Bali�c et al. 2022)
that employed the alignment technique described in the
Methods. Although different climate models were used in
these studies, the AdriSC model was successfully employed
in Ezgeta-Bali�c et al. (2022).

In terms of bivalve management along the eastern Adriatic
Sea, P. jacobaeus is commercially the most important scallop
species in the Adriatic (Mattei and Pellizzato 1996; Peharda
et al., 2019a; Ezgeta-Bali�c et al., 2022). In the last 40 years,
due to a combination of overfishing, decline in eutrophica-
tion (Iveša et al. 2016) and positive temperature trends
(Vilibi�c et al. 2019), its biomass has already declined
(Mazzoldi et al. 2014). As its main growing season could fur-
ther be reduced by 30%, its accelerated decline or eventual
vanishing could occur by the end of this century in the north-
ern Adriatic. Owing to a high nutritional quality, A. opercularis
has been proposed for human consumption (Kovači�c
et al. 2023), with winter and spring being the most suitable
period of the year for the harvest. However, our results indi-
cate a substantial change in its growing season, posing a ques-
tion if and how this species can adapt to that. F. glaber, which
grows particularly fast and is free of diseases, could also be
farmed (Marčeta et al. 2016). However, due to its sensitivity to
warming and heavy metal pollution (Nardi et al. 2018;
Telahigue et al. 2022) and the projected shortening of its
growing season by 3 months, its commercial exploitation may
never be possible. Our results indicate that, among the three
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studied scallop species, F. glaber is expected to be most
impacted by climate warming scenarios. In contrast, G. pilosa
which, due to its longevity is regarded as an archive for envi-
ronmental change in the Mediterranean (Peharda et al. 2016),
and V. verrucosa which has a high commercial value and
occurs in the entire Mediterranean Sea (Arneri et al. 1998;
Poppe and Goto 2000), will benefit from extreme warming
with an up to 45% longer growing season along the south-
eastern Adriatic coast, where V. verrucosa could successfully be
exploited in the future.

To the date, is has not been assessed how the growing sea-
son of the target species vary across latitudes or (paleo)cli-
mates. However, for Mercenaria mercenaria it has been found
that variations in growth rate over different latitudes do not
affect the shell δ18O values (Elliot et al. 2003), while latitudi-
nal changes in temperature were the major factor in shaping
growth rate (Palmer et al. 2021). Similarly, P. maximus exhibits
a latitudinal reduction of the growth due to a shorter phenol-
ogy (Chauvaud et al. 2012). Assuming the same for the species
investigated here, a migration to higher latitudes may be a
way for preserving bivalves for which a substantial decline in
growth in the future climate is envisaged. Changes in growth
dynamics, for these, as well as other bivalve species, will
potentially have impact on the marine food webs. Bivalve
predators belong to different taxa, including echinoderms,
crustaceans, gastropods, cephalopods, and fish (see Gos-
ling 2015). Thereby, it can be expected that a wide range of
marine organisms will be impacted by changes in seawater
temperature.

If generalized, this study might lead to better adaptation
plans (e.g., Roman et al. 1999; Papa et al. 2021; Marčeta
et al. 2022) for possible cultivation of the studied bivalve spe-
cies, along the eastern Adriatic Sea, as well as in other areas
where these species live. Furthermore, similar scenarios of
changes in growth patterns may occur for other bivalve spe-
cies in temperate coastal areas around the world, which may
constitute a growing portion of the food production in the
future (Jennings et al. 2016; Tan et al. 2020; Willer
et al. 2021).
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