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A B S T R A C T
The pelagic zone is home to a large diversity of organisms such as macrozooplankton and
micronekton (MM), connecting the surface productive waters to the mesopelagic layers (200-
1000 m) through diel vertical migrations (DVM). Active acoustics complement net sampling
observations by detecting sound-scattering layers (SL) of organisms, allowing to monitor the
MM dynamics with a high spatio-temporal resolution. As the acoustic response of organisms is
frequency-dependent, multi-frequency analyses are a pertinent approach to better integrate the
rich diversity of organisms composing SLs and their respective dynamics. However, analysing
simultaneously emitted acoustic signals with distinct depth ranges and separating spatial from
temporal variability is challenging and needs adapted tools to be fully exploited. This study
examines the pelagic realm in a transition zone between the Southern Ocean and the subtropical
Indian Ocean, crossing the Saint-Paul and Amsterdam islands’ natural reserve. We extended a
Multivariate Functional Principal Component Analysis (mfPCA) to analyse the joint vertical
variation of five frequencies from two oceanographic cruises (2016 and 2022), allowing the
decomposition of the acoustic dataset into orthogonal vertical modes (VM) of variability. We
found the first VM to be linked to the temporal variability due to DVM, while the following
majorly depict patterns in spatial distribution. Overall, from the subantarctic to the subtropical
zones, we observed (i) enrichment of densities in the surface layer (0-100 m), (ii) a decrease
in densities in the intermediate layer during the daytime (100-300 m) and (iii) the apparition
of an intensive deep scattering layer on the 38 kHz. We explored VMs’ connection with in-
situ environmental conditions by clustering our observations into three distinct environmental-
acoustic regions. These regions were compared with vertically integrated nautical area scattering
coefficient distribution, a proxy for marine organisms’ biomass. Additionally, we analysed
species assemblage changes from complementary cruises to further elucidate the observed
acoustic distribution. We show that the mfPCA method is promising to better integrate the
pelagic horizontal, vertical and temporal dimensions which is a step toward further investigating
the control of the environment on the distribution and structuring of pelagic communities.

1. Introduction1

The pelagic oceanic habitat harbours a rich assortment of life forms, including crustaceans, fish, and gelatinous2

plankton. Organisms ranging from ∼2 to 20 cm and possessing the capability to swim against currents are referred3

to as micronekton (Kloser et al., 2009), while zooplankton mostly drift. A large proportion of macrozooplankton and4

micronekton (MM) performs diel vertical migrations (DVM; e.g. Brierley, 2014) which connects the epipelagic layer5

(0-200 m) with the mesopelagic zone (200-1000 m), leading to complex trophic interactions and ecosystemic services6

such as the active biological carbon pump (Giering et al., 2014). MM occupy a central place in the trophic web by7

consuming low trophic levels and being prey to top predators (Kozlov, 1995). The large volume of mesopelagic fish8
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(1-20 billion tons; Irigoien et al., 2014) supports the populations of top predators of patrimonial or economic value9

such as diving mammals (Daneri and Carlini, 2002) or tunas (Bertrand et al., 2002). Despite these crucial roles in10

ecological systems, information on the horizontal and vertical distribution of the mesopelagic fauna is globally scarce11

due to the difficulty of sampling and monitoring these organisms. Basic information is lacking on their vital rates,12

their stock and the links between oceanographic conditions and mesopelagic biomass and biodiversity (St. John et al.,13

2016). Even though considered essentially pristine, the scientific community is urged to study the mesopelagic zone14

before human direct or indirect impacts bias our observations (Martin et al., 2020). Indeed, the global pelagic fauna15

is facing a loss of biomass at a global scale due to climate change (Ariza et al., 2022b) and increasing off-shore and16

deep industrial activities. Its large fish populations are also leading to a growing interest in commercial exploitation17

(e.g. Valinassab et al., 2007; Grimaldo et al., 2020).18

Net sampling methods are extensively employed to investigate these ecosystems. They have shown that the19

distribution and abundance of MM are connected to productive conditions (Cotté et al., 2022), the presence of a20

thermocline (Youngbluth, 1975), larger-scale water mass distribution (major fronts; e.g. Hulley, 1981; Koubbi, 1993;21

Koubbi et al., 2011; Duhamel et al., 2014), and mesoscale oceanographic features (e.g. Pakhomov et al., 1994).22

However, the perpetual motion of the ocean, combined with intricate small-scale processes, results in a heterogeneous23

dispersion of MM, particularly within the upper ocean layers (Bertrand et al., 2014). This patch dynamic, with far-24

reaching impacts on predators, makes it challenging to fully grasp the underlying mechanisms governing marine25

ecosystems (Benoit-Bird and McManus, 2012).26

To address this challenge, active acoustic serves as a complementary non-intrusive observation method that enables27

continuous monitoring of the pelagic fauna’s distribution in both horizontal and vertical dimensions at high resolution28

(Trenkel et al., 2011; Benoit-Bird and Lawson, 2016). Continuous data collection allows for the detection of sound29

scattering layers (SL) of organisms, that can extend for tens to thousands of km (Proud et al., 2017). The high-frequency30

resolution enables the monitoring of both fine-scale (Baudena et al., 2021; Della Penna et al., 2021), and broader31

(Béhagle et al., 2016) changes in relation to oceanographic features. The vertical distribution of SL, and how it varies32

in time and space, are known to be affected by parameters such as oxygen minimum layers (Czudaj et al., 2021)33

and light (Aksnes et al., 2017). Their intensity and depth are correlated at a global scale to surface variables such as34

temperature, surface productivity and wind stress (Proud et al., 2017). It follows that the vertical distribution of SL35

has been found to be correlated to hydrological gradients and major fronts (Béhagle et al., 2016; Annasawmy et al.,36

2018; Kang et al., 2021; Ariza et al., 2022a; Chawarski et al., 2022), as well as to the seasonal cycle (Receveur et al.,37

2020b). However, the response of MM to acoustic stimulation is non-linear and some organisms are potentially less/not38

detected at certain frequencies (Lavery et al., 2007; Benoit-Bird and Lawson, 2016). Thus, the type of scatterers (the39

insonified organisms) greatly impacts the acoustic signal and the detection of SLs. Moreover, frequencies below or40

equal to 38 kHz are frequently employed, often using single-frequency analysis, to depict and characterise pelagic41

biota down to 1000 metres. Consequently, part of pelagic organisms remain unaccounted for due to their resonance42

at lower/higher frequencies. Considering simultaneous multifrequency acquisitions allows an effective description of43

pelagic community changes at distinct stations (Cotté et al., 2022) and along transects (Peña et al., 2014; Ariza et al.,44

2022a; García-Seoane et al., 2023; Assunção et al., 2023). In this context, our objective is to encompass the extensive45

variety of organisms comprising SLs within the epi- and mesopelagic zone, and their respective dynamics, using five46

frequencies (18, 38, 70, 120 and 200 kHz), even though their respective maximum depth ranges differ.47

When dealing with abundant and complex data, particularly considering variables with distinct ranges, it is essential48

to develop statistical tools that objectively extract key components of variability and fully leverage the information in49

multi-frequency acoustic observations. For instance, the computation of integrated nautical area scattering coefficient50
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(NASC, m2 nmi−2; Maclennan, 2002), a proxy of organisms’ relative biomass (e.g. Irigoien et al., 2014; Dornan et al.,51

2022), gives insight into the horizontal dispersion of biomass but information on the depth at which these changes52

occur are lacking from this metric. Investigating the vertical variability in acoustic profiles can be performed with53

Functional Principal Component Analysis (fPCA), part of Functional Data Analysis (FDA) methods (Ramsay and54

Silverman, 2005). To our knowledge only recent research has employed functional methods for analysing pelagic55

acoustic seascape variability through either single (Ariza et al., 2022b) or multiple (Ariza et al., 2022a) frequency56

analysis. In the same vein as these studies, our approach complements the latter by introducing an extended version57

of the Multivariate fPCA (mfPCA) outlined by Pauthenet et al. (2017). The methodology proposed here enhances58

statistical relevance to acoustic multiple frequencies by eliminating the need for vertical data segmentation prior to59

analysis when considering variables that share distinct ranges.60

Implementing this unexplored method, this study investigates the structuring patterns of backscatter distribution61

over a broad area located at the mid-southern latitude in the Indian Ocean and known to be a transition area between the62

oligotrophic subtropical gyre and the more productive frontal zone that characterises the northern part of the Southern63

Ocean (Geisen et al., 2022). The study is conducted as part of the expansion of the French national reserve around64

Saint-Paul and Amsterdam islands (SPA), with a focus on identifying coherent ecological regions. Earlier investigations65

have distinguished distinct SL patterns at 38 kHz in the South-Western Indian Ocean (Béhagle et al., 2016; Annasawmy66

et al., 2018). Independent examination of 18 and 38 kHz datasets have similarly shown variations in SL patterns over67

time and space in the study region, depending on specific metrics and frequencies considered (Boersch-Supan et al.,68

2017).69

The temporal facet of MM dynamics, driven by DVM, can obscure the identification of spatial trends, with70

repercussions up to large-scale biogeography (Sutton et al., 2017). Within the literature, certain studies focus on a71

specific period (e.g. Irigoien et al., 2014) or employ temporal segregation of their data, often using solar elevation as a72

discriminating factor (e.g. Béhagle et al., 2016, Ariza et al., 2022a). Another approach is to treat night and day as two73

complementary variables when the dataset permits the combination of day and night profiles into a single statistical74

observation (Ariza et al., 2022b). Finally, distinguishing between nighttime and daytime periods can be achieved using75

clustering methods (Boersch-Supan et al., 2017) or data reduction techniques (Receveur et al., 2020b). In this study,76

we employ the latter approach, hypothesising that by identifying temporal variability, it can be filtered to enhance our77

comprehension of spatial dynamics within the study area.78

This study aims to (i) propose an extended application of mfPCA for analysing the backscatter across five79

frequencies with varying depth ranges, avoiding vertical segmentation; (ii) extract principal modes of variability that80

account for simultaneous vertical changes in all five profiles; and (iii) identify spatially coherent regions that link81

surface environmental conditions to the acoustic patterns by filtering out temporal variability. In accordance with82

previous studies, we expect an increase of the global acoustic densities in frontal areas and productive regions and83

contrasted structures of SL patterns in this transition zone. As complementary analyses, we compute the integrated84

NASC and analyse samples from additional cruises to enhance our understanding of observed acoustic biomass85

and communities. This research encourages discussions about adopting multifrequency and functional approaches86

to unravel vertical, temporal and spatial patterns in acoustic studies.87

2. Methods88

2.1. Study area89

The study area ranges between 33-47° S and 72-80° E and englobes the French Economic Exclusive Zone (EEZ) of90

Saint-Paul and Amsterdam islands (SPA). This region covers contrasted oceanographic conditions and regimes from91
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the North of the Polar Front and subantarctic zones of the Southern Ocean to the subtropical zone of the South Indian92

Ocean (Figure 1).93

Figure 1: Location of the study area in the Southern Indian Ocean. The left panel shows the mean daily sea surface
temperature from the 1st January 2016 to the 29th February 2016 (satellite product provided by the Copernicus Marine
Environment Monitoring Service, https://doi.org/10.48670/moi-00165). The Polar Front (PF) and Subantarctic Front
(SAF) are shown with black lines (Park et al., 2019). The dynamical Subtropical Front (STF) is shown with the purple
lines (Graham and De Boer, 2013). The black rectangle defines the area of study. The right panel displays the bathymetry
of the focus area. The 500 m and 2500 m isobath highlight the rise in bathymetry around the Kerguelen archipelago (Ker.)
and Saint-Paul and Amsterdam islands (SP and A). The circular black line delimits the French Economic Exclusive Zone
(EEZ). The yellow and orange lines correspond respectively to the transect of the THEMISTO cruises in 2016 and 2022.
The dots correspond to the biological sampling stations coloured according to the year. Some stations are superimposed
on others.

2.2. Data acquisition94

All data acquisition took place aboard the R/V Marion Dufresne II and was carried out during austral summer.95

2.2.1. Active acoustic data acquisition and processing96

Acoustic data was continuously recorded during THEMISTO cruises in 2016 (https://doi.org/10.17600/97

16016100) and 2022 (https://doi.org/10.17600/18001847), selected among a time series of campaigns in the98

same area, starting in 2013, due to their high quality for the proposed analyses. Data was collected between February99

19-24, 2016, and February 23-28, 2022, using an EK80 echosounder (Norway, SIMRAD), operating at 18, 38, 70,100

120, and 200 kHz. The echosounder was calibrated annually before data acquisition (Demer et al., 2015). Acoustic101

parameters for each frequency are in Table 1. Note that the depth range differs between the frequencies. For both102

cruises, the average ping interval was 3 seconds and average ship speed was 6.2 m s−1. Stationary data (speed < 1.5103

m s−1) and profiles collected at isobaths shallower than 1000 m were excluded. Data processing was performed using104

Matecho (Perrot et al., 2018) allowing data validation and manual removal of aliased seabeds by an expert, followed105

by the application of algorithms to filter attenuated pings, parasites, deep spikes, and correct background noise (Ryan106

et al., 2015; De Robertis and Higginbottom, 2007). Sound celerity was corrected using in situ temperature and salinity107

profiles from Conductivity-Temperature-Depth (CTD) casts deployed at depths > 1000 m.108

L. Izard et al.: Preprint submitted to Elsevier Page 4 of 34

https://doi.org/10.48670/moi-00165
https://doi.org/10.17600/16016100
https://doi.org/10.17600/16016100
https://doi.org/10.17600/16016100
https://doi.org/10.17600/18001847


Table 1
Surface offset, maximum acquired depth range and transmitted power of the 5 frequencies used by the EK80 echosounder
during the two cruises. The echointegration ranges from the surface saturation zone down to the maximum acquisition
range of frequencies. If two values are indicated, they correspond respectively to the 2016/2022 cruises.

