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Abstract: Brown seaweeds are attracting attention due to their richness in bioactive compounds, in
particular, their phlorotannins. We present here a case study of two Fucales, Ascophyllum nodosum
and Halidrys siliquosa, sustainably collected, to produce active polyphenols for the cosmetics sector.
Phenolic contents of crude extracts, obtained by Accelerated Solvent Extraction (ASE), were more
elevated in H. siliquosa at 100.05 mg/g dry weight (DW) than in A. nodosum (29.51 mg/g DW),
considering 3 cycles with cell inversion. The temperature of extraction for a high phenolic content
and high associated antioxidant activities close to positive controls was 150 ◦C for both algae and
the use of only one cycle was enough. A semi-purification process using Solid-phase Extraction
(SPE) was carried out on both ASE crude extracts (one per species). The majority of phlorotannins
were found in the ethanolic SPE fraction for A. nodosum and the hydroethanolic one for H. siliquosa.
The SPE process allowed us to obtain more concentrated fractions of active phenolic compounds
(×1.8 and 2 in A. nodosum and H. siliquosa, respectively). Results are discussed in regard to the
exploitation of seaweeds in Brittany and to the research of sustainable processes to produce active
natural ingredients for cosmetics.

Keywords: active and valuable ingredient; cosmetic; green extraction and purification; macroalgae;
NMR follow-up; polyphenols

1. Introduction

Seaweeds draw attention in various economic sectors for their particular properties: in
France, 75% of the harvested seaweeds are used for the food-processing industry, chemistry,
and microbiology and approximately 25% in agricultural, health and well-being sectors [1].
Living along marine coastal areas, seaweeds are affected by numerous biotic and abiotic
environmental parameters that have an impact on their physiology, such as grazing by
herbivorous (fish, molluscs), UV radiation or epiphytism [2–6]. They protect themselves
against these stresses through the synthesis of specific molecules such as phenolic com-
pounds, and then are the source of valuable compounds for several industrial sectors,
particularly cosmetics [7,8]. In brown algae (Phaeophyceae), phenolic compounds are
referred to as phlorotannins, which are phloroglucinol (1,3,5-trihydroxybenzene) units
with different polymerization degrees [9]. Depending on the algal species, phlorotannin
content can reach up to 25–30% DW and provide interesting biological functions as an-
timicrobial, antioxidant or photoprotective activities [7,10–16], and then can be used for
various applications.

To be valorized, many steps such as the collection of pertinent samples, extraction,
isolation of phlorotannins by purification or semi-purification processes and structural
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elucidation are required. Unfortunately, chemical procedures are often quite long and
expensive, which hinders their industrial development. Even if traditional technologies
with solvent extraction indicate a simple approach to metabolite isolation, there are several
limitations such as low yield and purity, high solvent consumption and long processing
times [17].

In this study, we were interested in developing a sustainable approach in order to
isolate phlorotannins from brown seaweeds. As described by Murray et al. [18], the
objective of a sustainable approach to producing active compounds from marine resources
is to apply sustainable environmentally kind practices to the valorization of high-added-
value biomolecules; these practices are carried out from the collection of samples, extraction
and purification, to the obtaining of marine active ingredients.

Brittany, in the north-western part of France, is an area where the biomass and diversity
of macroalgae is remarkable [19–21]. Among the high diversity of macroalgae in Brittany,
we selected two different species, which synthetized different classes of phenolic com-
pounds, Ascophyllum nodosum (Linnaeus) Le Jolis and Halidrys siliquosa (Linnaeus) Lyngbye
which belong, respectively, to Fucaceae and Sargassaceae families [22–25]. Moreover, those
two species are known to yield high phenolic content and/or active compounds [15,26,27].

In order to obtain phlorotannin extracts, green alternative methodologies and solvents
are investigated to extract bioactive compounds by applying sustainable environmentally
kind practices. Chemat et al. [28] defined green extraction as “all processes of extraction
which reduce energy consumption, which allow alternative solvent and renewable products
but also the insurance of a healthy and high-quality extract”. These authors have also
defined a list of six principles for green extraction of natural products which should be
consulted by industrial and scientific organisms to develop an innovative and green label.
Many promising extraction processes can be found in the literature with Supercritical
Fluid Extraction (SFE), micro-wave, enzymes and ultrasound-assisted extraction, and also
Accelerated Solvent Extraction (ASE) [12,27,29–34]. This latter, also called Pressurized Fluid
Extraction (PFE), Pressurized Liquid Extraction (PLE), Pressurized Solvent Extraction (PSE)
or Enhanced Solvent Extraction (ESE) [35], is a green technology introduced in the 1990s,
which is based on the same principle as traditional liquid extraction [36]. This technology
is considered a green extraction because it is faster than a conventional extraction and uses
small amounts of organic solvent [17,37]. Several publications have already highlighted its
efficiency in the extraction of phenolic compounds from seaweeds [12,27,29,34,37–39]. A
wide range of solvents can be used, giving the possibility to replace hazardous solvents with
healthier ones for the environment such as water, ethanol or limonene. However, ASE is
less selective than SFE because a wide range of compounds can be extracted simultaneously
with this technique. Additional steps of purification must then be added to obtain specific
molecules. For instance, Solid-phase Extraction (SPE) is a semi-purification method that
allows compounds to be recovered through elution after their adsorption on a stationary
phase contained in a cartridge [40]. This method was already used for the extraction of
phlorotannins from seaweeds [27,41].

Also, in the context of sustainability, another objective was to find a method to rapidly
monitor the presence/absence of phlorotannins in the purified extracts/fractions. Among
the techniques allowing the visualization of phlorotannins, we chose proton Nuclear
Magnetic Resonance spectroscopy (1H NMR), which has already proved its worth in
numerous studies, for the quantification of phloroglucinol in the tissues of the brown
alga Ericaria selaginoides (formerly Cystoseira tamariscifolia) [42], for obtaining chemical
fingerprints for a taxonomic study of the genus Turbinaria [43,44], for the performance of
a phlorotannins purification guidance in Pelvetia canaliculata [45], or for the detection of
phenolic signals to compare different species of brown algae [46].

A focus on the ASE by varying different parameters has never been published on the
two seaweeds of concern. The aims of this study were then (1) to propose the use of 1H NMR
analysis to monitor the presence/absence of phenolic compounds in extracts/fractions
to complement the time-consuming colorimetric test; (2) to propose ASE and SPE as
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environmentally friendly processes to extract and purify phenolic compounds. For this,
parameters allowing the best, rapid and sustainable phenolic yield and activities using less
algal powder, less solvent and non-toxic solvent, of these two sustainable technics, ASE and
SPE, to, respectively, extract and purify phlorotannins, are researched; and, finally, (3) to
show and compare radical scavenging, antioxidant and anti-aging activities of seaweed
extracts obtained with ASE. We propose all these steps, ASE and SPE processes, followed
by analysis using NMR as alternatives to classical extractive/purification/quantitative
methods for industrial purposes in the cosmetics sector.

2. Results and Discussion

Our study dealt with the research of sustainable extraction and purification procedures
in order to obtain active purified fractions of phlorotannins, which could be used in the
cosmetics industry. For this, we studied the effect of (1) different extraction parameters of
ASE (temperature and number of cycles) and (2) green solvents (water and ethanol) for the
purification process on the phenolic content and associated bioactivities.

