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INTRODUCTION

Fish exposed to a reduction in ambient oxygen ten-
sion respond with attempts to maintain oxygen supply
to the tissues and with energy saving strategies. Respi-
ratory and circulatory responses (increase in amplitude
and frequency of ventilation combined with bradycar-

dia) are often the first adaptative mechanisms devel-
oped by fish to face hypoxia (Lomholt & Johansen
1979, Glass et al. 1990, Maxime et al. 1998). However,
below a critical oxygen threshold depending on spe-
cies and determined under standard metabolism
conditions, the aerobic energy production decreases.
Therefore, to stabilize ATP concentration in muscle,
fish mainly resort to a depletion of the creatine phos-
phate pool via the creatine kinase equilibrium reaction
and to anaerobic metabolism (Driedzic & Hochachka
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ABSTRACT: Hormonal changes, substrate mobilization and energy metabolism were studied in
turbot Scophthalmus maximus exposed to 3 hypoxic conditions (oxygen partial pressure in water,
PwO2 = 90, 60 and 30 mm Hg) followed by recovery under normoxia. Measurements of the blood pH,
total CO2 concentration, arterial oxygen partial pressure, hematocrit, glucose, lactate, and ‘stress’
hormones (cortisol, adrenaline and noradrenaline) plasmatic concentrations were performed. High-
energy phosphorylated compounds, glycogen, glucose and lactate concentrations were also deter-
mined in liver and white muscle tissues. Exposure to 90 or 60 mm Hg did not induce any major
physiological change, as hyperventilation by itself could compensate for the decrease in water
oxygen tension. At 30 mm Hg, marked increases in cortisol, adrenaline and noradrenaline concen-
trations, associated with a decrease in blood arterial oxygen partial pressure, were observed. During
exposure to 30 mm Hg, turbot resorted to anaerobic metabolism, resulting in liver glycogen depletion
and lactate production. This mechanism appeared to be efficient enough to produce energy, as no
significant change in phosphorylated compounds and adenylate energy charges in muscle and liver
could be observed. These results indicate an absence of metabolic depression in turbot down
to 30 mm Hg and confirm the high capacity of this species to cope with low water oxygen tension.
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1975, Smith & Heath 1980, Dalla Via et al. 1994).
A decrease in the free fatty acid pool in plasma
(Mazeaud et al. 1977) and a strategy of metabolic
depression, which is important in some species (Van
Waversveld et al. 1989, Van Ginneken et al. 1998) have
also been reported. Most of these mechanisms are
under hormonal control involving catecholamines and
cortisol (Kinkead & Perry 1991, Van Raaij et al. 1996).

Like other benthic flatfish, turbot Scophthalmus
maximus is frequently exposed to environmental hy-
poxic conditions and is therefore a useful model to
study the physiological mechanisms developed by fish
to face hypoxia. In a previous study (Maxime et al.
2000), we have pointed out that the first strategy of tur-
bot to face hypoxia was an increase in ventilation with,
obviously, consequences for blood acid-base equilib-
rium. Hyperventilation allowed turbot to maintain
standard O2 consumption over a wide range of O2 ten-
sions, down to a low critical level of 30 mm Hg. When
hyperventilation could not contribute to maintaining
the standard oxygen consumption, turbot resorted to
anaerobic metabolism resulting in lactate accumula-
tion in blood and muscle tissue. However, metabolic
adaptations as hormonal changes have not been quan-
tified and the question of lactate origin remains. In the
present study, lactate origin, energy metabolism and
hormonal changes were investigated to elucidate the
strategies developed by turbot exposed to different
levels of hypoxia and then to normoxic conditions.

MATERIAL AND METHODS

Fish and conditioning. The experiments were car-
ried out on turbot weighing between 1.5 and 2.5 kg,
which were obtained from the experimental hatchery
of IFREMER (Plouzané, France). Fish had been reared
at IFREMER according to the methods described by
Person-Le-Ruyet et al. (1991): the fish were kept in
large outdoor circular tanks supplied with running
seawater (34‰) at seasonal temperature (14 to 18°C)
and fed daily with Gouessant® pelleted food. One
week before experimentation, fish were starved and
transferred to experimental tanks supplied with a con-
tinuous seawater flow (17.0 ± 0.5°C and 34 to 34.5‰).
During the whole experimental protocol, the fish were
unfed.