Frequency (kHz)

18 38 70 120 200

Surface offset (m) 25 25 25 25 25
Maximum depth range (m) 1000 820 500 230 110
Pulse power (103 W) 1/2 1 0.75 0.25 0.09/0.12

Using the terminology from Maclennan (2002), we calculated the volume backscatter strength (𝑆𝑣) in dB re 1 m−1,109

representing marine organism density. Profiles of 𝑆𝑣 were down-sampled to Elementary Sampling Units (ESU), with110

each echointegration cell being 2 m in height and 1 nautical mile in width (1 nautical mile = 1852 m), with a lower111

threshold of -100 dB. This spatial resolution balances finescale feature variation and coherent spatio-temporal structure112

in the dataset. We calculated the nautical area scattering coefficient (NASC, m2 nmi−2) from the smoothed 𝑆𝑣 profiles113

(see paragraph (i) in Section 2.3.1) to ensure consistency between the acoustic profiles and the integrated NASC. The114

ESU periods were determined using solar elevation: daytime corresponds to solar elevation > 18° above the horizon115

and nighttime to solar elevation < 18° below the horizon. Twilight periods correspond to solar elevation ranging from116

-18° to 18°.117

2.2.2. In situ environmental data118

Subsurface (hull depth, 6 m) temperature (°C), salinity (psu), fluorescence (mg m−3) and oxygen (𝜇mol kg−1) were119

continuously measured with an thermosalinograph, fluorometer and oxygen sensor. The data are provided by the OISO120

program (Océan Indien Service d’Observations; https://doi.org/10.18142/228). The four variables are used to121

investigate the link between the multi-frequency acoustic patterns and the oceanographic context. Bathymetry data122

used for analysis were obtained from the General Bathymetric Chart of the Oceans 2022 database (GEBCO, 2022;123

15 arc-second grid resolution). Taking benefit from simultaneous hydrological in situ measurements, we associated124

multiple surface temperature and salinity discontinuities to the surface characteristics (Anilkumar et al., 2007) of125

Subantarctic Front (SAF) and two branches of the Subtropical Front (STF), separating distinct oceanic zones (e.g.126

Geisen et al., 2022).127

2.2.3. Biological sampling and processing128

Biological samples acquisition took place during the REPCCOAI (Réponse de l’écosystème pélagique aux129

changements climatiques dans l’océan Austral et Indien Sud - Response of the pelagic ecosystem to climate change130

in the Southern Ocean and South Indian) cruises in 2017, 2018 and 2019 (https://doi.org/10.18142/249). MM131

samples were collected using a pelagic Isaacs-Kidd Midwater Trawl (IKMT) net, which allows the retaining of large132

planktonic and micronektonic organisms. The net had a total length of 17 metres and a decreasing mesh size going133

from 3.5 cm at the entrance to 0.5 cm before the cod-end. The spinning speed was approximately 0.8 m s−1 and the134

vessel speed varied between 1 and 1.5 m s−1. The number of IKMT samples by year in the area was n = 4 in 2017, n =135

9 in 2018, and n = 7 in 2019. The net was obliquely towed at each station from 1000 m depth to the surface to obtain136

an integrated inventory of the macrozooplankton and micronekton community. This protocol was adopted for all nets137

in 2018 and 2019. In 2017, logistical and bad weather conditions meant that the same protocol could not be applied138

to all nets. Out of a total of 20 nets, 3 were towed from a depth of 600 m during nighttime. The net was stabilised for139
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three minutes at fishing depth before being raised to the surface at a turning speed of 0.6 m s−1. A flowmeter was used140

to determine the filtered volume.141

Once the IKMT samples were collected, they were fixed in 5 % formalin buffered with seawater supplemented with142

sodium tetraborate for pH adjustment. Once species identifications were completed, the samples were reconditioned143

with Battaglia sauce for long-term preservation (Mastail and Battaglia, 1978). When the number of individuals in a144

sample was too large, the sample was split using a Motoda box (Motoda, 1959). Organisms were observed with a145

stereomicroscope and determined using identification keys (Baker et al., 1990; Boltovskoy, 1999; Kirkwood, 1982;146

O’Sullivan, 1983). Identification was performed down to species level and on rare occasions to the genus or the order147

when specimens were not in a good condition. Once counts were completed, the abundances (ind m−3) were estimated148

using filtered volumes.149

2.3. Statistics150

All statistical methods were applied using R software version 4.2.0 (Team, 2022). The workflow displayed in151

Figure 2 summarises the statistical analyses and is used as a backbone to describe the methodology in the following152

sections. All acoustic data periods were analysed simultaneously (daytime, sunset, sunrise, nighttime), but 2016 and153

2022 dataset were analysed separately.154

2.3.1. Functional Data Analysis applied to multivariate acoustic data155

The raw simultaneously acquired 𝑆𝑣 profiles at the five frequencies (18, 38, 70, 120, and 200 kHz) were156

echointegrated onto a common grid. The resulting profiles are associated with the same Elementary Sampling Unit157

(ESU) information, which includes identical GPS coordinates and time acquisition. To analyse the multiple frequencies158

joint variation, we term the five acoustic profiles as one acoustic observation (AO, Figure 2A). This consideration leads159

to 𝑁 = 720 AOs in 2016 and 𝑁 = 962 AOs in 2022.160

(i) Discrete to functional acoustic data161

An acoustic profile arrives as 𝑃 pairwise values (𝑧1, 𝑆𝑣1), . . . , (𝑧𝑃 , 𝑆𝑣𝑃 ), where 𝑧 is depth (m) and 𝑆𝑣 acoustic162

backscatter (dB re 1 m−1). As depth is a continuum, it is assumed that values are sampled points of a single entity,163

here a continuous non-periodic function, which shape characterises the vertical structure of MM distribution in the164

water column (Figure 2B). An acoustic value is possibly blurred by measurement errors (e.g. parasites, attenuation)165

and treatment choices (e.g. echointegration level). Hence, the backscatter 𝑆𝑣𝑝 observed at depth 𝑧𝑝 can be estimated166

with a continuous function 𝑓 such that167

𝑆𝑣𝑝 = 𝑓 (𝑧𝑝) + 𝜀𝑝,

where the remainder 𝜀𝑝 is hoped to be as small as possible. It is assumed that the function 𝑓 is expressed as a linear168

combination of 𝐾 known basis functions 𝜙𝑘(𝑧):169

𝑓 (𝑧) =
𝐾
∑

𝑘=1
𝛼𝑘𝜙𝑘(𝑧),

where the 𝜙𝑘 are continuous B-splines, piecewise polynomials of degree 3, joined end to end with continuity170

constraints at arguments values called knots (Ramsay and Silverman, 2005). Coefficients 𝛼𝑘 are estimated by least171

squares regression when minimising the penalised sum of squared errors:172
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𝑃𝐸𝑁𝑆𝑆𝐸 =
𝑃
∑

𝑝=1

(

𝑆𝑣𝑝 − 𝑓 (𝑧𝑝)
)2 + 𝜆∫𝜏

[

𝑓 (2)(𝑧)
]2 𝑑𝑧.

𝜆 is a penalization parameter and 𝑓 (2) is the second derivative of 𝑓 whose square is integrated between surface to173

depth over the domain 𝜏. The B-spline regression was applied with the R package fda (version 6.0.3).174
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Figure 2: Workflow illustrating the methodology. (A.) An acoustic observation (AO) is defined by five echointegrated
profiles, one per frequency (18, 38, 70, 120 and 200 kHz). Each of the five profiles differ in depth range. (B.) Each
profile is smoothed in a B-spline basis system that is adapted to the frequency depth range. The grey dots are the discrete
vertical values and the orange lines correspond to their associated functional curves. All profiles are expressed in backscatter
strength 𝑆𝑣 (dB re 1 m−1). (C.) Each AO is summarised by a vector merging the set of coefficients that describe the
continuous curves in B. The functional AOs are stored by row in a single matrix 𝗫, allowing us to consider the distinct
frequencies covariance. (D.) A Multivariate Functional PCA (mfPCA) is applied on 𝗫. Each AO is decomposed into a
combination of principal modes of variability, directly associated with the shape of the profiles. PC1 and PC2 correspond to
the first and second principal components of the mfPCA while VM1 and VM2 are the associated first and second vertical
modes of variability. (E.) A final dataset is created by merging the environmental conditions with the main modes of
acoustic patterns defined by the scores of a selection of principal components. A Multivariate Factorial Analysis (MFA) is
applied to the final dataset. The correlations between the different variables can be displayed and analysed. (F.) The MFA
scores (lines of the matrix in E.) are clustered with a model-based clustering method. The groups can be projected into
the geographical space and define environmental-acoustic regions. Dim1 and Dim2 refer to the dimensions of the MFA.
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The number of basis functions controls the smoothness of the profiles. In the literature, it has been chosen either175

to match data resolution (Ariza et al., 2022a) or minimise quadratic error (Godard et al., 2020). Accounting for the176

varying depth ranges of each frequency (Table 1), we determine distinct values of 𝐾 to achieve a knot spacing of 20177

m, resulting in separate basis systems (𝐾18 = 50; 𝐾38 = 42; 𝐾70 = 26; 𝐾120 = 13; 𝐾200 = 7). We set the penalty178

parameter 𝜆 = 0.05 to balance solution smoothness and data fit. This smoothing penalty enables increasing 𝐾 without179

overfitting the curves.180

Following this step, profile shapes are represented by coefficients. Each AO is summarised by a vector 𝜶 merging181

the coefficients associated with the five frequencies:182

𝜶 = (𝛼181 , .., 𝛼18
𝐾18 ; 𝛼

38
1 , .., 𝛼38

𝐾38 ; 𝛼
70
1 , .., 𝛼70

𝐾70 ; 𝛼
120
1 , .., 𝛼120

𝐾120 ; 𝛼
200
1 , .., 𝛼200

𝐾200 )
′.

The successive AOs are then row combined into a single matrix 𝗫 of dimension 𝑁 × 𝐾𝑇 , where 𝑁 is the183

number of AOs and 𝐾𝑇 the total number of coefficients associated with the five frequencies such that 𝐾𝑇 =184

𝐾18 +𝐾38 +𝐾70 +𝐾120 +𝐾200 (Figure 2C).185

(ii) Principal modes of multivariate acoustic variability186

The following section presents the mfPCA procedure by following the steps documented in Pauthenet et al. (2017).187

Firstly, we compute the mean vector 𝜶 of acoustic observations with188

𝜶 = (𝛼181 ,… , 𝛼18𝐾18 ; 𝛼
38
1 ,… , 𝛼38𝐾38 ; 𝛼

70
1 ,… , 𝛼70𝐾70 ; 𝛼

120
1 ,… , 𝛼120𝐾120 ; 𝛼

200
1 ,… , 𝛼200𝐾200 )′, (1)

where 𝛼181 is the mean of the 𝑁 coefficients 𝛼181 . Subtracting this mean vector to each row of 𝗫 forms the centred189

matrix 𝗖. The main modes of variability are obtained by solving the following eigenvalue problem:190

𝗩𝗪𝗠𝐛𝑙 = 𝜆𝑙𝐛𝑙,

where 𝐛𝑙 is the 𝑙𝑡ℎ eigenvector associated with the eigenvalue 𝜆𝑙. The crossed covariance matrix 𝗩 = 1
𝑁𝗖′𝗖 of191

size 𝐾𝑇 ×𝐾𝑇 is a block matrix with entries192

𝗩 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝗩18∕18 𝗩18∕38 𝗩18∕70 𝗩18∕120 𝗩18∕200

𝗩38∕18 𝗩38∕38 𝗩38∕70 𝗩38∕120 𝗩38∕200

𝗩70∕18 𝗩70∕38 𝗩70∕70 𝗩70∕120 𝗩70∕200

𝗩120∕18 𝗩120∕38 𝗩120∕70 𝗩120∕120 𝗩120∕200

𝗩200∕18 𝗩200∕38 𝗩200∕70 𝗩200∕120 𝗩200∕200

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝗩18∕38 is the covariance matrix of size 𝐾18 × 𝐾38 between coefficients of the 18 and 38 kHz frequencies.193

Since the B-spline basis does not form an orthonormal basis, the 𝗪 matrix of size 𝐾𝑇 × 𝐾𝑇 is defined to guarantee194

the metric equivalence between the functional problem (working on functions) and its discrete version (working on195

coefficients of the decomposition). The matrix is constructed by block as follows:196

𝗪 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝗪18 0 0 0 0
0 𝗪38 0 0 0
0 0 𝗪70 0 0
0 0 0 𝗪120 0
0 0 0 0 𝗪200

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Each non zero entry is constituted with a matrix of scalar products of the basis functions. Note that unlike in197

Pauthenet et al. (2017), different basis systems have been used for the five profile expansion (the five frequencies),198

leading to 𝗪18 ≠ 𝗪38 ≠ 𝗪70 ≠ 𝗪120 ≠ 𝗪200. Finally, the matrix 𝗠 ensure the normalisation step during the199

mfPCA, giving the same weight to each frequency.200

The AO can now be projected in a space of reduced dimension when computing the principal component (PC)201

vectors 𝐲𝑙 associated to each eigenvalue 𝜆𝑙 with202

𝐲𝑙 = 𝗖𝗠−1∕2𝗪−1∕2𝐛𝑙.

The PCs capture the variance of the system. They correspond to the uncorrelated linear combinations of the original203

variables. In this mfPCA, a total of𝐾𝑇 eigenvectors are obtained and sorted in ascending order based on their associated204

eigenvalue. Each eigenvector generates five eigenfunctions (𝜉18, 𝜉38, 𝜉70, 𝜉120, 𝜉200), referred to as vertical modes (VM,205

Pauthenet et al., 2017). The first vertical mode (VM1) corresponds to the eigenvector with the largest eigenvalue.206

We compute the mean functional profile for each frequency as207

𝑥𝑗(𝑧) =
𝐾𝑗
∑

𝑘=1
𝛼𝑗𝑘𝜙𝑘(𝑧), 𝑗 ∈ {18, 38, 70, 120, 200}.