2.1. 1H NMR Spectra of ASE Extracts

On 1H NMR spectra, we have selected only the zone where phenolic compounds are
observed between 5.7 and 6.6 ppm (Figure 1).
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Figure 1. 1H NMR analyses obtained on a Bruker Avance 400 and from samples dissolved within 
deuterated methanol. Focus on ASE extracts from Ascophyllum nodosum (left) and Halidrys siliquosa 
(right) in the 5.75–6.6 ppm area corresponding to phenolic compounds. The number (1C, 2C…) 

Figure 1. 1H NMR analyses obtained on a Bruker Avance 400 and from samples dissolved within
deuterated methanol. Focus on ASE extracts from Ascophyllum nodosum (left) and Halidrys siliquosa
(right) in the 5.75–6.6 ppm area corresponding to phenolic compounds. The number (1C, 2C. . .)
means the number of cycle(s) and “R” reflects cell inversion during the extraction cycles. The color of
the spectra matches the temperature: light grey for 75 ◦C, dark grey for 100 ◦C and black for 150 ◦C.
The spectrum with the highest total phenolic content (in Figure 2) is noted with a star *.
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Figure 2. Total phenolic content (TPC) in extracts obtained by ASE with different cycles and tempera-
tures (1C = 1 cycle, 1CR = 1 cycle with cell inversion) for Ascophyllum nodosum and Halidrys siliquosa.
Stars and letters indicate differences between extracts according to temperature (stars; above the
histograms) and according to cycles (letters; above the lines) (One-way ANOVA or Kruskal–Wallis,
p < 0.05).

In both algae, the presence of those molecules was observed in extracts, whatever the
number of cycles and the temperature of the ASE extraction. The NMR signals present in
the 5.75–6.6 ppm region are different between the two species, leading us to conclude that
the phenolic profile between both species is different and that they do not produce the same
phenolic compounds. The NMR signals present in the 5.75–6.6 ppm region are different
between the two species, particularly in the region around 6 ppm where H. siliquosa presents
massive signals, which is not the case for Ascophyllum nodosum, where the signals are more
individualized. However, if we look precisely at the profiles for the different extraction
conditions (number of cycles and temperature), the profile of A. nodosum was not modified
whatever the condition, but the intensity of the peaks was lower when the number of cycles
increased, while, with the latter, the H. siliquosa profile did not change with the number
of cycles, but we can notice that the massive signals around 6 ppm increases with the
extraction temperature, especially with the conditions 2C, 2CR and 3C (Figure 1).

2.2. Total Phenolic Content (TPC) and Extraction Yield Using ASE Process

Extracts from H. siliquosa had a higher TPC than those from A. nodosum, with a
maximum of 100.05 mg.g−1 algal DW and 29.51 mg.g−1 algal DW, respectively, for the
same extraction procedure 3CR150 (3 cycles at 150 ◦C with the cell turned over; Figure 2).
For both seaweeds, the temperature had a significant impact on the TPC (Kruskal–Wallis,
p < 0.05). First, the highest TPC for each cycle was obtained at 150 ◦C for A. nodosum (One-
way ANOVA, p < 0.05), except for the extract 3C (3 cycles), with no significant difference
between 100 ◦C and 150 ◦C (One-way ANOVA, p = 0.833).

The highest TPC was also obtained at 150 ◦C for H. siliquosa for the extracts 2C,
2CR, and 3C (One-way ANOVA and Kruskal–Wallis, p < 0.05; Figure 2). Concerning the
extract 3CR, no difference in TPC between 100 ◦C and 150 ◦C was highlighted (Kruskal–
Wallis, p = 0.251) and no difference in TPC was shown with the extract 5C, whatever
the temperature applied (Kruskal–Wallis, p = 0.814). For the extract 5CR, a significant
difference in TPC was highlighted between 100 ◦C and 150 ◦C, with the highest level at
100 ◦C (Kruskal–Wallis, p = 0.041). The number of cycles did not affect TPC as much as the
temperature for both seaweeds. Some significant differences were exhibited for the extract
of A. nodosum: between 1CR and 2CR, 1CR and 3C and 3CR and 1C/2C/2CR (One-way
ANOVA, p < 0.05). Regarding H. siliquosa, significant differences were found between 2CR
and 2C/3C and 2C and 5CR (One-way ANOVA, p < 0.05). These differences between cycles
did not follow a precise trend. The increase in the number of cycles or the implementation
of the cell reversal did not increase the TPC for both seaweeds.

The number of cycles, each with a duration time of 5 min, increased the extraction
time involving the extraction of different compounds or increasing the quantity of specific
compounds. In the literature, one cycle with 20 min at 1500 psi was the extraction pro-
tocol currently used [12,47,48]. Moreover, Onofrejová et al. [49] decided to test phenolic
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extraction on the red macroalga Pyropia tenera (formerly Porphyra tenera) (Rhodophyta)
and the brown macroalga Undaria pinnatifida using ASE with 3 cycles (5 min each) and a
mixture of hexane/acetone to eliminate water insoluble compounds and other pigments,
followed by another extraction with 80% methanol and 2 cycles (10 min each). The two-step
elution was performed at 130 ◦C and 1885 psi. In another study, Zubia et al. [27] obtained
ASE extracts from four species of Fucales, Bifurcaria bifurcata, Ericaria selaginoides, Fucus
ceranoides and Halidrys siliquosa (Phaeophyceae) with 2 cycles (7 min each) at 75 ◦C and
1500 psi. Extraction time seems to be the factor having the weaker positive influence
on the extraction of phenolic compounds compared to temperature. Indeed, our study
showed that there was no significant difference in TPC and associated activities between
the different cycles; therefore, we suggest the use of only one cycle because it is a shorter
and less energetic process.

Concerning the extraction mass yield, it followed the trend of the TPC for both
species: the highest yield was observed for H. siliquosa with 53.9 %, while A. nodosum
had a maximum of 27.6% (always with the same procedure 3CR150; Table 1). When the
temperature increased, the yield increased for most cycles, similarly to the TPC. Indeed,
the highest yield was obtained at 150 ◦C for the extracts of A. nodosum (One-way ANOVA,
p < 0.05), except for the extract 1CR, with no significant difference in yield between the
three temperatures tested (One-way ANOVA, p = 0.052).

Regarding H. siliquosa, the highest mass yield was found at 150 ◦C for the extracts
2CR and 5C (One-way ANOVA, p < 0.05), while no difference of yield between 100 ◦C and
150 ◦C was exhibited for the extracts 3C and 3CR (One-way ANOVA, p > 0.05). Finally, no
significant difference in mass yield was exhibited between temperatures for the extract 2C
(Kruskal–Wallis, p = 0.270). Similarly to the TPC, the mass yield obtained for the extract
with different numbers of cycles did not show a specific trend. The temperature and the
number of cycles, which allowed us to obtain high TPC and yield, were 150 ◦C for both
seaweeds and the smallest number of cycles, i.e., one cycle for A. nodosum and two cycles
for H. siliquosa, because there was no effect of the number of cycles at the same temperature.