Experimental protocol. Measurements of arterial O2

partial pressure (PaO2), blood acid-base parameters,
hematocrit and blood cortisol, adrenaline and nora-
drenaline concentrations were performed on cannu-
lated fish. After anesthesia by immersion in a 2-phe-
noxyethanol solution (1/1000), each fish was fitted with
a polyethylene catheter (PE-50) chronically inserted
into the caudal artery according to the method de-

scribed by Nonnotte & Truchot (1990). Throughout
the surgery procedure, gills were flushed with well-
aerated seawater containing a low concentration of
anesthetic (1/3000). The catheter was filled with a
heparinized (250 UI ml–1) saline solution and sealed.
Turbot were then transferred to individual experimen-
tal boxes (0.5 × 0.5 m and 0.15 m deep) supplied with
running seawater (17°C and 34 to 34.5‰). Fish were
unstressed throughout the experiment beginning 48 to
72 h after the surgery procedure.

Lots of 6 cannulated fish were then exposed for 6 h to
1 of the 3 environmental hypoxia levels: 90 mm Hg
(60% O2 saturation), 60 mm Hg (40%), and 30 mm Hg
(20%). Oxygen partial pressure in water (PwO2) levels
were adjusted by means of an oxygen-depletion sys-
tem described in Pichavant et al. (2000). In each ex-
perimental box, PwO2 was continuously monitored
throughout the experiment according to Gaumet et
al. (1995). After hypoxia exposure, the water was
rapidly aerated (normoxic PwO2 level was reached
within 15 min) and recovery was monitored for 6 h.

Blood samples were drawn from the dorsal aortic
catheter before hypoxia exposure to obtain control val-
ues of measured parameters. Then, fish were exposed
to 1 of the 3 hypoxic levels, and blood samples were
taken after 1, 2, 4 and 6 h. Blood samples were also
taken after 1, 2, 4 and 6 h during the phase involving a
return to normoxic conditions.

Two blood samples were taken at each time. The first
sample (350 µl) was immediately used for the determi-
nation of PaO2, pH and hematocrit according to the
procedures mentioned below. The second sample
(500 µl) was immediately centrifuged (10 min at 600×g),
and plasma was rapidly separated from blood cells, of
which 20 µl were directly used for the determination of
blood total CO2 concentration. Two aliquots of plasma
(10 and 300 µl) were stored at –80°C for later measure-
ment of cortisol and catecholamines concentrations
respectively.

Determination of lactate and glucose concentrations
in plasma, white muscle and liver were performed on
uncannulated fish. In these fish, glycogen, ATP, ADP
and AMP concentrations were also measured in white
muscle and liver, and IMP concentration was deter-
mined in white muscle. At least 1 wk before the exper-
iment, the fish were divided into groups of 42 and
transferred into experimental tanks (1 m2 Swedish-
type tanks with an effective water volume of 450 l) fit-
ted out with the oxygen-depletion system mentioned
above. The levels and durations of hypoxia and subse-
quent recoveries were the same as those imposed on
cannulated fish. Blood samples and biopsies (liver and
muscle) were carried out on lots of 6 fish that were
slightly anesthetized before hypoxia exposure, at 2, 4
and 6 h during hypoxia exposure and at 2, 4 and 6 h
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during the phase involving a return to normoxic condi-
tions. Blood samples were obtained by puncture of the
caudal artery, immediately centrifuged (10 min at 600×
g) and plasma was separated into 2 aliquots of 50 µl
and stored at –80°C for later analyses of lactate and
glucose concentrations. Fragments of about 200 mg of
white muscle (obtained from the eyed side close to
the lateral line) and liver were immediately freeze-
clamped with aluminum tongs precooled in liquid
nitrogen according to Adcock & Dando (1983) and
stored in liquid nitrogen before the extraction proce-
dure.