Here, the mean profile 𝑥18(𝑧) corresponds to the mean backscattering profile at 18 kHz (and so on for the other208

frequencies). The effect of the different VMs can be displayed by adding or subtracting the corresponding eigenfunction209

to the mean profile 𝑥𝑗(𝑧) (Figure 2D):210

𝑥𝑗(𝑧) ±
√

𝜆𝑙𝜉
𝑗
𝑙 (𝑧), 𝑗 ∈ {18, 38, 70, 120, 200}.

For example, the deformation of the mean profile 𝑥18(𝑧) associated with VM1 can be displayed computing 𝑥18(𝑧) ±211
√

𝜆1𝜉181 (𝑧).212

PC scores obtained for each AO were interpreted by examining the effect of the associated eigenfunctions on the213

mean profiles. The dynamic of PC scores was investigated by comparing them with spatial and temporal factors. The214

R library circular (version 0.4.95) was used to display and explore temporal patterns.215

2.3.2. Coupling environmental variables and acoustic patterns216

A Multiple Factor Analysis (MFA) was conducted using the R library FactoMineR (version 2.4) to explore the217

potential relationship between the identified acoustic patterns and oceanographic conditions. Each AO was time-218

associated with in situ temperature, salinity, oxygen and fluorescence sampled at 6 m below the surface. MFA is a219

statistical method that allows us to describe observations structured in groups of variables (Pagès, 2002). The analysis220

involved two groups: (i) the acoustic group, consisting of a selection of mfPCA principal components (see Section221

2.3.1), and (ii) the environmental group, consisting of the surface environmental variables. A third group composed of222

latitude, longitude and bathymetry was included as supplementary variables to examine their relation with the MFA223

dimensions without affecting the results.224

The whole set of variables constitute a final dataset displayed in Figure 2E. Standardisation was performed to ensure225

comparability among variables measured in different units within the environmental and supplementary groups. Since226

MFA is based on the core of the more classic PCA, the eigenvalues, variable contributions, and scores are investigated227

to identify the variables that contribute most to variations in the dataset.228
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2.3.3. Identifying environmental-acoustic regions229

The scores of the MFA were clustered using a model-based method (R library mclust version 5.4.10, Scrucca230

et al., 2016) to define groups sharing similar acoustic vertical structures and environmental conditions, called hereafter231

environmental-acoustic regions (Figure 2F). Model-based clustering is based on a probability model defined by a finite232

mixture of multivariate Gaussian distributions (Bouveyron et al., 2019). The Bayesian Information Criterion (BIC,233

Schwarz, 1978) and the Integrated Completed Likelihood (ICL, Biernacki et al., 2000) were computed for defining the234

optimal number of groups in the dataset. Pairwise Wilcoxon tests and functional ANalysis Of VAriance (fANOVA, R235

library fdANOVA version 0.1.2, Górecki and Smaga, 2019) were used to confirm the significance of the clusters (𝛼 =236

0.05).237

2.3.4. Biological data238

The abundance and diversity of organisms were explored by geographically assigning each net station with its239

corresponding environmental-acoustic regions. Statistical analyses were performed on five major taxonomic groups:240

euphausiids, siphonophores and salps for the zooplankton, and Gonostomatidae and Myctophidae for the fish. The241

abundance of the different taxon between the regions were compared using pairwise Wilcoxon tests (𝛼 = 0.05).242

Species-level abundance data have been used for euphausiids, siphonophores, salps and Myctophidae, while243

no identification of Gonostomatidae was performed. To study the assemblages’ structure, (i) the abundances were244

transformed with a log x+1 transformation, (ii) a Bray Curtis dissimilarity matrix was computed and (iii) a Non-Metric245

Multidimensional Scaling (NMDS) was performed in order to represent the pairwise dissimilarities between stations246

in multidimensional space. An ANalysis Of Similarities (ANOSIM) was also performed to test the significance of247

the differences in species composition based on abundances, among the groups classified by environmental-acoustic248

regions. As a non-parametric test, ANOSIM uses ranked dissimilarities instead of actual distances (Clarke, 1993).249

3. Results250

Two separate Multivariate Functional Principal Component Analyses (mfPCA) were conducted on acoustic data251

for 2016 and 2022. Subsequently, two Multiple Factor Analyses (MFA) were performed, one for each year, to explore252

the relationship between acoustic principal components and the environment. The MFA scores were clustered to253

identify environmental-acoustic coherent regions. Consequently, we proceeded with analysing the shape of acoustic254

profiles within each environmental-acoustic region. This was followed by a comparison of integrated NASC within255

each region. Additionally, biological samples from the years 2017, 2018, and 2019 were examined in relation to their256

spatial proximity to the environmental-acoustic regions defined in both 2016 and 2022.257

3.1. Multi-frequency acoustic analysis258

The mfPCA allows the examination of the pairwise correlation (normalised version of the crossed covariance259

matrix 𝗩) between the five frequencies. Results for acoustic data in 2016 are displayed Figure 3. For each panel, we260

can read the correlation between two frequencies at different pairs of depth (𝑧, 𝑠). The diagonal panels correspond261

to the correlation for a given frequency (for instance 𝗩𝟭𝟴∕𝟭𝟴). They are symmetrical with a correlation of 1 on their262

diagonal. Regarding the diagonal panels of the three lowest frequencies (18, 38 and 70 kHz), a highly correlated layer263

(> 0.4) is observed between 100 m and 350 m, particularly visible in the centre part of the 70/70 kHz panel. For the264

18/18 kHz and 38/38 kHz panels, a second correlated layer (> 0.4) is highlighted from 400 m to the maximum depth265

range, while no correlation (close to 0) is observed between the upper layer (25-400 m) and the deeper layer (400 m to266

the maximum depth range). For the highest frequencies (diagonal panels 120/120 and 200/200 kHz), the correlation267

is always above 0.2, indicating that backscatter between the sub-surface and 220 m are well correlated.268
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Regarding the cross-correlation panels (e.g. 18/70 kHz), the correlations are maximal for similar depths, unless269

between the 18 and 38 kHz. For instance, the 18 kHz frequency at 100 m is highly correlated (> 0.8) with the 120270

kHz frequency at the same depth. For pairs of distant depths (e.g. 18 kHz at 600 m and 120 kHz at 150 m), the271

correlation between two frequencies is globally close to zero, meaning that backscatters measured near the surface at272

high frequency give little to no information on the low-frequency backscatters measured deeper. Negative correlation273

(< -0.4) only appears with the 38 kHz. Backscatters measured in a thin layer around 400 m at 38 kHz are negatively274

correlated with backscatters measured between 100 and 400 m with the other frequencies.275

Particular attention should be given to the cross-correlation between the 18 and 38 kHz. The pairwise correlation276

(𝑧, 𝑠) when 𝑧 = 𝑠 is weakly or not correlated (around 0) when depth 𝑧 is between 300 and 400 m or below 600 m. For a277

given depth, the backscatter information provided by these two frequencies seems complementary, which emphasises278

the need for multivariate acoustic analysis.279

Results on the frequency correlations are similar for acoustic data recorded in 2022 (not shown).280

3.2. Main modes of backscatter variability281

The mfPCA identifies the main modes of variability associated with the changes in backscatter vertical distribution.282

Figure 4, Figure 5 and Figure 6 display the mfPCA results for 2016. Results for 2022 are shown in Supplementary283

Materials (Figure S1, Figure S2 and Figure S3). The first seven modes of variability were retained for subsequent284

analysis, accounting for 82.4 and 83.4 % of the variability in 2016 and 2022 (respectively) as done in Ariza et al.285

(2022a). In 2016, these modes represent 48.09, 12.54, 9.16, 3.93, 3.22, 2.92, and 2.58 % of the original variability (left286

panel Figure 4).287

The contributions (%) of each frequency for a given mode are unequal and not constant across the frequencies (right288

panel Figure 4). The first eigenvalue contributions are distributed from low to high on the 38, 18, 70, 200 and 120 kHz.289

The first mode in 2022 is also primarily influenced by the 120 kHz frequency. The variation in contribution among290

frequencies decreases for the second eigenvalue, accompanied by a shift in their order of contribution (Figure 4). The291

contribution of the 38 kHz is particularly important for the third to the sixth eigenvalues (above 20 %). This contribution292

indicates modes of variability particularly driven by the vertical changes in MM distribution from organisms responsive293

to this frequency, also implying a large vertical range. The 200 kHz is also a large contributor to the fourth and fifth294

eigenvalues, while the 18 and 70 kHz are part of the 3 main contributors for the sixth eigenvalue. The seventh mode is295

finally mainly driven by the 18 kHz reaching 70 % of the variance explained.296

For interpreting vertical modes (VM) of variability, we associate them with the mfPCA principal components (PC).297

The first three PCs’ scores (left panels Figure 5) demonstrate the degree of deformation linked to their corresponding298

VM (right panels Figure 5). PC1’s spatial pattern alternates between positive and negative values along the transect299

(Figure 5a). The associated VM1 reveals consistent deformation across the five frequencies, indicating periodic300

backscatter intensity changes from the surface down to 400 m (Figure 5d). PC2 scores transition from negative in301

the south to positive in the north (blue to red dots in Figure 5b). The corresponding VM2 opposes AOs with high or302

low backscatter in the upper 100 metres and an inversion between 100 and 400 m. Deformation is consistent across303

the five frequencies with varying intensity (e.g. more pronounced deformation from surface to 100 m for 38 kHz than304

200 kHz; Figure 5e). PC3 scores are positive south of 42° S and north of 36° S (Figure 5c). This third mode is mainly305

influenced by the 38 kHz, opposing profiles with low or high backscatter between 200 and 800 m at this frequency306

(Figure 5f). Additionally, blue profiles (negative PC3) exhibit increased backscatter between the surface and 100 m307

across all frequencies.308

To elucidate further the profile deformation patterns, scores of PC1, PC2, and PC3 were plotted against latitude309

and local time of the day (GMT+5; Figure 6, top and bottom panels, respectively).310
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Figure 3: Contour plot of the normalized block-structured matrix 𝗩 obtained for the 2016 acoustic data. 𝗩 is computed
on the coefficients of the B-spline expansion (projection of the acoustic observations in their functional space, Section
2.3.1). Each panel displays the correlation between pairwise frequencies (18, 38, 70, 120 and 200 kHz) at any depth. For
example, the correlation between the 18 kHz at 700 m and the 200 kHz at 100 m is close to 0. Note that only the diagonal
panels are symmetrical and square; the others are unsymmetrical and rectangle (as the range of the different frequencies
changes). The square representation was chosen to facilitate the reading. The black line indicates the 1:1 depth.

The scores of PC1 present a latitudinal cyclic pattern that match the previous observation shown Figure 5a. The311

dots show a coherent alternance of periods along latitude due to the alternation of nighttime and daytime periods312

along the transect (Figure 6a). The same scores are displayed in a clockwise manner, with isolines circling the clock’s313

zero level (black circle), depicting iso-shapes of AO deformation for the associated vertical mode. PC1 scores are314

positive during the daytime (yellow dots between 06:00 and 18:00) and negative at nighttime (dark blue dots between315
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Figure 4: Results of the mfPCA performed on acoustic data in 2016. (Left) Cumulative percentage of variance explained
by the 10 principal eigenvalues (the first seven add to 82.44 % of total inertia). (Right) Percentage of contributions of
each frequency to the eigenvalues.

21:00 and 03:00). Twilight periods (cyan dots between 03:00 and 06:00 and between 18:00 and 21:00) represent316

transitions between distinct stable temporal vertical structures. While PC1 primarily relates to the circadian cycle,317

the increasing amplitude between daytime and nighttime scores along latitude indicates that daytime period is more318

structured northwards, with lower densities recorded between the surface and 400 m (red curves in Figure 5d).319

In contrast to PC1, PC2 and PC3 scores exhibit more distinct latitudinal trends (Figure 6). PC2 decreases from 46°320

to 44° S, then increases to 34° S. Notably, scores during the daytime show greater variability (PC2 ∈ [-1.8;2.2]) than321

during the nighttime (PC2 ∈ [-1.2;1.2]). For PC3, scores decrease until 37° S, then rise until the end of the transect,322

with an additional negative peak at 35°S. Additionally, PC2 and PC3 show a weak association with diel variability323

(Figure 6), as their scores cannot reliably distinguish between negative or positive values at a given time.324

3.3. Acoustic and oceanographic context325

Using Multiple Factor Analysis (MFA), we explored the relationship between two sets of variables. Our objective326

was to identify regions displaying shared environmental and acoustic patterns, while mitigating the influence of the327

circadian cycle. Consequently, the acoustic group of the MFA is composed of PC2 to PC7 scores, excluding PC1328

(recognized as the main temporal mode) and consecutive modes that contributed less than 2% of the vertical variability.329

On the other hand, the environmental group is composed of surface temperature (°C), salinity (psu), oxygen (𝜇mol330

kg−1), and fluorescence (mg m−3).331

To prevent confusion with the mfPCA applied to acoustic data, the principal modes of MFA are termed dimensions.332

In 2016 and 2022, six and five primary dimensions were retained, respectively, to capture 94.69 and 91.32% of the333

total variability. The proportion of variance explained by the dimensions is 43, 20.6, 11, 7.4, 6.8, and 5.9 % for the334

2016 cruise and 41.8 20.6, 12.1, 10.2 and 6.6 % for the 2022 cruise. In both cruises, the first dimension is evenly split335

between the environmental and acoustic groups, comprising 51.6 and 48.5 % of variance explained in 2016, and 52.8336

and 47.2 % in 2022. Subsequent dimensions are primarily influenced by the acoustic group. Table 2 displays variable337

contributions (within each group) for each dimension. Among the first six MFA dimensions, all seven acoustic PCs338

contribute over 10 % to at least once. Temperature, salinity, and oxygen contribute to the first MFA dimension, while339

fluorescence contributes to the fourth dimension alongside PC5 and PC7 (Table 2).340
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Figure 5: Results of the mfPCA performed on acoustic data in 2016. The three lines of panels correspond to the three
first modes of variability. The left panels (a, b, c) display the spatial distribution of PC1, PC2 and PC3 along the ship
trajectory while the right panels (d, e, f) show the deformation of the five mean profiles (black dotted line) associated
with the corresponding vertical mode (VM). For a given line of panels, colors in the map match with the coloured profiles
on the right side. For example, red dots along the trajectory in a correspond to acoustic observations with backscatter
distribution close to the red profiles in d (i.e. low densities between the surface and 400 m for all frequencies). The color bar
above each spatial panel is adjusted to the range of the corresponding PC. Bathymetry line at 500 and 2500 m surround
the Kerguelen archipelago and Saint-Paul (SP) and Amsterdam (A) Islands. The blue circle define the Economic Exclusive
Zone (EEZ).