According to Kronholm et al. [50], extraction temperature is the major parameter
influencing the physiochemical properties of solvent and extracted compounds, with
high temperatures being generally more effective in increasing extraction yield. Indeed,
Plaza et al. [47] highlighted that the higher the temperature is (between 50 ◦C, 100 ◦C, 150 ◦C
and 200 ◦C), the higher the extraction yield for the brown macroalga Himanthalia elongata.
Santoyo et al. [51] and Rodríguez-Meizoso et al. [52] showed also that the extraction yield
from the microalga Haematococcus lacustris (formerly H. pluvialis) (Chlorophyta) increased
with the extraction temperature (same temperatures as Plaza et al. [47]). In our study, ex-
tracts obtained at 150 ◦C compared to 75 ◦C and 100 ◦C, showed also the highest extraction
yield. Tierney et al. [39] showed that extracts obtained through ASE produced a better yield
than those obtained through solid–liquid extraction (SLE). Extraction time was shorter for
ASE than SLE and temperature and pressure were higher for ASE than SLE causing the
extraction of hydrophilic and also some less polar components [29,50,53]. In our study, the
best extraction yield obtained for A. nodosum hydroethanolic extract (obtained with 3 cycles
and cell inversion at 150 ◦C) was 27.6%, which was closer to the extraction mass yield of
water extract generated at 120 ◦C and 1500 psi (28.7%) and higher than the hydroethanolic
extract generated at 100 ◦C and 1000 psi (11.3%) of Tierney et al. [39]. However, the yield
obtained at 100 ◦C with one or two cycles in our study agreed with this latter percentage:
13.1 and 13.0%, respectively. According to Del Pilar Sánchez-Camargo et al. [33], the extrac-
tion yield obtained for ASE extract after 20 min at 120 ◦C and 1500 psi for a Sargassaceae,
Sargassum muticum, was 40.1%, which was a little weaker than our best results for the
Sargassaceae, H. siliquosa, with 53.9% obtained after 3 cycles with the cell turn inversion at
150 ◦C.



Mar. Drugs 2024, 22, 112 6 of 21

Table 1. ASE extraction mass yield (%) for the two brown macroalgae Ascophyllum nodosum (A) and
Halidrys siliquosa (B) with different cycles (1C = 1 cycle, 1CR = 1 cycle with cell inversion, 2C = 2 cycles,
etc.) and temperatures (75 ◦C, 100 ◦C and 150 ◦C). Letters indicate differences between extracts
according to temperature for each cycle (One-way ANOVA, p < 0.05). No replicate was used for
condition 5CR, and then no standard deviation was presented.

Species Cycle Temperature (◦C) Yield (%)

Ascophyllum nodosum

1C
75 10.9 ± 0.2 c

100 13.2 ± 0.4 b
150 16.5 ± 1.3 a

1CR
75 13.8 ± 0.4 a

100 13.1 ± 4.1 a
150 22.5 ± 1.1 a

2C
75 8.4 ± 3.9 b

100 13.0 ± 1.3 b
150 19.2 ± 0.7 a

2CR
75 20.9 ± 0.6 b

100 22.2 ± 1.1 b
150 26.4 ± 0.3 a

3C
75 15.8 ± 0.7 c

100 19.0 ± 1.1 b
150 24.7 ± 0.3 a

3CR
75 22.0 ± 1.2 b

100 20.6 ± 0.7 b
150 27.6 ± 0.6 a

Halidrys siliquosa

2C
75 28.4 ± 4.1 a

100 35.6 ± 0.9 a

150 34.0 ± 8.9 a

2CR
75 38.3 ± 0.6 b

100 40.5 ± 0.4 b

150 49.5 ± 2.5 a

3C
75 33.2 ± 0.8 b

100 37.1 ± 1.0 ab

150 38.9 ± 3.2 a

3CR
75 36.5 ± 3.4 b

100 40.3 ± 0.8 ab

150 53.9 ± 9.6 a

5C
75 35.2 ± 1.7 b

100 32.6 ± 0.6 b

150 48.0 ± 0.4 a

5CR
75 38.7

100 42.5

150 30.9

The temperature can also impact the extraction of bioactive phenolic compounds
from brown seaweeds, as discriminated by Sumampouw et al. [37] in Fucus vesiculosus
and Getachew et al. [53] in their review. Tanniou et al. [12] observed that a temperature
between 100 ◦C and 150 ◦C was better for yielding a high amount of phlorotannins from
Sargassum muticum, without any degradation of phenolic signals using 1H NMR analysis,
unlike SFE, which degraded phlorotannins signals. Several authors reported the sensitivity
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of phenolic compounds to temperature. In our study, thermosensitive compounds were
apparently not degraded, as Richter et al. [36] suggested, because the highest TPC was
obtained at 150 ◦C for both brown seaweeds. This phenomenon can be explained by an
increase in the solubility of the compounds with temperature. Moreover, studies on higher
plants showed no difference in TPC from rosemary between 150 ◦C and 200 ◦C, as the
maximum amount of extractable phenolics was already reached at 150 ◦C [48]. In our
study, the phlorotannin contents of A. nodosum extracts (between 80.4 and 132.0 mg.g−1

dry extract) were higher than hydroethanolic extract at 100 ◦C and 1000 psi (66.3 mg.g−1 of
extract) obtained by Tierney et al. [39]. Temperature and pressure were similar between
both studies. Another reason could explain this difference, like the harvesting sites of algae
(i.e., Ireland for Tierney et al. [39] and Brittany for our present study) and environmental
variations between sites, as it is known that they also have an impact on the phenolic
content of seaweeds [11,54]. Zubia et al. [27] found that TPC of ASE extracts obtained with
a mixture of dichloromethane and methanol at 75 ◦C and 1500 psi from Halidrys siliquosa
was 16.0 mg.g−1 of DW, less than this study (between 34.6 and 60.6 mg.g−1 algal DW
at 75 ◦C) but with a different solvent. Maybe the mixture using dichloromethane is not
the most appropriate solvent to extract phenolic compounds [47]. Another Sargassaceae,
Sargassum muticum, contained TPC close to 47.6 mg gallic acid equivalent GAE.g−1 extract
obtained after ASE at 120 ◦C and 1500 psi [33], which was lower than our best result
obtained for H. siliquosa (165.0 mg.g−1 of extract). However, their results were expressed in
gallic acid equivalent, which is better found in green and red seaweeds, and which does
not correspond to the monomer structuring phlorotannins in brown seaweeds [9]. The use
of this different phenolic standard could have an effect on the seaweed TPC calculated
from the standard curve from one or the other phenolic compound.

2.3. Antioxidant Activities of ASE Extracts

According to the DPPH test, H. siliquosa showed better radical scavenging activities
than A. nodosum, with the most interesting concentration being 0.15 mg.mL−1 for the
former and 0.30 mg.mL−1 for the latter (Figure 3). Moreover, the IC50 of the extracts
from H. siliquosa, varying from 0.15 to 0.22 mg.mL−1, were close to some positive controls
(vitamins C, E and BHA) with generally no significant difference in activities (Kruskal–
Wallis, p > 0.05). For A. nodosum, the extracts were less active than positive controls. On
the contrary, for TPC and mass yield, the temperature did not affect as much the radical
scavenging activity determined by the DPPH test. For A. nodosum, only a significant
difference was highlighted between 100 ◦C and 150 ◦C for the extract 2CR with the highest
radical scavenging activity obtained at 150 ◦C (Kruskal–Wallis, p = 0.031). The temperature
had no impact on radical scavenging activities.

Similarly to TPC and mass yield, and considering the results of the DDPH test, the
number of cycles did not influence a specific trend in the radical scavenging activities.
However, significant differences in the reducing activity (FRAP) were highlighted between
the extract 1CR and the extracts 2C, 3C and 3CR, suggesting that a low number of cycles
allowed high radical scavenging activities in A. nodosum.