Analytical procedures. PaO2 was obtained from a
Radiometer® E5046 thermostated PO2 cell connected
to a Stratkelvin® oxymeter. Arterial pH was measured
by means of a Broadley® microflow pH sensor con-
nected to a Metrohm® pH meter. A part of this blood
aliquot was used to measure hematocrit. Plasma total
CO2 concentrations were measured using a Sigma
Diagnostics Kit (procedure 132-UV) within 15 min after
blood sampling. Plasma cortisol concentrations were
determined by specific radioimmunoassay adapted
from Lamers et al. (1992). Plasma adrenaline and nor-
adrenaline concentrations were measured by HPLC
using an internal standard solution (3,4-dihydrobenzyl-
amine) as according to Letellier et al. (1994). Plasma
lactate and glucose concentrations were determined
by enzymatic methods (Sigma Diagnostics Kits, proce-
dures 735 and 16-UV respectively).

Pre-weighed muscle and liver samples were pow-
dered in a pre-cooled mortar along with liquid nitro-
gen and pulverized in chilled perchloric acid (1 ml,
0.9 N). The homogenate was weighed and centrifuged
at 10 000 × g for 5 min at 4°C. The supernatant was
weighed, the pH was immediately adjusted to 6.5 with
1 M K2CO3, and the supernatant was centrifuged again
after precipitation. Four aliquots of the supernatant
were stored at –80°C for later analyses of lactate
(50 µl), glucose (50 µl), glycogen (60 µl) and nucleotide
(50 µl) concentrations. Lactate and glucose concentra-
tions were determined using the enzymatic methods
above mentioned. Glycogen concentration was mea-
sured according to an enzymatic method adapted from
Carr & Neff (1984). Concentrations of the nucleotides
(ATP, ADP, AMP and IMP) were determined by HPLC.
Plasma samples were passed through a Waters® Novo-
pack C18 column, eluted at a flow rate of 1 ml min–1

using a 0.2 M isocratic NH4H2PO4 buffer at pH 6.1, and
nucleotides were detected at 254 nm. The adenylate
energy charge (AEC) was calculated according to
Atkinson (1968): AEC = [(ATP + 1⁄2ADP)/(ATP + ADP +
AMP)].

Statistical analysis. Statistical analyses were con-
ducted using Sigmastat® for Windows (Jandel Scien-
tific). All data are expressed as mean ± SE. Effects of

hypoxia and recovery on measured parameters were
tested by a 1-way repeated-measures ANOVA for can-
nulated fish and by a 1-way ANOVA for uncannulated
fish. Significant ANOVA were followed by a post hoc
multiple comparisons test versus control group (Bon-
ferroni t-test). Differences were considered significant
at p < 0.05.

RESULTS

Before hypoxia exposure, blood samples and tissues
were taken to determine the initial level of the mea-
sured parameters. As no significant differences among
the 6 fish in each of the 3 experimental groups were
observed, these pre-hypoxic data (n = 18) were pooled
to obtain a reliable control value for comparison.

Blood arterial pH (pHa), total CO2 concentration
([TCO2]), PaO2 and hematocrit (Ht) were unaffected by
exposure to a 90 mm Hg PwO2 water (Table 1). These
parameters remained unchanged when PwO2 was
adjusted to 60 mm Hg, except PaO2, which decreased
significantly during hypoxia exposure and was totally
restored 1 h after the end of the hypoxic phase
(Table 1). Exposure for 6 h to the lowest PwO2 level
(30 mm Hg) induced marked changes in these parame-
ters. An increase in pHa (+ 0.11 pH unit), followed by a
significant acidosis, was observed (Fig. 1A). [TCO2]
and PaO2 decreased gradually and reached their mini-
mal value respectively after 4 and 6 h (Fig. 1B,C). Ht
increased significantly from 12.8 ± 1.4% in normoxia
up to 18.3 ± 2.2% after 4 h (Fig. 1D). During the subse-
quent recovery, only pHa was not restored after 6 h.

Plasma adrenaline [A], noradrenaline [NA] and cor-
tisol [CORT] concentrations were unaffected by expo-
sure to 90 and 60 mm Hg (Table 2). However, when the
fish were exposed to 30 mm Hg, [A], [NA] and [CORT]
increased almost immediately after the lowering of
PwO2 (Fig. 2A–C respectively). During the subsequent
recovery, [A] and [NA] were restored within 1 h
whereas [CORT] remained significantly high com-
pared to the control value even after 6 h.