The correlation circles in the left panels of Figure 7 offer a supplementary perspective on the connections between341

acoustic patterns and surface environmental conditions. Arrows closer to each other indicate positive correlation, while342

opposing directions signify negative correlation. The distance from the origin reflects variable representation quality for343

a specific axis. In both years, latitude, temperature, and salinity are highly correlated and show a negative correlation344

with oxygen. These four variables correlate with the first dimension of the MFA and PC2 (acoustic variable). This345
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Figure 6: Results of the mfPCA performed on acoustic data in 2016. Projection of PC1 (a, d), PC2 (b, e) and PC3 (c, f)
along latitudinal (top) and diel (bottom) variations. Yellow, cyan and dark blue dots correspond to day, twilight and night
period (respectively) defined with the solar elevation. For both latitudinal and diel panels, the y-axis corresponds to the
scores of the PC. For diel variability, the time is in UTC+5 (local time) and PC score scales are read horizontally ([-3;4])
from the center to the edge of the circles. The solid red line is the Local-Linear estimator for circular-linear data. The
dashed black line (top panels) and the solid black line (bottom panels) highlight the 0-isoline. PC1 presents a clear link
with local time, while PC2 and 3 present more of a latitudinal pattern.

outcome suggests that the rise in backscatter within the upper 100 metres of the water column, linked to positive346

PC2 (Figure 5e, red curves), is positively linked to warmer, saltier but less oxygenated waters. In both years, PC3 is347

positively correlated with the second dimension.348

Differences in correlations between the two years stem from two main reasons. First, the acoustic modes of the two349

mfPCA runs (for each year) may not correspond to the same profile deformations (see Figure 5 and Figure S2). For350

example, the deformation linked to PC2 in 2016 aligns with the deformation tied to PC3 in 2022. Second, deformations351

can be reversed (e.g. the red VM2 curve in 2016 corresponds to the blue VM3 curve in 2022). Connecting correlation352

circles with acoustic VMs reveals that fluorescence is correlated with lower backscatter density between the surface353

and 100 m, and higher density between 100 and 400 m (blue curve in Figure 5 middle panels). Lastly, PC3 in 2016354

exhibits a negative correlation with longitude and bathymetry (Figure 7), consistent with spatial variations observed355

in Figure 5c.356

The first factorial plan of the MFA (Figure 7b and e) projects closely similar observations. MFA scores were357

clustered using a model-based clustering approach to identify regions with matching environmental conditions and358

acoustic patterns. The optimal number of groups, denoted as𝐺, was determined by examining the Integrated Completed359
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Table 2
Results of the Multiple Factor Analysis (MFA) performed on the 2016 dataset. The lines correspond to the dimensions of
the MFA with the contribution of each variable in percentage of variance explained (%). For example, PC2 is the major
contributor of Dim1, reaching almost 42 %. PC2 to PC7 correspond to the principal components of the acoustic mfPCA
(acoustic group). O, T, S and F correspond to oxygen, temperature, salinity and fluorescence (environmental group).
Contributions above 10 % are highlighted in grey.

Acoustic group Environmental group

PC2 PC3 PC4 PC5 PC6 PC7 O T S F

Dim1 41.96 5.45 0.74 0.22 0.07 0.02 15.69 15.19 13.93 6.74
Dim2 24.26 67.2 0.87 0.33 0.04 0.05 1.14 1.69 2.54 1.89
Dim3 7.22 17.05 43.66 9.51 0.86 0.93 3.23 4.86 7.33 5.36
Dim4 7.59 0.52 8.3 19.66 1.42 30.15 0.71 0.16 0.14 31.35
Dim5 4.50 1.41 21.39 44.66 8.5 11.08 1.88 1.22 0.01 5.35
Dim6 0.03 0.01 0.68 7.97 82.42 7.96 0 0.06 0.01 0.85

Likelihood (ICL) and Bayesian Information Criterion (BIC). With both criteria, the approximated integrated likelihood360

gain when increasing the number of groups dropped after 𝐺 = 3 in both years. To ensure a relevant and ecologically361

interpretable model (without excessively dividing the data), we then decided to fix 𝐺 to 3. The partition of MFA scores362

in 3 groups was found to be highly stable (insensitive to initialisation) with a probability of belonging to a group always363

above 0.5, supporting the choice of 𝐺.364

This clustering outcome exhibits geographical consistency across the two years, with the purple group located in365

the southern study area, the red group in the north, and the green group serving as a transitional zone (Figure 7c and366

f). These spatially coherent clusters are henceforth referred to as environmental-acoustic regions.367

3.4. Environmental-acoustic regions368

All four environmental parameters (temperature, salinity, oxygen and fluorescence) were highly variable along the369

transects and allowed the approximate location of fronts in the study area (Figure 8). In (Anilkumar et al., 2007), the370

northern branch of Subantarctic Front (SAF1) falls within 9-11 °C and 33.85-34 psu at surface, while the Southern371

Subtropical Front (SSTF) ranges from 11-17 °C and 34.05-35.35 psu, with its northern branch (NSTF) at 21-22 °C372

and a constant salinity of 35.5 psu. Here, we associated the SAF with a surface salinity shift located at ∼44.55° S in373

2016 and ∼43.25° S in 2022. Salinity values increased from ∼33.7-33.9 psu (south of the front) to ∼34.5 psu (north374

of the front) in both years with increased temperature associated. The SSTF was consistently located around ∼40.2°375

S in both cruises. SSTF exhibited mean temperatures of 17.7 °C and 16.4 °C in 2016 and 2022, coupled with mean376

salinities of 35.185 and 34.945 psu. The Northern SubTropical Front (NSTF) was positioned at 36.05° S in 2016 and377

36.65° S in 2022 corresponding to a temperature > 20.15 °C and 20.05 °C and distinguishing areas with salinity >378

35.3 psu in 2016 and 35.51 psu in 2022.379

Following Geisen et al. (2022), we refer to the southern group (purple) as the Polar Front Zone (PFZ). The380

green cluster located to the north of the SAF and to the south of the NSTF has been termed the SubAntarctic381

Zone (SAZ), while the red cluster situated to the north of the NSTF is identified as the Subtropical Zone (STZ).382

All four environmental variables (temperature, salinity, oxygen and fluorescence) were significantly different between383

the different regions (Wilcoxon pairwise tests, p-value < 0.001). The PFZ (purple) shows colder, fresher and more384

oxygenated surface waters. At the opposite, the STZ (red) corresponds to subtropical environmental conditions385

characterised by hotter, saltier, less oxygenated surface waters with a weak fluorescence signal. The SAZ (green)386

corresponds to a transition zone between two oceanographic systems. The fluorescence is significantly higher in the387
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Figure 7: Results of the Multiple Factor Analysis (MFA) and model-based clustering (MBC) of the MFA scores. Top panels:
2016 cruise. Bottom panels: 2022 cruise. (a, d) Correlation circle between the variables and the first two dimensions of the
MFA. The variables are separated in three groups : the environmental group (brown arrows), the acoustic group (yellow
arrows) and the supplementary group (black arrows). The environmental group comprises 4 variables : temperature (T),
salinity (S), oxygen (O) and fluorescence (F). The acoustic group comprises the second to the seventh principal components
(PC2-7) of the acoustic mfPCA. In a, PC6 and 7 arrows are not indicated for more readability (arrows are close to (0,0)).
The supplementary group gathers the latitude (La), longitude (Lo) and bathymetry (B). (b, e) First factorial map of
the MFA with colors corresponding to the results of the MBC in three group. (c, f) Projection of the three clusters in
the geographical space coloured with respect to the group. Bathymetry line at 500 and 2500 m surround the Kerguelen
archipelago and Saint-Paul (SP) and Amsterdam (A) Islands. The blue circle define the Economic Exclusive Zone (EEZ).

PFZ and SAZ than in the STZ, with a large peak around 42° S in 2016 belonging to the green region, and two peaks388

around 44.5 and 43° S in 2022 belonging to the purple region. The peak observed in 2022 matches the SAF location389

but not in 2016. A third fluorescence peak is observed in 2022 around Saint-Paul and Amsterdam islands.390

We calculated the median acoustic profiles for both daytime and nighttime based on the environmental-acoustic391

region for both cruises (Figure 9). Pairwise fANOVA tests were used to confirm significant profile differences between392

regions according to the frequency and period. All pairwise tests showed significance (p-value < 0.001). Distinct393

differences between the median profiles are evident in the day-night comparison. Nighttime profiles present backscatter394

more uniformly distributed along the water column, without densities below -85 dB, whereas daytime profiles display395

lower average densities in the upper 400 m (matching PC1, Figure 5).396

For nighttime profiles (blue background Figure 9), the PFZ (purple) presents less vertical variations of densities397

in the water column than the two other groups. The SAZ (green) is distinguished by a deep scattering layer (DSL)398

(400-600 m) on the 18 kHz and three scattering layers (SL) on the 38 kHz, one at the surface (above 100 m), also399
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Figure 8: Environmental variables measured along the ship cruises as function of latitude. The colors correspond to the three
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compiled in the Southwest Indian Ocean (Anilkumar et al., 2007). The two black dashed vertical lines correspond to the
latitude of Saint-Paul (SP) and Amsterdam (A) islands.

seen on the higher frequencies, one at ∼350 m and a DSL between 500-800 m. The STZ (red) is characterised by an400

intense surface scattering layer (SSL) observed for all frequencies, low intensities in the intermediate layer (IL) and401

dense multi-layered DSL observed on the 38 kHz.402

For daily profiles (white background Figure 9), the DSL observed on the 18 kHz around 400 m (2016) or 500 m403

(2022) is weaker in the STZ (red) while the large DSL observed on the 38 kHz (400-800 m) is weaker in the PFZ404

(purple). An intense SSL (0-100 m) on the 18, 38, 70 and 120 kHz characterises the STZ (red) in 2022 in comparison405

with the other regions. In 2016, this intense SSL is also observed in the SAZ (green) on the 38 and 70 kHz and in the406

SAZ and the PFZ on the 18 kHz. Finally, the PFZ (purple) is defined by higher densities in the IL (100-300 m) in 2016,407

observed as a peak around 100 m in 2022, while the STZ is particularly low at that layer.408

Overall, we observe from the PFZ to the STZ (i) an increase of densities in the SSL (0-100 m), (ii) a decrease in409

densities in the IL during the daytime (100-300 m) and (iii) the apparition of an dense DSL on the 38 kHz. Even though410

variability can be observed, this main pattern is recurrent between years.411

The median 𝑆𝑣 profiles with interquartile ranges for each environmental-acoustic region are displayed Figure S4.412

Smoothed echograms for 2016 and 2022 are displayed in Figure S5 with associated environmental-acoustic regions.413
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Figure 9: Median acoustic profiles computed in the linear domain for each region obtained with the model-based clustering.
The median profile is calculated for each frequency (18, 38, 70, 120 and 200 kHz from left to right panels) depending on
the night (blue shade) and day periods (white shade) and considering independently each year. The first (resp. second)
and third (resp. fourth) lines of panels correspond to results for 2016 (resp. 2022). Purple profiles correspond to the
southernmost region (PFZ), red profiles to the northernmost region (STZ) and green profiles to the region in between
(SAF) (Figure 7 right panels).

3.5. Integrated NASC and taxons in the regions414

We calculated the integrated NASC across all frequencies, from 25 m depth down to their maximum range. We415

focus on lower frequencies that penetrate greater into the mesopelagic zone, as the frequencies with a sampling depth416

≤ 500 m (70, 120, and 200 kHz) were the first three contributors to the observed circadian cycle effect (Figure 4).417

At nighttime in 2022, both 18 and 38 kHz show a significant increase in NASC values (Wilcoxon pariwise tests,418

p-value < 0.001) from the PFZ (purple) to the STZ (red) (Figure 10). In 2016, the NASC for the 18 kHz is significantly419

higher in the SAZ (green) but no difference is found between the PFZ and the STZ. At 38 kHz in 2016, the NASC is420

significantly lower in the PFZ but no difference is found between the two other regions. During the daytime, the NASC421

values at 38 kHz are approximately three times higher in the SAZ and STZ in comparison to the PFZ. The 18 kHz422
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depicts an opposite pattern with the highest values observed in the southern region, gradually decreasing towards the423

north.424
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Figure 10: Boxplot of integrated NASC (m2 nmi−2) computed for each environmental-acoustic region defined with model-
based clustering. The NASC is calculated for the 18 (top panels) and 38 kHz (bottom panels) over profiles sampled at
night (blue shade) or at day (white shade). The y-axis is adjusted for each frequency. The left panels correspond to the
2016 cruise while the right panels correspond to the 2022 cruise. For a given year, frequency and period (night or day), all
pairwise integrated NASC are significantly different (Wilcoxon test, p-value < 0.01) unless when indicated ns above two
boxplots. The number of observations 𝑛 per boxplot ∈ [43,206].