Our results showed then that the temperature had a lower impact on the radical
scavenging activity determined by DPPH compared to TPC. Herrero et al. [48] showed that
the activity by the DPPH method increased with an increase in temperature up to 200 ◦C
on rosemary plants. Another study showed higher antioxidant activities of Himanthalia
elongata extracts obtained when water temperature increased from 50 ◦C to 200 ◦C; mean-
while, ethanol extracts showed their maximum at 100 ◦C compared to 50 ◦C, 150 ◦C or
200 ◦C [47]. Between our extracts obtained with different cycle numbers, some showed a
more interesting antioxidant activity at 150 ◦C or even 100 ◦C compared to 75 ◦C. Otherwise,
no significant difference was observed. If we compared our results with the literature, our
radical scavenging activities were better or closer to theirs. Tanniou et al. [12] showed in
Sargassum muticum extracts obtained at 120 ◦C and 1500 psi, an IC50 of 0.77 mg.mL−1 with
DPPH test, which was less active than our results obtained for another Sargassaceae H.
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siliquosa with 0.15 mg.mL−1. In another study, Zubia et al. [27] showed an IC50 close to our
results with 0.21 mg.mL−1 (at 75 ◦C and 1500 psi). Between our two seaweed models, H.
siliquosa extracts presented better radical scavenging activities.
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Figure 3. Radical scavenging and antioxidant activities from two different colorimetric tests, DPPH
(IC50; points) and FRAP (EC50; histograms) of extracts obtained by ASE with different cycles
(1C = 1 cycle, 1CR = 1 cycle with cell inversion, 2C = 2 cycles, etc.) and temperatures (75 ◦C, 100 ◦C
and 150 ◦C) for Ascophyllum nodosum (left) and Halidrys siliquosa (right). Statistical results are shown
in Supplementary data.

According to the FRAP test, profiles between both seaweeds were different compared
to the previous test (Figure 3). For A. nodosum, the EC50 was closer to the positive controls
with the extract 1C, rather than the extract 5CR of H. siliquosa with 0.032 mg.mL−1 at
75 ◦C and 0.024 mg.mL−1 at 150 ◦C, respectively. As for the radical scavenging activity,
the temperature did not affect the antioxidant activity determined by FRAP assay for the
extracts 1C, 1CR and 2C for A. nodosum. However, significant differences were found
between 100 ◦C and 150 ◦C for the extracts 2CR, 3 and 3CR (Kruskal–Wallis, p = 0.001,
p = 0.003 and p < 0.001, respectively), with the highest antioxidant activity obtained at
150 ◦C for the extracts 3C and 3CR, and at 100 ◦C for the extract 2CR. For H. siliquosa, the
temperature did not affect the antioxidant activity for the extracts 2C and 5CR. However,
differences in antioxidant activity were shown between 75 and 150 ◦C for the extracts 2CR,
3C and 3CR (Kruskal–Wallis, p = 0.004, p = 0.030 and p = 0.002, respectively), with the
highest antioxidant activity obtained at 150 ◦C for the extracts 2CR and 3C, and 75 ◦C for
the extract 3CR. A significant difference was also highlighted between 75 ◦C and 100 ◦C
for the extract 3CR and between 100 ◦C and 150 ◦C for the extract 5C, with the highest
antioxidant activity obtained at 75 ◦C and 150 ◦C, respectively (Kruskal–Wallis, p < 0.001
for both). Finally, the temperature did not have a real impact on activities and allowed
the highest antioxidant activities at 150 ◦C. About the effect of the number of cycles on
the antioxidant activity determined by FRAP assay, for A. nodosum, the extracts 1C and
1CR were significantly different from the extracts 2C, 2CR, 3C and 3CR (Kruskal–Wallis,
p < 0.001) with better activities with the lowest number of cycles. Conversely, the extracts
2C and 2CR of H. siliquosa were significantly different from the extracts 3CR, 5C and 5CR
with better activities with the highest number of cycles (Kruskal–Wallis, p < 0.01). In the
same way, a significant difference was found between 3C and 5C, and 3CR and 5C/5CR
(Kruskal–Wallis, p < 0.002). According to the antioxidant activity determined by the FRAP
assay, the results showed that the temperature had a lower impact as already demonstrated
for the radical scavenging activity. However, the most interesting reducing activity was
found at 150 ◦C for some extracts of A. nodosum (2CR and 3C) and H. siliquosa (3C and 3CR).
High reducing activity of the extract of H. siliquosa obtained at 75 ◦C, 1500 psi and a mixture
of dichloromethane/methanol has already been observed [27]. These authors found 72.4%
inhibition at 0.005 mg.mL−1, which corresponds to an EC50 of around 0.003 mg.mL−1,
which is much more active than our best extract showing 0.023 mg.mL−1. They also
found interesting activities for two Fucaceae (same family of A. nodosum), Fucus ceranoides
and F. serratus: 66.0 and 43.7% at 0.02 mg.mL−1, which correspond to EC50 of 0.015 and
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0.023 mg.mL−1, respectively. Those results are in agreement with ours obtained for the best
extract of A. nodosum with an EC50 of 0.023 mg.mL−1.

2.4. Photoprotective Sunscreen Activities of ASE Extracts

The extracts from A. nodosum showed no photoprotective activity. As shown in
Figure 2, A. nodosum has a lower phenolic content than H. siliquosa. As a result, the radical
scavenging and antioxidant activities (Figure 3) are lower than with Halidrys and the
phenolic compounds detected in Ascophyllum are too low to allow sufficient (significant)
absorption of UV radiation. We were therefore unable to obtain SPF (Sun Protection Factor)
values significantly different from the control. Moreover, Ascophyllum was harvested in
January, at a time when there is not much sunshine, unlike the Halidrys harvesting period
in April, when there is more sunshine. We can therefore hypothesize that Ascophyllum
does not develop photoprotection during its harvesting period (January), whereas Halidrys,
harvested in April, develops a photoprotection strategy by producing more PC.

In the present study, only the H. siliquosa results of SPF are presented (Table 2). Simi-
larly to TPC and mass yield, the highest SPF and PF-UVA for H. siliquosa was obtained at
150 ◦C and was significantly different from the values at 75 ◦C and 100 ◦C (Kruskal–Wallis,
p < 0.05), except for 2CR with no difference in SPF and PF-UVA between temperatures
(Kruskal–Wallis, p = 0.071 and p = 0.061, respectively) (Table 2). The highest SPF and PF-
UVA were 2.33 and 1.85, respectively, for the extract 2C150. No significant difference was
observed between the values of SPF and PF-UVA obtained at 75 ◦C and 100 ◦C whatever
the number of cycles, except for the extract 5CR (Kruskal–Wallis, p = 0.043 for both).

Table 2. Photoprotective activities as SPF and PF-UVA from Halidrys siliquosa ASE extracts obtained
with different cycles (1C = 1 cycle, 1CR = 1 cycle with cell turnover, 2C = 2 cycles, etc.) and
temperatures (75 ◦C, 100 ◦C and 150 ◦C). Maximal values are written in bold. Letters indicate
differences between extracts according to temperature for each cycle (Kruskal–Wallis, p < 0.05).