Plasma, liver and muscle lactate concentrations are
given in Table 3 for fish exposed to 90 and 60 mm Hg.
Only a slight but significant increase in muscle lactate
level was observed when fish were exposed to 60 mm
Hg. During the subsequent recovery, the muscle lac-
tate concentration was totally restored after 6 h. The
exposure to the 30 mm Hg treatment induced a grad-
ual and marked increase in plasma, muscle and liver
lactate concentrations at once (Fig. 3A– C respec-
tively). During the subsequent recovery, plasma and
tissue lactate levels decreased as soon as the hypoxic
treatment was stopped. Plasma and liver lactate con-
centrations were close to the normoxic values after 6 h
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of recovery, whereas muscle level remained signifi-
cantly higher at this time.

Plasma, liver and muscle glucose concentrations in a
similar way to muscle and liver glycogen concentra-
tions remained steady throughout the 90 and 60 mm
Hg periods (Tables 4 & 5 for glucose and glycogen
levels respectively). Exposure to 30 mm Hg induced a
significant increase in plasma glucose level after 4 h

(Table 4) and a marked liver glycogen depletion after
6 h (Table 5). The plasma glucose concentration was
back to the control level 2 h after the end of the
hypoxic phase.

In muscle, the initial values of nucleotides were (in
µmol g–1 fresh weight): 6.79 ± 0.55 (ATP), 0.75 ± 0.07
(ADP), 0.06 ± 0.01 (AMP) and 0.10 ± 0.01 (IMP). In
liver, the initial values of nucleotides were: 1.99 ± 0.29
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Time (h) 0 1 2 4 6 R1 R2 R4 R6

90 mm Hg
PHa 7.98 8.00 8.00 8.02 8.02 7.99 8.00 7.98 8.02 NS

±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01

[TCO2] 8.11 7.99 8.02 7.96 7.92 7.99 8.00 7.98 8.02 NS
(mmol l–1) ±0.52 ±0.36 ±0.68 ±0.47 ±0.42 ±0.53 ±0.52 ±0.41 ±0.42

PaO2 32.6 29.5 27.5 29.8 28.7 28.5 24.5 29.8 27.5 NS
(mm Hg) ±2.7 ±3.5 ±4.2 ±3.8 ±4.9 ±4.3 ±5.2 ±4.5 ±5.1

Ht (%) 12.8 13.7 13.0 12.4 12.2 11.0 12.0 11.5 12.2 NS
±1.4 ±1.8 ±1.5 ±0.7 ±0.6 ±1.4 ±2.2 ±1.9 ±1.9

60 mm Hg
PHa 7.98 8.01 8.01 7.98 7.95 7.96 7.97 7.99 7.98 NS

±0.02 ±0.03 ±0.02 ±0.01 ±0.04 ±0.01 ±0.01 ±0.02 ±0.01

[TCO2] 8.11 7.89 7.92 7.80 7.61 7.86 7.96 7.90 8.12 NS
(mmol l–1) ±0.52 ±0.45 ±0.48 ±0.47 ±0.49 ±0.48 ±0.49 ±0.34 ±0.36

PaO2 32.6 23.4* 20.6* 21.2* 24.5* 28.3 29.2 33.9 34.6 S
(mm Hg) ±2.7 ±4.1 ±3.2 ±2.5 ±4.1 ±2.6 ±3.9 ±4.2 ±1.5

Ht (%) 12.8 13.0 12.8 12.8 11.9 11.0 11.4 12.2 11.8 NS
±1.4 ±1.7 ±1.5 ±0.9 ±0.6 ±0.4 ±0.5 ±1.1 ±0.2

Table 1. Blood arterial pH (pHa), blood total CO2 concentration ([TCO2]), blood arterial oxygen partial pressure (PaO2) and hema-
tocrit (Ht) measured on cannulated fish at time 0 (normoxia), 1, 2, 4 and 6 h during the exposure at 90 and 60 mm Hg, and 1, 2, 4
and 6 h after the end of hypoxia (R1, R2, R4 and R6). Means ± SE (n = 18 at t = 0 and 6 h at the other sample times). *Values 

significantly different from control data at p < 0.05. NS = no significant difference and S = significant difference