Concerning the biological composition in the area, net samples were spatially associated with the three425

environmental-acoustic regions. The abundance of Gonostomatidae and salps exhibit a distinct pattern, showcasing426

lower Gonostomatidae abundance and higher salps abundance within the Polar Front Zone (purple) in comparison to427

the northern regions (Figure 11). However none of the differences observed are significant (Gonostomatidae: ANOVA,428

F2,13 = 3.487, p-value = 0.0613; Kruskal-Wallis, Chi-squared = 3.93, df = 2, p-value = 0.14). For euphausiids,429

siphonophores, and myctophids, no significant differences are observed.430

We identified 51 species of myctophids, 32 species of euphausiids, 35 species of siphonophores and 11 species431

of salps from the net samples. The NMDS indicates a correct value of stress (0.11 for euphausiids and myctophids,432

0.12 for siphonophores and 0.15 for salps) which means a good representation of the data (Figure 11). The NMDS433

projection shows a spatial distinction for the four groups (myctophids, salps, euphausiids and siphonophores) based on434

the environmental-acoustic regions. The ANOSIM carried out from stations separated by the environmental-acoustic435

regions shows significant differences between groups for myctophids, euphausiids and siphonophores (p-value =436

0.001). However, only a significant difference between the Polar Front Zone (PFZ) and the SubAntarctic Zone (SAZ)437

is observed for salps.438
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The PFZ (purple) is dominated by Southern Ocean species, such as Euphausia vallentini and Euphausia triacantha439

for euphausiids, Rosacea plicata for siphonophores and Salpa thompsoni for salps. The dominant myctophid species440

were Krefftichthys anderssoni, Protomyctophum bolini, Protomyctophum tenisoni. Within the PFZ, a latitudinal shift441

was observed with clear endemic southern ocean species in the south, and more cosmopolitan in the northern stations.442

The SubAntarctic Zone is marked by the dominance of cosmopolitan species present throughout the transect, and the443

absence of Antarctica species that were identified in the PFZ: Euphausia spinifera and Nematoscelis megalops for444

euphausiids, Chelophyes appendiculata, Eudoxoides mitra for siphonophores. The diversity of myctophids is higher in445

this region compared to the PFZ with the presence of Lampanyctus australis and Hygophum hanseni. No dominance446

of salp species was identified. Finally, several subtropical species such as the euphausiids Thysanopoda aequalis,447

Stylocheiron abbreviatum or Nematobrachion flexipes characterise the SubTropical Zone. The siphonophore species448

Agalma okenii and Abyla trigona are also dominant. Ceratoscopelus warmingii and Lampanyctus pusillus are the449

dominant myctophid species. Similarly to the SAZ, no dominance of salp species was identified.450
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Figure 11: Biological communities and association with the environmental-acoustic regions (colors). Top panel : boxplots
of organisms abundance (log(nb ind 106 m3)) grouped in five taxa. For each taxon, no significant differences were found
between regions (ANOVA or Kruskal-Wallis tests, p-value > 0.05). Bottom panels : ordination plot using Non-Metric
Multidimensional Scaling (NMDS) of IKMT euphausiids, Myctophidae, siphonophores and salps captured in the area.
Gonostomatidae could not be analysed unsing NMDS as no species-level identification could be performed. Each dot
represent a IKMT station (𝑛 total = 20). Positive correlated objects are close together on the same side of the plot. Black
crosses display the dominant species per region.
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4. Discussion451

We report here on the application of Functional Data Analysis methods applied to five acoustic frequencies452

sharing distinct depth ranges, acquired from a downward-facing echosounder. Our investigation delves into the inherent453

temporal variability of acoustic data, aiming to filter it to explore the spatial sound-scattering regimes evolution within a454

known transition zone. The analysis of the vertical distribution of sound-scattering layers can be achieved by vertically455

segregating the data prior to analysis (e.g. Béhagle et al., 2014). However, the mesopelagic vertical boundaries exhibit456

both spatial and temporal variability (Reygondeau et al., 2018), influenced by the specific oceanic province under457

consideration (Fuchs et al., 2022). This complexity in vertically delimiting oceanographic basins suggests that, instead458

of enforcing vertical separation prior to analysis, a more promising strategy is to adopt a comprehensive whole-water459

column approach (Sutton, 2013).460

We believe the functional data analysis method employed here, which identifies the depth maximising vertical461

variability (Nerini et al., 2010), allows us to contribute to this approach. Furthermore, the originality of this work is the462

application of the fPCA to joint acoustic frequencies sharing distinct depths, complementing a recent similar approach463

(Ariza et al., 2022a). Such tools can be seen as valuable as it is becoming clearer that multi-frequency hydroacoustic464

analyses are needed to better understand the proportions of distinct groups composing sound scattering layers (e.g.465

siphonophores, crustaceans and fish), which can in turn help reduce the uncertainty in mesopelagic organisms biomass466

estimates from acoustic data (Proud et al., 2019). Indeed, part of hydroacoustics research on pelagic vertical structures467

has focused on the 38 kHz because it reaches deep depths and it corresponds to the frequency of air-filled organisms468

resonance (e.g. Béhagle et al., 2016; Klevjer et al., 2016; Receveur et al., 2020b). It follows that research has largely469

focused on the 38 kHz to model micronekton spatial dynamics (e.g. Lehodey et al., 2015; Ariza et al., 2022b) and470

estimate the global fish biomass from NASC integrated values (Irigoien et al., 2014; Dornan et al., 2022). Yet, a471

single-frequency approach might encounter constraints in capturing the wide spectrum of community composition472

variations (Dornan et al., 2019).473

Decomposing and quantifying spatiotemporal variability in acoustic data474

As emphasised in Boersch-Supan et al. (2017), "there is an imperative [...] in using analysis frameworks that475

adequately address the inherent space-time variability". We show here that the primary mode of variability is tied476

to temporal dynamics even across a pronounced hydrological transition zone where substantial spatial variability was477

anticipated. This diel dominance aligns with the well-recognized diel vertical migration (DVM) pattern, a major mode478

of variability in acoustic data (e.g. Receveur et al., 2020a), and corroborates the substantial impact of daylight on479

backscatter values in the southern Indian Ocean (Boersch-Supan et al., 2017). This outcome is consistent with the long-480

known response of marine organisms to light levels (e.g. Cotté and Simard, 2005; Brierley, 2014) and the observation481

of organisms adjusting their depth to remain within preferred irradiance ranges (Frank and Widder, 2002). Our results482

indicate a slight increase in the scores of the temporal mode during the day for both the 2016 and 2022 cruises,483

implying spatial implications within this diel pattern. This intricacy can become even more complex with longer484

timescales like the seasonal cycle (Urmy et al., 2012). Recent studies have introduced effective data-driven techniques485

to capture inherent temporal variability in acoustic datasets (Parra et al., 2019; Lee and Staneva, 2020). In this study,486

we enhance the interpretation of our multi-frequency database by considering how different frequencies respond to487

temporal changes in both the mesopelagic zone (18-38 kHz) and the epipelagic zone (across the 5 frequencies). Our488

findings indicate that the distribution of each acoustic observation can be understood as a linear combination of specific489

sound-scattering features (e.g. VM2, VM3), building on a main cyclic temporal mode of variability (VM1). This490

advancement could contribute to optimising parameters for marine ecosystem models (e.g. Lehodey et al., 2015).491
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The mfPCA approach also proves valuable in analysing the frequency contributions to individual vertical modes. As492

illustrated in Figure 3, a high correlation exists within and between high frequencies (120-200 kHz). High frequencies493

substantial influence on the temporal mode aligns with their limited sampling range, primarily capturing the epipelagic494

dynamics, where organism migration significantly impacts abundance (e.g. Béhagle et al., 2017). The lower frequencies495

(18 and 38 kHz) are also influenced by temporal variability, albeit less due to the possible persistent deep scattering496

layers (DSL) between nighttime and daytime, associated with non-migratory organisms (particularly at the 38 kHz497

frequency). Additionally, Figure 3 revealed no correlation at depth among the deep-ranging frequencies (18 and 38498

kHz) probing the twilight zone. This absence of correlation results in an uneven contribution of the frequencies to each499

VM. For instance, the change in the deep sound-scattering layers highlighted by VM3 in 2016 is majorly driven by500

the 38 kHz, and could be associated with a change of community detected particularly at this frequency (e.g. a change501

in mesopelagic fish community, Dornan et al., 2019). On the contrary, VM2 (2016) was driven by a combination of502

frequencies, which suggest that the whole pelagic community structure varied with this pattern.503

Numerous spatiotemporal patterns504

Within the branch of Functional Data Analysis methods, Functional Principal Component Analysis (fPCA) has505

largely been applied to oceanographic research as it allows the study of 3D structures (space and depth or time). In506

analysing 3D hydrological patterns and front location, the initial factorial plan captured 92, 94, 87, and 79 % of inertia,507

respectively in Pauthenet et al. (2017, 2018, 2019, 2021). In Assunção et al. (2020) the first axis alone of the fPCA508

explained 88 and 83 % of temperature and salinity variation. While studying Southern Elephant seal dive patterns509

(Godard et al., 2020), three principal components were needed to encompass 78 % of total variability. In our recent510

study, the first seven VMs were necessary to capture around 80 % of total variance in 2016 and 2022 cruises, which511

match recent fPCA applied to acoustic data (Ariza et al., 2022a). Comparing the first modes of variability of a mfPCA512

applied to either biological or abiotic data (e.g. hydrological profiles) reveals that biological patterns need more VMs513

than abiotic patterns to capture their complexity.514

Sounds-scattering regimes are linked to surface environmental drivers515

Grouping the result of the MFA with model based clustering provided evidence of 3 distinct environmental-acoustic516

groups in the transition zone, with the same spatial distribution observed in both years. The approximate boundaries517

of these regions fall near the Subantarctic Front (SAF) and the Northern branch of the Subtropical Front (NSTF),518

delimiting from South to North the Polar Frontal Zone (PFZ), the SubAntarctic Zone (SAZ) and the SubTropical Zone519

(STZ).520

The 38 kHz dynamics from the PFZ to the STZ, matches previous large-scale studies conducted in the Southern521

Indian Ocean (Béhagle et al., 2016; Boersch-Supan et al., 2017) and a recent shape-based global classification of522

acoustic profiles (Ariza et al., 2022b). Notably, from South to North, the median profiles in each cluster showed an523

increase of densities at the surface, denser DSL and a decrease of densities in the intermediate scattering layer. The524

two-layer persistent DSL structure North of the SAF measured at the 38 kHz during both cruises matches with the525

previous vertical distribution of SL found in the Indian Ocean (Béhagle et al., 2014; Klevjer et al., 2016). However,526

a strong SL observed in daytime 2022 between ∼100-200 m depth could nuance the view of more evenly distributed527

acoustic profiles South of the SAF (Boersch-Supan et al., 2017).528

Although literature on the 18 kHz frequency in the region is limited, Boersch-Supan et al. (2017) also found an529

increased 18 kHz backscatter between 35° and 45° S, spanning the surface and intermediate layers during the day and530

throughout the water column at night. Although a decrease in densities within the DSL at 38 kHz was evident in the531

southern group, there was no corresponding reduction in backscatter observed at 18 kHz. The difference in vertical532
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structures between 18 and 38 kHz matches with recent observation at stations displaying contrasted biogeochemical533

conditions within the Southern Ocean (Cotté et al., 2022). These two distinct responses to the SAF could potentially534

indicate that the two different oceanographic domains are dominated acoustically by different frequencies. However,535

this assumption requires further investigation.536

Detecting spatial patterns at higher frequencies poses a greater challenge due to the predominant sampling of the537

epipelagic layers, leading to the most notable contrast emerging between daytime and nighttime observations. However,538

during daytime in both years, between depths of 100 and 200 metres, a denser sound-scattering layer was detected on539

the 120 kHz in the PFZ in comparison to the STZ. This phenomenon might be attributed to the greater presence of540

dense crustacean communities in the Southern Ocean as indicated by previous studies (Demer and Conti, 2005), which541

were found to be particularly abundant in the 0–500 m water layer in waters surrounding Kerguelen (Cotté et al., 2022).542

Sound-scattering layers and fluorescence543

In comparison to the SAF, we observed that the Southern Subtropical Front (SSTF) and NSTF exhibited a weaker544

hydrological gradient which did not lead to an abrupt transition in the deep scattering layers between the two northern545

zones. However, the lowest fluorescence measured in the STZ delimits the entry into the oligotrophic regime of the546

Southern Indian Ocean. This frontal system is known to impact phytoplanktonic communities (Schlüter et al., 2011;547

Geisen et al., 2022).548

Studies have found positive relationships between mesopelagic fish biomass and primary production (PP) (Irigoien549

et al., 2014) and between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary550

production (NPP) (Hernández-León et al., 2020). Here the appearance of the DSL to the north of the SAF could551

potentially correspond to an increased presence of deep micronekton biomass across the Subtropical Convergence552

Zone (defined as the region between 42° and 32° S) in the Southern Indian Ocean, as suggested by previous studies553

(Pakhomov et al., 1994; Boersch-Supan et al., 2017). However, we found that the DSL was not constrained to the SAZ554

but extended northward within the oligotrophic STZ. Additionally, denser surface scattering layers were found in the555

the same zone, where the lowest surface fluorescence was measured. A similar pattern was observed at 18 and 38 kHz556

in the Northeast Atlantic Ocean, with surface scattering layers being denser when surface fluorescence was the lowest,557

while no impact of the transition was observed on the DSL (García-Seoane et al., 2023).558