Cycle Temperature (◦C) SPF PF-UVA

2C
75 1.32 ± 0.04 b 1.12 ± 0.04 b

100 1.29 ± 0.05 b 1.17 ± 0.03 b
150 2.33 ± 0.46 a 1.85 ± 0.20 a

2CR
75 1.30 ± 0.06 a 1.19 ± 0.04 a
100 1.22 ± 0.02 a 1.12 ± 0.01 a
150 1.57 ± 0.40 a 1.27 ± 0.21 a

3C
75 1.29 ± 0.04 b 1.18 ± 0.03 b

100 1.41 ± 0.06 b 1.24 ± 0.04 b
150 1.93 ± 0.49 a 1.57 ± 0.40 a

3CR
75 1.24 ± 0.03 b 1.13 ± 0.02 b

100 1.31 ± 0.03 b 1.17 ± 0.02 b
150 2.17 ± 0.15 a 1.65 ± 0.13 a

5C
75 1.26 ± 0.03 b 1.14 ± 0.02 b

100 1.36 ± 0.07 b 1.22 ± 0.04 b
150 2.23 ± 0.28 a 1.67 ± 0.21 a

5CR
75 1.53 ± 0.07 b 1.31 ± 0.05 b

100 1.21 ± 0.05 c 1.10 ± 0.04 c
150 2.30 ± 0.12 a 1.72 ± 0.07 a

In our study, the temperature of 150 ◦C allowed us to obtain the highest SPF and
PF-UVA for H. siliquosa with 2.33 and 1.85, respectively. These results were closer to
those obtained by Le Lann et al. [15] with a SPF of 3.55 and PF-UVA value of 2.20 for
the phlorotannin-enriched fraction of H. siliquosa. Our values were close to another solar
organic filter like homosalate which presents a SPF greater than 4 [55].
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2.5. Anti-Aging Activities of ASE Extracts

Anti-aging activities were evaluated by elastase and tyrosinase inhibitions on six
extracts obtained by ASE: 1C at 75 ◦C, 100 ◦C and 150 ◦C for A. nodosum and 2C at 75 ◦C,
100 ◦C and 150 ◦C for H. siliquosa. The anti-elastase activity of extracts of A. nodosum was
better than the positive control, EGCG (Table 3), at the same concentration. However, the
extracts showed less tyrosinase inhibition than the positive control, kojic acid. Regarding
the anti-tyrosinase activity, H. siliquosa extracts showed less activity than extracts from A.
nodosum, while a higher tyrosinase inhibition was shown at 75 ◦C and 150 ◦C. Compared to
the positive controls, extracts from H. siliquosa were almost similar for anti-elastase activity
and less active for anti-tyrosinase activity.

Table 3. Anti-aging activities of 3 extracts of Ascophyllum nodosum (An 1C75, 1C100 and 1C150) and
Halidrys siliquosa (Hs 2C75, 2C100 and 2C150) determined by elastase and tyrosinase inhibitions.
Epigallocatechin gallate (EGCG) and kojic acid are positive controls.

Anti-Aging Activities Extract or Control Concentrations
(mg.mL−1) % of Inhibition

Elastase inhibition

EGCG 1 19.44

An
1C75 1 57.89

1C100 1 80.46
1C150 1 47.39

Hs
2C75 1 20.60

2C100 1 14.54
2C150 1 29.95

Tyrosinase inhibition

Kojic acid 0.1 93.46

An
1C75 0.1 33.33

1C100 0.1 12.43
1C150 0.1 2.48

Hs
2C75 0.1 15.94

2C100 0.1 0
2C150 0.1 42.51

Extracts from both seaweeds exhibited anti-aging potentials with anti-elastase and
anti-tyrosinase activities. According to the elastase inhibition, the activity was even higher
than the positive control for A. nodosum but not for H. siliquosa. A previous study found
anti-elastase activity of an extract of Sargassum muticum obtained after enzyme-assisted
extraction [56]: authors showed between 21.6 and 32.8% of elastase inhibition at 1 mg.mL−1,
which was less than our results, between 47.4 and 80.5%.

Both seaweed extracts have then interesting valorization potential for their different
biological activities such as antioxidant and anti-aging activities, with photoprotective
activity found only in H. siliquosa. The temperature appeared to have an impact but not for
all extracts. However, the temperature of 150 ◦C was largely dominant for obtaining the
best activities.

2.6. Correlation between Phenolic Compounds and Activities for ASE Extracts

As shown in Figure 4, three positive correlations were found for A. nodosum with only
two that were statistically significant: the strongest correlation was observed between TPC
and extraction mass yield (r = +0.794, p < 0.001), followed by the correlation between the
yield and the antioxidant activity determined by the FRAP assay (EC50; r = +0.573, p = 0.013)
(Figure 4). In contrast, three negative correlations were noticed with only one that was
statistically significant: between the TPC and the radical scavenging activity—DPPH assay
(IC50; r = −0.579, p = 0.012). For H. siliquosa, nine positive and six negative correlations were
found with only four statistically significant (Figure 4). The strongest positive (and expected)
correlation was obtained between the two photoprotective activities, SPF and PF-UVA,
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with an r coefficient equal to +0.991 (p < 0.001). Similarly to A. nodosum, a strong positive
correlation was highlighted between TPC and mass yield (r = +0.817, p < 0.001). Two other
significant correlations were observed between the yield and the radical scavenging activity
(r = +0.481, p = 0.043), and between the two antioxidant activities (r = −0.624, p = 0.006).
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Figure 4. Correlations between TPC, mass yield, radical scavenging activities (DPPH = IC50),
antioxidant activities (FRAP = EC50) for Ascophyllum nodosum (A) and Halidrys siliquosa (B) and
photoprotective activities (SPF and PF-UVA) for Halidrys siliquosa (B). Positive correlations are
displayed in blue and negative correlations in red. The intensity of the color and the size of the circles
are proportional to the correlation coefficients (Pearson’s correlation).

In our study, phenolic content was strongly correlated to the extraction mass yield
showing that the extraction was well specific to phenolic compounds. Phenolic compounds
could also be responsible for biological activities. In our study, a negative correlation
was highlighted between TPC and radical scavenging activity (expressed as IC50) for
H. siliquosa or between mass yield and radical scavenging activity for A. nodosum. This
means that the higher the content or the yield was, the lower the IC50 and therefore the
better the activity, as already demonstrated by Balboa et al. [57] in seaweeds. Moreover,
according to Audibert et al. [58], radical scavenging activity was correlated with the
content of phenolic compounds for A. nodosum fractions obtained by ultrafiltration. Other
studies found some negative correlations between the phenolic content and the radical
scavenging activity (or the opposite) on crude extracts of brown seaweeds: in Ecklonia
cava subsp. stolonifera (formerly E. stolonifera) [59], Himanthalia elongata and Laminaria
sp. [60], Sargassum sp. [61], Ericaria sedoides (formerly Cystoseira sedoides) [62], Fucus serratus
and Ascophyllum nodosum [63] or Fucus vesiculosus [63,64]. Depending on the species of
concern, no correlation was found depending on the way of extraction or the solvent
used for example. Indeed, Zubia et al. [27] did not find any correlation between the
total phenolic content and the radical scavenging and reducing activities of crude extracts
from the Fucales Ericaria selaginoides or Fucus ceranoides. On the contrary, they found this
correlation on SPE purified fractions and in other brown seaweeds: Bifurcaria bifurcata,
Ericaria selaginoides, Fucus ceranoides and Halidrys siliquosa [27]. Other studies also found
this correlation between TPC and reducing activity: in the crude extract of the Laminariales
Ecklonia cava subsp. stolonifera with a r coefficient equal to +0.963 [59], and also for the
purified extract of Halidrys siliquosa [15], given the similarity of chemistry between both
tests (Folin–Ciocalteu quantification and FRAP test), as described by Huang et al. [65].

On the other hand, in our study, a negative correlation between radical scaveng-
ing activity and reducing activity (FRAP) was highlighted, as already demonstrated by
Zubia et al. [27] for crude extracts of Fucales, i.e., Ericaria selaginoides, B. bifurcata and F.
ceranoides. However, as those three assays (FC, DPPH and FRAP) rely on a mechanism
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of electron transfer [65], maybe some other compounds present in the extracts are re-
sponsible for this opposite behavior. This last behavior could also be due to the different
pH values of these assays, i.e., acidic (FRAP) and basic (FC) conditions, as described by
Huang et al. [65]. In their work, these last authors demonstrated protonation or proton
dissociation on antioxidant compounds, depending on the pH of the solution [65].