Future research should focus on exploring the relationship between mid-trophic levels and low trophic levels,559

particularly investigating the connection between scattering layers and the intricate phytoplankton communities across560

this transition zone (Geisen et al., 2022).561

Integrated acoustic biomass562

The change in profile features can also reflect a change in integrated acoustic biomass. For higher frequencies, which563

sample the epipelagic layer only, the integrated NASC can be greatly impacted by the circadian cycle as the migrating564

organisms from the mesopelagic zone strongly increase the epipelagic densities. When the acoustic information fully565

integrates the mesopelagic scattering layers (∼200-1000 m), and for similar environmental conditions, the effect of the566

circadian cycle on the integrated NASC can be limited as the backscatter values can be rather reorganised in the water567

column; although organisms migrating from the depth > 1000 m was reported (Sutton, 2013).568

Spatially, for the 38 kHz total NASC, values increased from subantarctic to subtropical conditions where the highest569

densities were previously observed, especially in surface waters, at a larger scale (Béhagle et al., 2016). Furthermore,570

the decline of acoustic backscatter DSL recorded at 38 kHz towards the southern ocean is in adequation with previous571

observations (e.g. Escobar-Flores et al., 2020; Dornan et al., 2022), and was recently observed across high latitude572

fronts (with a drop of mean 𝑆𝑣 at 38 kHz; Chawarski et al., 2022), showing evidence of a response of the mesopelagic573
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community to a temperature drop. Here, a significant inverse pattern in integrated biomass was seen between 18 and574

38 kHz during the daytime, comforting that the drop of acoustic may be due to a change of community and not a drop575

of biomass (Dornan et al., 2019).576

Abundance and diversity of marine organisms in environmental-acoustic regions577

Myctophids establish their dominance as the primary fish family in the mesopelagic and bathypelagic regions578

of the Southern Ocean, leading in species diversity, abundance, and biomass. While we observed no variations in579

myctophid abundance, their groupings effectively distinguish species within the Polar Front Zone from those in the580

SubAntarctic and SubTropical Zones. This observation aligns with the distinct shift in fish communities documented in581

the subantarctic zone (Koubbi et al., 2011) and the SAF’ role as a significant biogeographic boundary for mesopelagic582

fish larvae in the Indian sector of the Southern Ocean (Koubbi, 1993). Given the significant impact of organism583

composition and physiology on backscatter resonance, we investigated if the observed shift in fish assemblages could584

provide an explanation for the abrupt change in NASC values and alterations in vertical structure, particularly the585

DSL drop at 38 kHz frequency towards the Southern Ocean. Indeed, swim bladders being one of the most resonant586

organs of a fish, the absence of a gas-bearing swimbladder can lead to a near-no detection of certain species at low587

frequencies (Foote, 1980). This proposition gains further support from the fact that the most abundant mesopelagic588

fish species in the Southern Ocean lack gas-filled swimbladders or possess swimbladders filled with lipids (Dornan589

et al., 2019). Notably, certain species found in the subtropical region, such as Lobianchia dofleini, do possess gas-filled590

swimbladders (Kleckner and Gibbs, 1972), whereas species like Gymnoscopelus fraseri, identified in the SAZ are591

known to lack swimbladders (Dornan et al., 2019). However, this hypothesis lacks support due to our investigation in the592

PFZ which documented the presence of myctophid species with varying gas swimbladder status. For example, species593

such as Protomyctophum bolini, Electrona carlsbergi, and Krefftichthys anderssoni possess gas swimbladders, whereas594

Electrona antarctica and Gymnoscopelus braueri do not or exhibit an ontogenetic loss of gas swimbladder (Dornan595

et al., 2019). The relation between acoustic backscatter levels and organisms’ distribution may not be so evident as the596

presence, type or size of swimbladders change among and within taxonomic groups, and potentially within genus and597

species, depending on body length or developmental stage (Marshall, 1960; Dornan et al., 2019). Nonetheless, from a598

biological perspective, the region identified as the PFZ might not be representative of the strict Southern Ocean fauna,599

as species such as Electrona antarctica are commonly located within the vicinity of the Polar Front or to its south.600

The PFZ region is likely associated with the northern margin of the Southern Ocean. The Gonostomatidae is the other601

main fish family reported in this study. While Gonostomatidae can be found in epipelagic layers in the subtropical at602

night, they were reported to be the most dominant species dwelling in the deep scattering layer (Marohn et al., 2021)603

and to remain at these depths both during day and night time (McClain et al., 2001; Olivar et al., 2017). Furthermore,604

they were found to be the main contributors to the 38 kHz DSL (between 400-600 m (Peña et al., 2014). Despite605

the lack of a significant change in abundance, the scarce catches in the Southern Ocean align with a small number606

of Gonostomatidae species extending as far south as the Southern Ocean (Broyer and Koubbi, 2014). Upon further607

investigation, the persistent DSL we observed between night and day periods in the Southern Indian Ocean could be608

imputed to these species.609

Additionally, the southward dissolution of the 38 kHz does not imply a loss of biomass as acoustic-based estimation610

of mesopelagic fish biomass greatly depends on the fish morphology (Proud et al., 2019) and acoustic signals are rather611

sensitive to the scatterer’s distribution than biomass distribution (Davison et al., 2015). As stated by : "the size structure612

of mesopelagic fish is skewed with abundance driven by the smallest and biomass driven by the largest fishes" (Marohn613

et al., 2021). In our study, the biomass is probably higher in the PFZ given the sizes of the individuals of each family614
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(myctophids are bigger than Cyclothone species which are the dominant Gonostomatidae in the area; Koubbi and Djian,615

pers. comm.).616

The changes observed in the surface layer from the PFZ to the STZ could be explained by differences in assemblage617

for all taxa (except for salps). We encountered a large number of Agalma okenii in the STZ, a physonect siphonophore618

known to have relatively high acoustical target strengths (TS) at 24 and 120 kHz, caused by a gas inclusion in their619

pneumatophore (Warren, 2001). Agalma okenii vertical distribution extends from the surface down to 200 m depth620

(Boltovskoy, 1999) which would match the intense scattering layer observed at this depth (∼100 m). The high resonance621

of this layer at 38 kHz would match previous observations (Klevjer et al., 2016).622

Limitations623

Globally, while the species assemblages have direct repercussions on acoustic backscatter, the primary factor of624

uncertainty in our study is the sound-scattering layers composition. The presence of highly resonant organisms, such625

as Salpa thompsoni, found in the Polar Frontal Zone (PFZ) and generally found in large aggregations, can be mistaken626

for krill or other zooplankton (Wiebe et al., 2010). Furthermore, the response of other fluid-like organisms such as627

euphausiids presents less difference in resonance between species. For instance, E. vallentini is found here to be a628

representative species of the PFZ and was found at ∼60 m in Kerguelen water (Cotté et al., 2022; Béhagle et al., 2017)629

but we did not identify a matching surface scattering layer in this zone. Moreover, the association between distinct630

years of net sampling and acoustic data introduce bias into the interpretation. Further simultaneous acoustic/sampling631

associations are required to clarify the response of MM to this transition zone.632

The statistical method introduced in this study has a notable constraint: it demands a substantial number of principal633

components to effectively capture the intricate spatiotemporal interconnections and overall variability. To address this,634

the incorporation of additional spatiotemporal data could potentially reduce the number of required modes. Conducting635

additional acoustic surveys, especially zonal transects, could also help limit the overinterpretation of potential fine-scale636

structures (<10 km, e.g. fronts or filament) on the observed patterns as it was shown to have effect of increased fish637

concentration (Baudena et al., 2021), as well as mesoscale activity (Godø et al., 2012; Della Penna et al., 2022).638

Moreover, there is a need for further investigation into the combined impact of the transition from polar to subtropical639

waters and the presence of Saint-Paul and Amsterdam islands. The latter have been observed to produce internal waves,640

which could enhance the transfer of nutrients from deep waters to the surface (de Lavergne et al., 2020; Sergi, 2021).641

These processes have the potential to significantly influence the marine environment and habitats for marine organisms642

and predators (Bertrand et al., 2014). Finally, a more comprehensive understanding of depth-related dynamics could be643

attained by integrating environmental profiles into the analysis. The mfPCA approach has effectively untangled factors644

that contribute to vertical data variance. Further advancements employing machine learning techniques, particularly645

deep learning, could potentially uncover even more intricate dependencies (Bianco et al., 2019). This advancement646

holds the potential to provide deeper insights into the intricate spatio-temporal intricacies within acoustic datasets.647

5. Conclusion648

The vertical structure of pelagic fauna in the transition zone between the Southern and the subtropical Indian Ocean649

is highly variable. This variation is primarily driven by circadian rhythms, altering how organisms are distributed650

throughout the water column. We successfully identified and filtered out this major temporal variation, revealing that651

the following specific acoustic features were linked to surface environmental oceanographic conditions. Different652

frequencies contribute to various variability patterns, suggesting that using multiple frequencies can enhance our653

understanding of pelagic community composition (Trenkel and Berger, 2013; Béhagle et al., 2017). Spatial differences654
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in pelagic communities also align with distinct environmental-acoustic regions, although confirming these patterns655

requires more simultaneous collection of acoustic data and net samples. We find that the acoustic response of the pelagic656

community to a transition zone depends on the intensity of fronts (SAF/STF) and the acoustic frequency considered.657

Indeed, the impact of environmental factors on macrozooplankton and micronekton distribution is not homogeneous658

as some species can be greater or lesser extent adaptive to water properties. For instance, thermotolerance can lead659

to some fronts being permeable for some species but not to others (e.g. Sutton, 2013; Koubbi et al., 2011) leading660

to possibly abrupt community discontinuities but also more broad transitions (Vierros et al., 2008). The transition661

between oceanographic domains should be regarded as transitional zones of the whole pelagic community (Vecchione662

et al., 2015). Further investigation of MM dynamics should employ the combination of 18 and 38 kHz as it was found663

here to highlight complementary pelagic vertical patterns.664

Finally, the work presented here was initiated under the scope of the extension of the protection status of Saint-665

Paul and Amsterdam islands to their Economic Exclusive Zone pelagic waters (Pagniez et al., 2021). Acoustic data666

has proven to be a valuable source of information in such remote regions for integrating knowledge on the distribution667

of the mid-trophic levels and contributing to the conservation and advisory objectives of policymakers. Moreover,668

understanding the dynamics of mid-trophic levels from quasi-pristine areas can provide baseline information that can669

serve as a reference to detect the emerging impact of climate change on pelagic fauna.670

Declaration of competing interest671

None.672

Acknowledgments673

This work was conducted in the framework of L. Izard PhD, cofounded by Sorbonne University and the TAAF674

(Terres Australes et Antarctiques Françaises). The authors thank the captains and the crews of the R/V Marion675

Dufresne II. We extend our thanks to D.J. Brah and K. Goul for deep support during night shifts. The THEMISTO and676

REPCCOAI cruises were supported by the French oceanographic fleet, the CNES OSTST Tosca KERTREND-SAT,677

the CNRS Antarctic Workshop Zone, the European H2020 program (MESOPP grant agreement No 692173) and the678

TAAF National Nature Reserve programs. The OISO program is supported by the French institutes INSU (Institut679

National des Sciences de l’Univers), IPSL (Institut Pierre Simon Laplace), IPEV (Institut Polaire Paul Emile Victor)680

and Sorbonne University (OSU Ecce Terra).681

References682

Aksnes, D. L., Røstad, A., Kaartvedt, S., Martinez, U., Duarte, C. M., and Irigoien, X. (2017). Light penetration structures the deep acoustic683

scattering layers in the global ocean. Science Advances, 3(5):e1602468.684

Anilkumar, N., Pednekar, S. M., and Sudhakar, M. (2007). Influence of ridges on hydrographic parameters in the Southwest Indian Ocean. Marine685

Geophysical Researches, 28(3):191–199.686

Annasawmy, P., Ternon, J., Marsac, F., Cherel, Y., Béhagle, N., Roudaut, G., Lebourges-Dhaussy, A., Demarcq, H., Moloney, C., Jaquemet, S., and687

Ménard, F. (2018). Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South688

West Indian Ocean: Insight from acoustics and stable isotopes. Deep Sea Research Part I: Oceanographic Research Papers, 138:85–97.689

Ariza, A., Lebourges-Dhaussy, A., Nerini, D., Pauthenet, E., Roudaut, G., Assunção, R., Tosetto, E., and Bertrand, A. (2022a). Acoustic seascape690

partitioning through functional data analysis. Journal of Biogeography, page jbi.14534.691

Ariza, A., Lengaigne, M., Menkes, C., Lebourges-Dhaussy, A., Receveur, A., Gorgues, T., Habasque, J., Gutiérrez, M., Maury, O., and Bertrand,692

A. (2022b). Global decline of pelagic fauna in a warmer ocean. Nature Climate Change, 12(10):928–934.693

L. Izard et al.: Preprint submitted to Elsevier Page 28 of 34



Assunção, R., Lebourges-Dhaussy, A., Da Silva, A. C., Roudaut, G., Ariza, A., Eduardo, L. N., Queiroz, S., and Bertrand, A. (2023). Fine-694

scale vertical relationships between environmental conditions and sound scattering layers in the Southwestern Tropical Atlantic. PLOS ONE,695

18(8):e0284953.696

Assunção, R. V., Silva, A. C., Roy, A., Bourlès, B., Silva, C. H. S., Ternon, J.-F., Araujo, M., and Bertrand, A. (2020). 3D characterisation of the697

thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Progress in Oceanography,698

187:102399.699

Baker, A. C., Boden, B. P., and Brinton, E. (1990). A Practical Guide to the Euphausiids of the World. Natural History Museum Publications, page700