2.7. Semi-Purification of ASE Extracts Using SPE Procedure

The SPE semi-purification procedure was carried out on two extracts obtained by ASE:
1C150 for A. nodosum and 2C150 for H. siliquosa, given that these extracts brought together
the highest total phenolic content (TPC), the best antioxidant and photoprotective activities.
The signal of phenolic compounds on 1H NMR analyses was found on two fractions for A.
nodosum, hydroethanolic (Water/EtOH) and ethanolic (EtOH) fractions, and three fractions
for H. siliquosa, hydroethanolic, ethanolic and dicholoromethane–ethanolic (EtOH/DCM)
fractions (Figure 5).
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For A. nodosum, the shape profile was almost similar on both fractions and a signal
at 6.4 ppm was only present for the Water/EtOH fraction (Figure 5). This peak was also
found on the profile of the ASE crude extract (Figure 1). The NMR profiles of H. siliquosa
SPE fractions were different: like for A. nodosum, the Water/EtOH fraction looked like ASE
extract. However, the shape profile was completely different for the two other fractions
but similar to each other. In Figure 6, the TPC was expressed as mg.g−1 of the dry fraction,
which allows us to show, or not, the concentration of phenolics compared to the crude
ASE extract.

For Ascophyllum nodosum, the highest TPC was found within the EtOH fraction with
237 mg.g−1 of dry fraction while for H. siliquosa it was the Water/EtOH fraction with
383 mg.g−1 of dry fraction (Figure 6A). The semi-purification, based on the use of the SPE
procedure, allowed them to concentrate the phenolic compounds by 1.8 for A. nodosum and
2 for H. siliquosa.

The radical scavenging activities according to the DPPH test were closer to the positive
controls for the EtOH fraction of A. nodosum (0.13 mg.mL−1) and the Water/EtOH and
EtOH fractions of H. siliquosa (0.09 mg.mL−1 for both; Figure 6B). Even if activities were
not significantly different (Kruskal–Wallis, p > 0.05), the EtOH fraction of A. nodosum
appeared to have a better radical scavenging activity than its ASE extract (0.37 mg.mL−1).
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The difference between the extract and the semi-purified fractions was not as strong with
H. siliquosa.
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Vit C: Vitamin C (=ascorbic acid), Vit E: Vitamin E (=α-tocopherol), BHA: Butylated hydroxyanisole,
ASE: Accelerated Solvent Extraction, EtOH: Ethanol, DCM: Dichloromethane.

According to the FRAP test, Water/EtOH and EtOH fractions from A. nodosum and H.
siliquosa were close to positive controls (vitamins C and E, BHA) with 0.04 and 0.03 mg.mL−1

for the first seaweed, and 0.008 and 0.03 mg.mL−1 for the second seaweed, respectively.
For both species, values of antioxidant activity for the SPE fractions were not statistically
different except between Water and Water/EtOH fractions for H. siliquosa with the highest
antioxidant activity for the Water/EtOH fraction (Kruskal–Wallis, p = 0.028).

Semi-purification made it possible to obtain fractions with photoprotective activity for
A. nodosum, whereas there was no activity for its crude ASE extract. Indeed, the EtOH frac-
tion showed SPF and PF-UVA of 1.42 and 1.29, respectively (Table S2, Supplementary Data).
However, regarding H. siliquosa, enriched fractions (Water/EtOH and EtOH fractions) had
significantly lower SPF and PF-UVA compared to the crude ASE extract (Kruskal–Wallis,
p < 0.005).

Semi-purification by Solid-phase Extraction (SPE) allowed us to obtain a higher TPC
and better reducing activities for both seaweeds, compared with the crude ASE extract. For
H. siliquosa NMR spectra, different signals observed with the different solvents could be
explained by the hypothesis that different structures of phlorotannins were obtained: those
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more hydrophilic, which were extracted with the mixture of water and ethanol, and those
with a structure more hydrophobic extracted with 100% ethanol and the mixture of ethanol
and dichloromethane. Many other molecules were eliminated by SPE: for example, lipids
were removed from the hydroethanolic fraction and found in the ethanolic fraction and
dichloromethane–ethanolic fractions (Supplementary Data, Figure S1). The SPE procedure
allowed them to concentrate fractions into phenolic compounds. Indeed, the phenolic
content was multiplied by 2 thanks to the SPE process for the Water/EtOH fraction of H.
siliquosa and by 1.8 for the EtOH fraction of A. nodosum. Zubia et al. [27] also used SPE
on dichloromethane/methanol ASE extract to concentrate phenolic compounds. For four
brown seaweeds, these authors showed this concentration: 1.0% of dry weight (DW) for
the ASE crude extract and 13.3% DW for the SPE water fraction of Bifurcaria bifurcata; 5.5%
DW for the ASE crude extract and 41.9% DW for the SPE hydromethanolic fraction of Fucus
ceranoides; 10.9% DW for the ASE crude extract and 25.4% DW for the SPE water fraction
of Ericaria selaginoides; and 1.6% DW for the ASE crude extract and 28.8% DW for the SPE
hydromethanolic fraction of Halidrys siliquosa. Rajauria [66] showed also a concentration
of phenolics by 1.6 between a crude methanolic extract obtained by maceration and a SPE
methanolic fraction of Himanthalia elongata with 178.2 and 279.5 mg GAE.g−1, respectively.
They used this SPE process to concentrate phenolic compounds and that allowed them to
identify further phlorotannins in the fraction by HPLC-MS.

For the antioxidant activities found in our study, even if SPE fractions showed better
activities for both assays, they were not significantly different from the crude ASE extract.
However, activities of Water/EtOH and EtOH fractions from H. siliquosa and EtOH fraction
from A. nodosum were similar to positive controls, i.e., BHA and vitamins C and E. One
should hypothesize that only apolar phlorotannins are active in A. nodosum while both polar
and apolar phlorotannins are active in H. siliquosa. In the literature, Onofrejová et al. [49]
have found that antioxidant activities were similar between ASE extract and SPE fractions
for the Laminariales Undaria pinnatifida. On the contrary, Rajauria [66] found a better
antioxidant capacity (EC50) for the SPE methanolic fraction of H. elongata compared to the
crude extract with 14.5 and 46.3 µg.mL−1, respectively. This SPE fraction was also better
than the positive control, vitamin C.

Finally, and interestingly, in our study, photoprotective activity appeared for the SPE
fraction of A. nodosum; meanwhile, this activity decreased for H. siliquosa. The photoprotec-
tive activity could maybe be due to a type of phlorotannins or is the result of a complexation
of phlorotannins with other molecules in the crude extract.

2.8. Interest in Using NMR to Check the Presence/Absence of Phlorotannins in Extracts

In order to quantify phlorotannins, a colorimetric test using the Folin–Ciocalteu
procedure is normally used in numerous studies in reference to a phloroglucinol standard
range. In the present study, we propose to complement the FC procedure by using 1H
NMR spectra in order to check the presence/absence of phlorotannins, i.e., aromatic
signals, in order in order to save time. In previous work, qNMR was used to quantify
phlorotannins in the brown macroalga Ericaria selaginoides, as this species produces the
monomer phloroglucinol [42], identified by the presence of a singlet at 6 ppm on a 1H
NMR spectrum. Unfortunately, both species of concern here, Ascophyllum nodosum and
Halidrys siliquosa, do not produce the monomer phloroglucinol but rather polymerized
phlorotannins, as already demonstrated by previous studies [15,25,67]. Although Wekre
et al. [68] demonstrated the possibility of 1H NMR for quantifying polyphenols in brown
algae, in our case, it was not possible to quantify phlorotannins in the two species studied.
The 1H NMR analysis thus allows us to detect the presence of phlorotannins by signals
present between 5.5 and 6.5 ppm, and to deduce the relative proportion of phlorotannins in
the sample, visible by the height and the form of the signals, which agree with the contents
of phenolic compounds determined by the colorimetric test (Folin–Ciocalteu procedure).
Moreover, it also makes it possible to appreciate the complexity of polymers. Indeed,
species producing the monomer phloroglucinol will present a singlet at 6 ppm [42], while
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species producing more complex phlorotannins will present a high number of peaks, a sign
of a very heterogeneous structure of phlorotannins with ramifications.

3. Materials and Methods
3.1. Algal Material

Two brown seaweeds (Ochrophyta, Phaeophyceae, Fucales), Ascophyllum nodosum
(Linnaeus) Le Jolis (Fucaceae) and Halidrys siliquosa (Linnaeus) Lyngbye (Sargassaceae)
were collected in Cotes d’Armor (Brittany Region, France) by a professional harvester
and dried by the SME C-WEED Aquaculture, in ventilated heating conditions, with a
temperature below 40 ◦C. The sampling collection was made in January 2016 for H. siliquosa
and in April 2016 for A. nodosum, with the harvest of non-mature thalli in both species.
Seaweeds were collected in Brittany with respect to the preservation of seaweed fields
and the life cycle of the alga and were dried and then ground to powder using a ball mill
(Retsch MM400, Haan-Gruiten, Germany). We selected two different species that produce
different types of phlorotannins, as visible in the phlorotannins overview in Fucales made
by Catarino et al. [25].

3.2. Extraction and Purification Procedures

Accelerated Solvent Extraction (ASE): Extractions were performed thanks to an
Accelerated Solvent Extractor system (DionexTM ASETM 150, Sunnyvale, CA, USA). In
all cases, i.e., species and conditions, 3 g of dried algae mixed with sand were loaded
into a 10 mL stainless steel extraction cell, fitted with glass-fiber filters at the inlet and
outlet. Extraction parameters were chosen according to earlier studies [12,27,33,34,39,51,69].
Mixtures composed of water and ethanol were used with a ratio of 75:25, as described by
Tanniou et al. [12] for Sargassaceae and Ford et al. [70] in Ascophyllum nodosum. Static time
(the time the solvent remains in the cell) was 5 min (time of one cycle) and the pressure
was set at 100 bar (=1500 psi). Extractions were performed with different numbers of cycles
(1, 2, 3 or 5, with the cell turned over or not) at three different temperatures (75 ◦C, 100 ◦C
and 150 ◦C). The applied rinse volume was 100% and the purge time was 120 s. After
extraction, the solvent was evaporated using a rotary evaporator (Laborota 4000 efficient,
Heidolph, Germany) and the extract was freeze-dried (Beta 1–8 LD, Christ, Osterode am
Harz, Germany).

Semi-purification by Solid-phase Extraction (SPE). ASE extracts showing the highest
total phenolic content (TPC) and the best antioxidant and photoprotective activities were
selected to realize a semi-purification using a Solid-phase Extraction (Vac Elut SPS 24,
Agilent Technologies, Santa Clara, CA, USA). The compounds in the liquid phase were
separated from the other elements by selective adsorption on a solid phase according to
physicochemical properties. Ready-to-use SPE cartridges containing C18 silica (Strata C18-
E, 55 µm, 70, 20 g/60 mL, Giga Tubes, Phenomenex, Torrance, CA, USA) were used. The
SPE cartridge was first primed with ethanol and distilled water and followed by a deposit
of 0.5 g of the crude extract mixed with silica. Solvents with different polarities were added
to the cartridge to obtain five fractions: distilled water, distilled water/ethanol (50:50),
ethanol, ethanol/dichloromethane (50:50) and dichloromethane. In order to maximize the
contact between the extract and the different solvents, the solvents were passed through
the cartridge four times. The solvents were then evaporated using a rotary evaporator
(Laborota 4000 efficient, Heidolph, Schwabach, Germany) and fractions were freeze-dried
(Beta 1–8 LD, Christ, Germany).

3.3. Quantification of Phenolic Compounds

Total phenolic content (TPC) using the Folin–Ciocalteu procedure. The TPC was
colorimetrically determined by spectrophotometry using an adapted Folin–Ciocalteu as-
say [27]. The wells were filled with 20 µL of extract, 130 µL of distilled water and 10 µL of
Folin–Ciocalteu reagent, followed by 40 µL of Na2CO3 (200 g.L−1). The mixture remained
for 10 min at 70 ◦C. The microplate was then put on ice to stop the chemical reaction and
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the absorbance was read at 620 nm (MultiskanTM FC, Thermo Fisher ScientificTM, Waltham,
MA, USA). The TPC was expressed in milligrams per gram of algal dry weight (mg g−1

DW) or per gram of extract (or fraction) dry weight from a standard curve of phloroglucinol
(1,3,5-trihydroxybenzene). This analysis was carried out in triplicate for each extract.

1H Nuclear Magnetic Resonance (NMR) analysis of extracts: Molecular signatures
of extracts and fractions were obtained using 1H NMR analyses using a Bruker Avance 400.
For each analysis, 5 mg of extract was dissolved in 700 µL of deuterated methanol (MeOD).
The spectra were analyzed with MestReNova software (v6.0.2-5475). 1H NMR spectra gave
information on the composition of extracts and especially the signal of phenolic compounds,
which appeared between 6.5 and 5.5 ppm.

3.4. Activity Tests

DPPH radical scavenging assay: The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical
scavenging assay modified according to Zubia et al. [27] was used to determine the radical
scavenging activity of extracts and fractions. For this method, 22 µL of extracts/fractions was
added to 200 µL of DPPH solution (25 mg.L−1), prepared fresh daily. After 60 min in the dark
at room temperature, absorbance was read at 540 nm. Distilled water was used as a negative
control and ascorbic acid (vitamin C), α-tocopherol (vitamin E), together with 2,3-t-butyl-4-
hydroxyanisole (butylated hydroxyl-anisole, BHA) and 2,6-di-tert-butyl-4-methylphenol
(butylated hydroxytoluene, BHT) as positive controls. This analysis was carried out in
triplicate for each extract/fraction. The radical scavenging activity of extracts/fractions was
expressed as IC50 (mg.mL−1), the concentration of substrate that causes a 50% loss of the
DPPH activity. A weak IC50 is indicative of a high antioxidant activity.

Ferric reducing antioxidant power (FRAP): Reducing activity was evaluated by the
reaction of oxydoreduction between phenolic compounds of the extract/fraction and tran-
sition metal ions like ferric irons. The method used was adapted from Zubia et al. [27].
On the microplate, 25 µL of sodium phosphate buffer (0.2 M, pH 6.6) and 25 µL of ferri-
cyanide potassium at 1% were added to 25 µL of extracts/fractions (or controls). After
homogenization, microplates were incubated at 50 ◦C for 20 min. The reaction was stopped
on ice. A first measurement of the absorbance at 620 nm was made after the addition of
25 µL of trichloroacetic acid and 100 µL of distilled water. Finally, 20 µL of iron chloride
was added. After 10 min, absorbance was measured at 620 nm. BHA, BHT, and vitamins
C and E were used as positive controls. This analysis was carried out in triplicate for
each extract/fraction. The ferric reducing antioxidant power was expressed as the EC50
value (mg.mL−1) after calculating a percentage of inhibition through comparison to a blank
(distilled water). A lower EC50 value means a high reducing power of the sample.