96 pp.701

Baudena, A., Ser-Giacomi, E., D’Onofrio, D., Capet, X., Cotté, C., Cherel, Y., and D’Ovidio, F. (2021). Fine-scale structures as spots of increased702

fish concentration in the open ocean. Scientific Reports, 11(1):15805.703

Benoit-Bird, K. J. and Lawson, G. L. (2016). Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques. Annual Review704

of Marine Science, 8(1):463–490.705

Benoit-Bird, K. J. and McManus, M. A. (2012). Bottom-up regulation of a pelagic community through spatial aggregations. Biology Letters,706

8(5):813–816.707

Bertrand, A., Bard, F.-X., and Josse, E. (2002). Tuna food habits related to the micronekton distribution in French Polynesia. Marine Biology,708

140(5):1023–1037.709

Bertrand, A., Grados, D., Colas, F., Bertrand, S., Capet, X., Chaigneau, A., Vargas, G., Mousseigne, A., and Fablet, R. (2014). Broad impacts of710

fine-scale dynamics on seascape structure from zooplankton to seabirds. Nature Communications, 5(1):5239.711

Bianco, M. J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M. A., Gannot, S., and Deledalle, C.-A. (2019). Machine learning in acoustics: Theory and712

applications. The Journal of the Acoustical Society of America, 146(5):3590–3628.713

Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood.714

Boersch-Supan, P. H., Rogers, A. D., and Brierley, A. S. (2017). The distribution of pelagic sound scattering layers across the southwest Indian715

Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 136:108–121.716

Boltovskoy, D. (1999). South atlantic zooplankton. page No. C/592 S6.717

Bouveyron, C., Celeux, G., Murphy, T. B., and Raftery, A. E. (2019). Model-based clustering and classification for data science: with applications718

in R, volume 50. Cambridge University Press.719

Brierley, A. S. (2014). Diel vertical migration. Current Biology, 24(22):R1074–R1076.720

Broyer, C. d. and Koubbi, P. (2014). Biogeographic atlas of the Southern Ocean. Num Pages: 1.721

Béhagle, N., Cotté, C., Lebourges-Dhaussy, A., Roudaut, G., Duhamel, G., Brehmer, P., Josse, E., and Cherel, Y. (2017). Acoustic distribution722

of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters. Progress in723

Oceanography, 156:276–289.724

Béhagle, N., Cotté, C., Ryan, T. E., Gauthier, O., Roudaut, G., Brehmer, P., Josse, E., and Cherel, Y. (2016). Acoustic micronektonic distribution725

is structured by macroscale oceanographic processes across 20–50°S latitudes in the South-Western Indian Ocean. Deep Sea Research Part I:726

Oceanographic Research Papers, 110:20–32.727

Béhagle, N., du Buisson, L., Josse, E., Lebourges-Dhaussy, A., Roudaut, G., and Ménard, F. (2014). Mesoscale features and micronekton in the728

Mozambique Channel: An acoustic approach. Deep Sea Research Part II: Topical Studies in Oceanography, 100:164–173.729

Chawarski, J., Klevjer, T. A., Coté, D., and Geoffroy, M. (2022). Evidence of temperature control on mesopelagic fish and zooplankton communities730

at high latitudes. Frontiers in Marine Science, 9:917985.731

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community. Australian Journal of Ecology, pages 117–143.732

Cotté, C., Ariza, A., Berne, A., Habasque, J., Lebourges-Dhaussy, A., Roudaut, G., Espinasse, B., Hunt, B., Pakhomov, E., Henschke, N., Péron,733

C., Conchon, A., Koedooder, C., Izard, L., and Cherel, Y. (2022). Macrozooplankton and micronekton diversity and associated carbon vertical734

patterns and fluxes under distinct productive conditions around the Kerguelen Islands. Journal of Marine Systems, 226:103650.735

Cotté, C. and Simard, Y. (2005). Formation of dense krill patches under tidal forcing at whale feeding hot spots in the St. Lawrence Estuary. Marine736

Ecology Progress Series, 288:199–210.737

Czudaj, S., Koppelmann, R., Möllmann, C., Schaber, M., and Fock, H. O. (2021). Community structure of mesopelagic fishes constituting sound738

scattering layers in the eastern tropical North Atlantic. Journal of Marine Systems, 224:103635.739

Daneri, G. and Carlini, A. (2002). Fish prey of southern elephant seals, Mirounga leonina, at King George Island. Polar Biology, 25(10):739–743.740

Davison, P. C., Koslow, J. A., and Kloser, R. J. (2015). Acoustic biomass estimation of mesopelagic fish: backscattering from individuals,741

populations, and communities. ICES Journal of Marine Science, 72(5):1413–1424.742

de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen, C., Cuypers, Y., Bouruet-Aubertot, P., Ferron, B., and Hibiya, T. (2020).743

A parameterization of local and remote tidal mixing. Journal of Advances in Modeling Earth Systems, 12(5):e2020MS002065.744

L. Izard et al.: Preprint submitted to Elsevier Page 29 of 34



De Robertis, A. and Higginbottom, I. (2007). A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background745

noise. ICES Journal of Marine Science, 64(6):1282–1291.746

Della Penna, A., Llort, J., Moreau, S., Patel, R., Kloser, R., Gaube, P., Strutton, P., and Boyd, P. W. (2022). The Impact of a Southern Ocean Cyclonic747

Eddy on Mesopelagic Micronekton. Journal of Geophysical Research: Oceans, 127(11).748

Della Penna, A., Llort, J., Moreau, S., Patel, R. S., Kloser, R. J., Gaube, P., Strutton, P. G., and Boyd, P. W. (2021). The impact of a Southern Ocean749

cyclonic eddy on mesopelagic micronekton. preprint, Oceanography.750

Demer, D., BERGER, and WILLIAMSON (2015). Calibration of acoustic instruments.751

Demer, D. A. and Conti, S. G. (2005). New target-strength model indicates more krill in the southern ocean. ICES Journal of Marine Science,752

62(1):25–32.753

Dornan, T., Fielding, S., Saunders, R. A., and Genner, M. J. (2019). Swimbladder morphology masks Southern Ocean mesopelagic fish biomass.754

Proceedings of the Royal Society B: Biological Sciences, 286(1903):20190353.755

Dornan, T., Fielding, S., Saunders, R. A., and Genner, M. J. (2022). Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic756

properties. Proceedings of the Royal Society B: Biological Sciences, 289(1967):20211781.757

Duhamel, G., Hulley, P.-A., Causse, R., Koubbi, P., Vacchi, M., Pruvost, S., Vigetta, J.-O., Irisson, S., Mormède, M., Belchier, A., Detrich, H., Gutt,758

J., Jones, C., Kock, K.-H., Lopez Abellan, L., and Van de Putte, A. (2014). Biogeographic atlas of the Southern Ocean.759

Escobar-Flores, P. C., O’Driscoll, R. L., Montgomery, J. C., Ladroit, Y., and Jendersie, S. (2020). Estimates of density of mesopelagic fish in the760

Southern Ocean derived from bulk acoustic data collected by ships of opportunity. Polar Biology, 43(1):43–61.761

Foote, K. G. (1980). Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. The762

Journal of the Acoustical Society of America, page 2084.763

Frank, T. and Widder, E. (2002). Effects of a decrease in downwelling irradiance on the daytime vertical distribution patterns of zooplankton and764

micronekton. Marine Biology, 140(6):1181–1193.765

Fuchs, R., Baumas, C. M. J., Garel, M., Nerini, D., Le Moigne, F. A. C., and Tamburini, C. (2022). A <span style="font-766

variant:small-caps;">RUpture-Based</span> detection method for the Active <span style="font-variant:small-caps;">mesopeLagIc</span>767

Zone (RUBALIZ): A crucial step toward rigorous carbon budget assessments. Limnology and Oceanography: Methods, page lom3.10520.768

García-Seoane, E., Klevjer, T., Mork, K. A., Agersted, M. D., Macaulay, G. J., and Melle, W. (2023). Acoustic micronektonic distribution and density769

is structured by macroscale oceanographic processes across 17–48° N latitudes in the North Atlantic Ocean. Scientific Reports, 13(1):4614.770

Geisen, C., Ridame, C., Journet, E., Delmelle, P., Marie, D., Lo Monaco, C., Metzl, N., Ammar, R., Kombo, J., and Cardinal, D. (2022).771

Phytoplanktonic response to simulated volcanic and desert dust deposition events in the South Indian and Southern Oceans. Limnology and772

Oceanography, 67(7):1537–1553.773

Giering, S. L. C., Sanders, R., Lampitt, R. S., Anderson, T. R., Tamburini, C., Boutrif, M., Zubkov, M. V., Marsay, C. M., Henson, S. A., Saw, K.,774

Cook, K., and Mayor, D. J. (2014). Reconciliation of the carbon budget in the ocean’s twilight zone. Nature, 507(7493):480–483.775

Godard, M., Manté, C., Guinet, C., Picard, B., and Nerini, D. (2020). Diving Behavior of Mirounga leonina: A Functional Data Analysis Approach.776

Frontiers in Marine Science, 7:595.777

Godø, O. R., Samuelsen, A., Macaulay, G. J., Patel, R., Hjøllo, S. S., Horne, J., Kaartvedt, S., and Johannessen, J. A. (2012). Mesoscale Eddies Are778

Oases for Higher Trophic Marine Life. PLoS ONE, 7(1):e30161.779

Górecki, T. and Smaga, Ł. (2019). fdanova: an r software package for analysis of variance for univariate and multivariate functional data.780

Computational Statistics, 34:571–597.781

Graham, R. M. and De Boer, A. M. (2013). The Dynamical Subtropical Front: The Dynamical Subtropical Front. Journal of Geophysical Research:782

Oceans, 118(10):5676–5685.783

Grimaldo, E., Grimsmo, L., Alvarez, P., Herrmann, B., Møen Tveit, G., Tiller, R., Slizyte, R., Aldanondo, N., Guldberg, T., Toldnes, B., Carvajal,784

A., Schei, M., and Selnes, M. (2020). Investigating the potential for a commercial fishery in the Northeast Atlantic utilizing mesopelagic species.785

ICES Journal of Marine Science, 77(7-8):2541–2556.786

Group, G. C. (2022). GEBCO 2022 Grid.787

Hernández-León, S., Koppelmann, R., Fraile-Nuez, E., Bode, A., Mompeán, C., Irigoien, X., Olivar, M. P., Echevarría, F., Fernández de Puelles,788

M. L., González-Gordillo, J. I., Cózar, A., Acuña, J. L., Agustí, S., and Duarte, C. M. (2020). Large deep-sea zooplankton biomass mirrors789

primary production in the global ocean. Nature Communications, 11(1):6048.790

Hulley, P. (1981). Results of the research cruises of FRV Herwig, Walther to South-America. 58. Family Myctophidae (Osteichthyes,791

Myctophiformes). pages 31:1–300.792

Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G., Acuña, J. L., Bode, A., Echevarria, F., Gonzalez-Gordillo, J. I., Hernandez-Leon,793

S., Agusti, S., Aksnes, D. L., Duarte, C. M., and Kaartvedt, S. (2014). Large mesopelagic fishes biomass and trophic efficiency in the open ocean.794

Nature Communications, 5(1):3271.795

L. Izard et al.: Preprint submitted to Elsevier Page 30 of 34



Kang, M., Kang, J.-H., Kim, M., Nam, S., Choi, Y., and Kang, D.-J. (2021). Sound Scattering Layers Within and Beyond the Seychelles-Chagos796

Thermocline Ridge in the Southwest Indian Ocean. Frontiers in Marine Science, 8:769414.797

Kirkwood, J. M. (1982). A guide to the Euphausiacea of the Southern Ocean. Number 1 in ANARE research notes. Information Services Section,798

Antarctic Division, Dept. of Science and Technology, Kingston, Tas.799

Kleckner, R. C. and Gibbs, R. H. (1972). Swimbladder structure of Mediterranean midwater fishes and a method of comparing swimbladder data800

with acoustic profiles. Mediterranean Biological Studies, pages 230–281.801

Klevjer, T. A., Irigoien, X., Røstad, A., Fraile-Nuez, E., Benítez-Barrios, V. M., and Kaartvedt., S. (2016). Large scale patterns in vertical distribution802

and behaviour of mesopelagic scattering layers. Scientific Reports, 6(1):19873.803

Kloser, R. J., Ryan, T. E., Young, J. W., and Lewis, M. E. (2009). Acoustic observations of micronekton fish on the scale of an ocean basin: potential804

and challenges. ICES Journal of Marine Science, 66(6):998–1006.805

Koubbi, P. (1993). Influence of the frontal zones on ichthyoplankton and mesopelagic fish assemblages in the Crozet Basin (Indian sector of the806

Southern Ocean).807

Koubbi, P., Moteki, M., Duhamel, G., Goarant, A., Hulley, P.-A., O’Driscoll, R., Ishimaru, T., Pruvost, P., Tavernier, E., and Hosie, G. (2011).808

Ecoregionalization of myctophid fish in the Indian sector of the Southern Ocean: Results from generalized dissimilarity models. Deep Sea809

Research Part II: Topical Studies in Oceanography, 58(1-2):170–180.810

Kozlov, A. N. (1995). A REVIEW OF THE TROPHIC ROLE OF MESOPELAGIC FISH OF THE FAMILY MYCTOPHIDAE IN THE811

SOUTHERN OCEAN ECOSYSTEM. page 8.812

Lavery, A. C., Wiebe, P. H., Stanton, T. K., Lawson, G. L., Benfield, M. C., and Copley, N. (2007). Determining dominant scatterers of sound in813

mixed zooplankton populations. The Journal of the Acoustical Society of America, 122(6):3304–3326.814

Lee, W.-J. and Staneva, V. (2020). Compact representation of temporal processes in echosounder time series via matrix decomposition. The Journal815

of the Acoustical Society of America, 148(6):3429–3442.816

Lehodey, P., Conchon, A., Senina, I., Domokos, R., Calmettes, B., Jouanno, J., Hernandez, O., and Kloser, R. (2015). Optimization of a micronekton817

model with acoustic data. ICES Journal of Marine Science, 72(5):1399–1412.818

Maclennan, D. (2002). A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science, 59(2):365–369.819

Marohn, L., Schaber, M., Freese, M., Pohlmann, J. D., Wysujack, K., Czudaj, S., Blancke, T., and Hanel, R. (2021). Distribution and diel vertical820

migration of mesopelagic fishes in the Southern Sargasso Sea — observations through hydroacoustics and stratified catches. Marine Biodiversity,821

51(6):87.822

Marshall, N. (1960). Swimbladder structure of deep-sea fishes in relation to their systematics and biology. Discov. Rep.,, pages 1–121.823

Martin, A., Boyd, P., Buesseler, K., Cetinic, I., Claustre, H., Giering, S., Henson, S., Irigoien, X., Kriest, I., Memery, L., Robinson, C., Saba, G.,824

Sanders, R., Siegel, D., Villa, M., and Guidi, L. (2020). Study the twilight zone before it is too late. page 3.825

Mastail, M. and Battaglia, A. (1978). Amélioration de la conservation des pigments du zooplancton.826

McClain, C. R., Fougerolle, M. F., Rex, M. A., and Welch, J. (2001). MOCNESS estimates of the size and abundance of a pelagic gonostomatid827

fish Cyclothone pallida off the Bahamas. Journal of the Marine Biological Association of the United Kingdom, 81(5):869–871.828

Motoda, S. (1959). Devices of simple plankton apparatus.829

Nerini, D., Monestiez, P., and Manté, C. (2010). Cokriging for spatial functional data. Journal of Multivariate Analysis, 101(2):409–418.830

Olivar, M. P., Hulley, P. A., Castellón, A., Emelianov, M., López, C., Tuset, V. M., Contreras, T., and Molí, B. (2017). Mesopelagic fishes across831

the tropical and equatorial Atlantic: Biogeographical and vertical patterns. Progress in Oceanography, 151:116–137.832

O’Sullivan, D. (1983). A guide to the Pelagic Tunicates of the Southern Ocean and Adjacent Waters. Number 8 in Anare Research Notes. Department833

of Science and Technology, Antarctic Division, Kingston, Australia.834

Pagniez, C., Fournier, S., Verdier, A.-G., Guéné, M., Hoarau, F., Allibert, S., and Lustenberger, F. (2021). Extension de la réserve naturelle nationale835

des terres australes françaises. Technical report.836

Pagès, J. (2002). Analyse factorielle multiple appliquée aux variables qualitatives et aux données mixtes. page 34.837

Pakhomov, E., Perissinotto, R., and McQuaid, C. (1994). Comparative structure of the macrozooplankton/ micronekton communities of the838

Subtropical and Antarctic Polar Fronts. Marine Ecology Progress Series, 111:155–169.839

Park, Y., Park, T., Kim, T., Lee, S., Hong, C., Lee, J., Rio, M., Pujol, M., Ballarotta, M., Durand, I., and Provost, C. (2019). Observations of the840

Antarctic Circumpolar Current Over the Udintsev Fracture Zone, the Narrowest Choke Point in the Southern Ocean. Journal of Geophysical841

Research: Oceans, 124(7):4511–4528.842

Parra, S. M., Greer, A. T., Book, J. W., Deary, A. L., Soto, I. M., Culpepper, C., Hernandez, F. J., and Miles, T. N. (2019). Acoustic detection of843

zooplankton diel vertical migration behaviors on the northern Gulf of Mexico shelf. Limnology and Oceanography, 64(5):2092–2113.844

Pauthenet, E., Roquet, F., Madec, G., Guinet, C., Hindell, M., McMahon, C. R., Harcourt, R., and Nerini, D. (2018). Seasonal Meandering of the845

Polar Front Upstream of the Kerguelen Plateau. Geophysical Research Letters, 45(18):9774–9781.846

L. Izard et al.: Preprint submitted to Elsevier Page 31 of 34



Pauthenet, E., Roquet, F., Madec, G., and Nerini, D. (2017). A Linear Decomposition of the Southern Ocean Thermohaline Structure. Journal of847

Physical Oceanography, 47(1):29–47.848

Pauthenet, E., Roquet, F., Madec, G., Sallée, J.-B., and Nerini, D. (2019). The Thermohaline Modes of the Global Ocean. Journal of Physical849

Oceanography, 49(10):2535–2552.850

Pauthenet, E., Sallée, J.-B., Schmidtko, S., and Nerini, D. (2021). Seasonal Variation of the Antarctic Slope Front Occurrence and Position Estimated851

from an Interpolated Hydrographic Climatology. Journal of Physical Oceanography, 51(5):1539–1557.852

Perrot, Y., Brehmer, P., Habasque, J., Roudaut, G., Behagle, N., Sarré, A., and Lebourges-Dhaussy, A. (2018). Matecho: An Open-Source Tool for853

Processing Fisheries Acoustics Data. Acoustics Australia, 46(2):241–248.854

Peña, M., Olivar, M. P., Balbín, R., López-Jurado, J. L., Iglesias, M., and Miquel, J. (2014). Acoustic detection of mesopelagic fishes in scattering855

layers of the Balearic Sea (western Mediterranean). 71.856

Proud, R., Cox, M. J., and Brierley, A. S. (2017). Biogeography of the Global Ocean’s Mesopelagic Zone. Current Biology, 27(1):113–119.857

Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J., and Brierley, A. S. (2019). From siphonophores to deep scattering layers: uncertainty ranges858

for the estimation of global mesopelagic fish biomass. ICES Journal of Marine Science, 76(3):718–733.859

Ramsay, J. O. and Silverman, B. W. (2005). Functional data analysis. Springer series in statistics. Springer, New York, 2nd ed edition.860

Receveur, A., Kestenare, E., Allain, V., Ménard, F., Cravatte, S., Lebourges-Dhaussy, A., Lehodey, P., Mangeas, M., Smith, N., Radenac, M.-H.,861

and Menkes, C. (2020a). Micronekton distribution in the southwest Pacific (New Caledonia) inferred from shipboard-ADCP backscatter data.862

Deep Sea Research Part I: Oceanographic Research Papers, 159:103237.863

Receveur, A., Menkes, C., Allain, V., Lebourges-Dhaussy, A., Nerini, D., Mangeas, M., and Ménard, F. (2020b). Seasonal and spatial variability864

in the vertical distribution of pelagic forage fauna in the Southwest Pacific. Deep Sea Research Part II: Topical Studies in Oceanography,865

175:104655.866

Reygondeau, G., Guidi, L., Beaugrand, G., Henson, S. A., Koubbi, P., MacKenzie, B. R., Sutton, T. T., Fioroni, M., and Maury, O. (2018). Global867

biogeochemical provinces of the mesopelagic zone. Journal of Biogeography, 45(2):500–514.868

Ryan, T. E., Downie, R. A., Kloser, R. J., and Keith, G. (2015). Reducing bias due to noise and attenuation in open-ocean echo integration data.869

ICES Journal of Marine Science, 72(8):2482–2493.870

Schlüter, L., Henriksen, P., Nielsen, T. G., and Jakobsen, H. H. (2011). Phytoplankton composition and biomass across the southern Indian Ocean.871

Deep Sea Research Part I: Oceanographic Research Papers, 58(5):546–556.872

Schwarz, G. (1978). Estimating the dimension of a model.873

Scrucca, L., Fop, M., Murphy, Brendan, T., and Raftery, E., A. (2016). mclust 5: Clustering, Classification and Density Estimation Using Gaussian874

Finite Mixture Models. The R Journal, 8(1):289.875

Sergi, S. (2021). Apport en nutriments par les monts sous-marins et les vents hydrothermaux dans l’océan Austral: effets sur les écosystèmes876

pélagiques et implications pour la conservation/Nutrient input from seamounts and hydrothermal vents in the Southern Ocean: impacts on the877

pelagic ecosystems and implications for conservation. PhD thesis, PhD Thesis, Université Sorbonne.878

St. John, M. A., Borja, A., Chust, G., Heath, M., Grigorov, I., Mariani, P., Martin, A. P., and Santos, R. S. (2016). A Dark Hole in Our Understanding879

of Marine Ecosystems and Their Services: Perspectives from the Mesopelagic Community. Frontiers in Marine Science, 3.880

Sutton, T. T. (2013). Vertical ecology of the pelagic ocean: classical patterns and new perspectives: vertical ecology of the pelagic ocean. Journal881

of Fish Biology, 83(6):1508–1527.882

Sutton, T. T., Clark, M. R., Dunn, D. C., Halpin, P. N., Rogers, A. D., Guinotte, J., Bograd, S. J., Angel, M. V., Perez, J. A. A., Wishner, K.,883

Haedrich, R. L., Lindsay, D. J., Drazen, J. C., Vereshchaka, A., Piatkowski, U., Morato, T., Błachowiak-Samołyk, K., Robison, B. H., Gjerde,884

K. M., Pierrot-Bults, A., Bernal, P., Reygondeau, G., and Heino, M. (2017). A global biogeographic classification of the mesopelagic zone. Deep885

Sea Research Part I: Oceanographic Research Papers, 126:85–102.886

Team, R. C. (2022). R: A language and environment for statistical computing.887

Trenkel, V., Ressler, P., Jech, M., Giannoulaki, M., and Taylor, C. (2011). Underwater acoustics for ecosystem-based management: state of the888

science and proposals for ecosystem indicators. Marine Ecology Progress Series, 442:285–301.889

Trenkel, V. M. and Berger, L. (2013). A fisheries acoustic multi-frequency indicator to inform on large scale spatial patterns of aquatic pelagic890

ecosystems. Ecological Indicators, 30:72–79.891

Urmy, S. S., Horne, J. K., and Barbee, D. H. (2012). Measuring the vertical distributional variability of pelagic fauna in Monterey Bay. ICES892

Journal of Marine Science, 69(2):184–196.893

Valinassab, T., Pierce, G. J., and Johannesson, K. (2007). Lantern fish (Benthosema pterotum) resources as a target for commercial exploitation in894

the Oman Sea. Journal of Applied Ichthyology, 23(5):573–577.895

Vecchione, M., Falkenhaug, T., Sutton, T., Cook, A., Gislason, A., Hansen, H. O., Heino, M., Miller, P. I., Piatkowski, U., Porteiro, F., Søiland, H.,896

and Bergstad, O. A. (2015). The effect of the North Atlantic Subpolar Front as a boundary in pelagic biogeography decreases with increasing897

L. Izard et al.: Preprint submitted to Elsevier Page 32 of 34



depth and organism size. Progress in Oceanography, 138:105–115.898

Vierros, M., Cresswell, I., Briones, E. E., Rice, J., and Ardron, J. (2008). Global Open Oceans and Deep Seabed (GOODS) biogeographic899

classification.900

Warren, J. (2001). In situ measurements of acoustic target strengths of gas-bearing siphonophores. ICES Journal of Marine Science, 58(4):740–749.901

Wiebe, P. H., Chu, D., Kaartvedt, S., Hundt, A., Melle, W., Ona, E., and Batta-Lona, P. (2010). The acoustic properties of Salpa thompsoni. ICES902

Journal of Marine Science, 67(3):583–593.903

Youngbluth, M. J. (1975). The vertical distribution and diel migration of euphausiids in the central waters of the eastern South Pacific. Deep Sea904

Research and Oceanographic Abstracts, 22(8):519–536.905

L. Izard et al.: Preprint submitted to Elsevier Page 33 of 34



Supplementary Materials906

1 2 3 4 5 6 7 8 9 10

Eigenvalues

C
um

ul
at

iv
e 

va
ria

nc
e 

(%
)

0

20

40

60

80

100

1 2 3 4 5 6 7

0

20

40

60

Eigenvalues

F
re

qu
en

cy
 c

on
tr

ib
ut

io
n 

(%
)

18 kHz
38 kHz
70 kHz
120 kHz
200 kHz

Figure S1: Results of the mfPCA performed on acoustic data in 2022. (Left) Cumulative percentage of variance explained
by the 10 principal eigenvalues (the first seven add to 83.43 % of total inertia). (Right) Percentage of contributions of
each frequency to the eigenvalues.
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Figure S2: Results of the mfPCA performed on acoustic data in 2022. The three lines of panels correspond to the three
first modes of variability. The left panels (a, b, c) display the spatial distribution of PC1, PC2 and PC3 along the ship
trajectory while the right panels (d, e, f) show the deformation of the five mean profiles (black dotted line) associated with
the corresponding vertical mode (VM). For a given line of panels, colors in the map match with the coloured profiles on
the right side. The color bar above each spatial panel is adjusted to the range of the corresponding PC. Bathymetry line
at 500 and 2500 m surround the Kerguelen archipelago and Saint-Paul (SP) and Amsterdam (A) Islands. The blue circle
define the Economic Exclusive Zone (EEZ).
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Figure S3: Results of the mfPCA performed on acoustic data in 2022. Projection of PC1 (a, d), PC2 (b, e) and PC3 (c,
f) along latitudinal (top) and diel (bottom) variations. Yellow, cyan and dark blue dots correspond to day, twilight and
night period (respectively) defined with the solar elevation. For both latitudinal and diel panels, the y-axis corresponds
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Figure S4: Median acoustic profiles (solid lines) computed for each frequency (columns) according to the environmental-
acoustic region (colors) and the day or night period (blue vs white shade). The envelopes contain 50 % of the profiles,
delimiting the interquartile range. Top panels corresponds to 2016 and bottom panels to 2022.
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Figure S5: Cruise 2016 (to panels) and 2022 (bottom panels). Latitudinal echograms from low to high frequencies (18,
38, 70, 120 and 200 kHz). Environmental-acoustic regions are indicated at the surface (z = 0). The colour scale is equal
among all frequencies and increases from blue (-100 𝑆𝑣) to red (-50 𝑆𝑣).
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