Elastase inhibition: Elastase degrades elastin, which is responsible for skin elasticity.
An anti-elastase activity therefore prevents a loss of elasticity and acts as an anti-aging
agent. The protocol was inspired by Sallenave et al. [71]. First, a Tris-HCl buffer was made
at a concentration of 179 mM and a pH of 8. The substrate, N-Succinyl-Ala-Ala-Pro-Phe
p- nitroanilide, was then prepared at 1.65 mM with the buffer. The last solution was the
enzyme diluted with the buffer to obtain a concentration of 0.34 U.mL−1. On the microplate,
13 µL of extract or control were added with 93 µL of buffer and 52 µL of substrate. The
microplate was incubated for 5 min at 25 ◦C. Then, 42 µL of enzymes was finally added.
A kinetic was performed at 410 nm, always at 25 ◦C for 4 min. Epigallocatechin gallate
(EGCG) was used as a positive control. To obtain the percentage of inhibition of the enzyme,
the slope, which corresponds to the initial speed of the enzyme, was calculated and used in
the following equation:

% inhibition = ((Si − SiF)/Si) × 100

with Si, the initial speed of the enzyme without the extract or the control, and SiF, the initial
speed of the enzyme with the extract or the control. Only ASE extracts showing the highest
total phenolic content (TPC) were selected to determine their anti-elastase activity.
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Tyrosinase inhibition: Depigmentation considered an anti-aging activity was evalu-
ated thanks to the assessment of the tyrosinase inhibition activity of extracts. The protocol
was inspired by Chan et al. [72] and Lim et al. [73]. A phosphate buffer was prepared at pH
6.5 and 0.1 M by mixing 4.117 g of Na2HPO4 and 8.639 g of NaH2PO4. The second solution,
corresponding to the substrate, consists of a 1.694 mM L-tyrosine solution solubilized in
distilled water. A volume of 2.5 mL of this solution was then added to 2.5 mL of phosphate
buffer and 2.25 mL of distilled water to obtain the L-tyrosine reagent. Then, the enzymatic
solution was at a concentration of 317.71 U.mL−1 of tyrosinase. In the microplate, 20 µL
of extract or control were added with 243 µL of L-tyrosine reagent and the mixture was
incubated at 25 ◦C for 5 min. Finally, 42 µL of enzymes were added and a kinetic was
performed at 475 nm, always at 25 ◦C, for 5 min. A blank was made for each extract
replacing substrate with buffer. Kojic acid was used as a positive control. The percentage
of inhibition of the enzyme was calculated in the same way as for the elastase inhibition.

Photoprotective efficacity: The Sun Protection Factor (SPF and PF-UVA) was determined
to obtain the photoprotective efficiency of extracts and UV-B and UV-A ranges. The method is
described by Couteau et al. [55,74]. Briefly, the extract was incorporated in a basic oil-in-water
(O/W) emulsion and 50 mg was spread with the finger on a polymethylmethacrylate (PMMA)
plate. Then, transmission measurements were made on 9 replicates using a spectrophotometer
(UV transmittance Analyzer UV1000S, Labsphere, North Sutton, NH, USA).

3.5. Statistical Analyses

The software R for Windows was used with the RStudio (v.1.0.136) integrated devel-
opment environment. All laboratory analyses were performed in triplicate, and results
were expressed as mean ± standard deviation (SD). Homogeneity of variances was tested
with the Bartlett test at the 0.05 risk error. When homogeneity of variances was respected,
One-way ANOVA was performed followed by a Tukey post hoc test. When homogeneity
of variances was not respected, which means data did not respect the requirement for
ANOVA, Kruskal–Wallis tests were performed at a significance level of 95%. When signifi-
cant differences appeared, non-parametric multiple comparisons were applied thanks to the
Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). The Pearson correlation
coefficient (r) was also calculated to observe the relationship between the phenolic content
and biological activities (p < 0.05).

4. Conclusions

Our study demonstrated the possibility of following a sustainable approach in order
to valorize two brown macroalgae from Brittany in the cosmetics sector. After an envi-
ronmentally friendly collection of thalli, without disturbing the life cycle of the alga, we
went in search of environmentally friendly extraction and purification processes, together
with a follow-up using NMR analysis of extracts/fractions in order to localize phenolic-rich
ones. Our study has shown that 1H NMR analysis of extracts/fractions is a reliable and
inexpensive procedure for detecting those that are rich in phlorotannins, as long as access to
an NMR spectrometer is possible. ASE is a fast method, which is automated and does not
require large amounts of solvent compared to, for example, the classical maceration. This
study demonstrated the interest of ASE in the extraction of active polyphenols from the two
species of concern, Ascophyllum nodosum and Halidrys siliquosa, and more generally from
brown seaweeds. For both species, the temperature that permits us to obtain the best pheno-
lic content and activities was 150 ◦C when compared to 75 ◦C and 100 ◦C. On the contrary,
the number of ASE cycles had no impact, so one cycle would be enough to extract a high
amount of active phenolic compounds. It will be interesting to pursue our investigations in
developing a real optimization of conditions applied to the extraction and the purification of
phlorotannins in designing our experiment and analyzing our dataset using response surface
methodology like in del Pilar Sánchez-Camargo [33] or in Ruiz-Domínguez et al. [75], who
carried out this methodology, respectively, in the brown Sargassaceae Sargassum muticum
and the brown Durvillaeaceae Durvillaea antarctica, as examples.
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In the aim to find an efficient number of cycles and extraction temperature and in
order to follow a sustainable approach (with no impact on the life cycle of species), we used
macroalgal samples collected at only one period, which corresponds to no mature thalli in
both species. If we had harvested the two species at other times, the thalli would have been
mature and we would have found higher levels of phenolic compounds in A. nodosum and
lower levels in Halidrys siliquosa, as reported by Gager et al. [46].

Due to their different biological activities demonstrated in this study, ASE extracts are
interesting to valorize in industrial sectors like cosmetics: radical scavenging, reducing and
anti-aging activities for both seaweeds and photoprotective activity for Halidrys siliquosa.
This study also showed an interest in the semi-purification by SPE to enrich fractions
in phenolic compounds. Those enriched fractions could be used to further structurally
identify phlorotannins contained in A. nodosum and H. siliquosa with analytical methods
such as a combination of HPLC and mass spectrometry.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md22030112/s1, Table S1: p-values obtained with statistical tests (Post hoc
after a Kruskal–Wallis test) applied on the SPE fractions for (A) the Total Phenolic Content (TPC),
(B) radical scavenging activity by DPPH assay expressed as IC50, and (C) antioxidant activity by
FRAP assay expressed as EC50 of Ascophyllum nodosum (first number) and Halidrys siliquosa (second
number), respectively. Significant values (p < 0.05) are written in bold. Table S2: Photoprotective
activities (SPF and PF-UVA) of one SPE fraction for Ascophyllum nodosum (An) (EtOH) and two SPE
fractions for Halidrys siliquosa (Hs) (Water/EtOH and EtOH) compared to the crude ASE extract.
Letters indicate differences between fractions for H. siliquosa (Kruskal–Wallis, p < 0.005). Figure S1:
Entire 1H NMR spectra of SPE fractions from Ascophyllum nodosum (on the left) and Halidrys siliquosa
(on the right) compared to the crude extract ASE.
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