Time (h) 0 1 2 4 6 R1 R2 R4 R6

90 mm Hg
[A] 1.05 2.46 0.55 0.28 1.92 1.20 0.56 1.78 0.59 NS
(nmol l–1) ±0.48 ±1.34 ±0.05 ±0.09 ±0.88 ±0.55 ±0.07 ±0.37 ±0.24

[NA] 0.62 1.17 0.70 0.65 1.27 1.45 0.86 0.57 0.68 NS
(nmol l–1) ±0.17 ±0.87 ±0.30 ±0.35 ±0.43 ±0.07 ±0.09 ±0.06 ±0.06

[CORT] 14.4 23.9 26.6 25.5 20.7 19.8 20.1 22.1 18.8 NS
(ng ml–1) ±4.6 ±11.3 ±15.8 ±11.9 ±9.9 ±6.0 ±5.2 ±12.3 ±14.4

60 mm Hg
[A] 1.05 0.99 1.64 1.727 4.48 0.53 0.86 0.80 0.80 NS
(nmol l–1) ±0.48 ±0.53 ±0.65 ±0.2 ±2.42 ±0.06 ±0.38 ±0.45 ±0.35

[NA] 0.62 1.23 1.60 2.24 3.98 0.42 0.49 0.56 0.66 NS
(nmol l–1) ±0.17 ±0.40 ±0.65 ±0.63 ±1.66 ±0.01 ±0.15 ±0.14 ±0.08

[CORT] 14.4 31.1 45.0 12.3 48.0 32.5 20.3 45.6 38.3 NS
(ng ml–1) ±8.6 ±23.8 ±26.0 ±7.9 ±25.9 ±16.5 ±12.2 ±27.3 ±12.8

Table 2. Plasma adrenaline [A], noradrenaline [NA] and cortisol [CORT] concentrations measured on cannulated fish at time 0
(normoxia), 1, 2, 4 and 6 h during the exposure at 90 and 60 mm Hg, and 1, 2, 4 and 6 h after the end of hypoxia (R1, R2, R4 and
R6). Means ± SE (n = 18 at t = 0 and 6 h at the other sample times for cortisol; n = 12 at t = 0 and 4 h at the other sample times for 

adrenaline and noradrenaline). NS = no significant difference
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(ATP), 0.61 ± 0.10 (ADP) and 0.06 ± 0.02 (AMP).
No change in liver and muscle nucleotides concentra-
tions was observed throughout the exposure at 90, 60
and 30 mm Hg and during the subsequent recovery,
so the AEC was unchanged during the experiment
(Table 6).

DISCUSSION

As surgery was used to obtain some blood parame-
ters, it could be considered that stress reactions would
create some perturbations in the studied mechanisms.
Nevertheless, the control plasma concentrations of cat-
echolamines and cortisol, the 2 main parameters to
determine stress in fish (Donaldson 1981), were close
to the lowest values reported in fish (Van Raaij et al.
1996). So, it could be supposed that the impact of can-
nulation was not significant. The cannulation proce-
dure remains, up to now, the best approach to study
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Fig. 1. Blood arterial pH (pHa), blood total CO2 concentration
[TCO2], blood arterial oxygen partial pressure (PaO2) and
hematocrit (Ht) measured on cannulated fish at time 0 (Nx =
normoxia), 1, 2, 4 and 6 h during the exposure at 30 mm Hg
(J), and 1, 2, 4 and 6 h after the end of hypoxia (h). Means ±
SE (n = 18 at t = 0 and 6 h at the other sample times). *Values 

significantly different from control data at p < 0.05

Fig. 2. Plasma adrenaline [A], noradrenaline [NA] and cortisol
[CORT] concentrations measured on cannulated fish at time 0
(Nx = normoxia), 1, 2, 4 and 6 h during the exposure at 30 mm
Hg (J), and 1, 2, 4 and 6 h after the end of hypoxia (h). Means
± SE (n = 18 at t = 0 and 6 h at the other sample times for cor-
tisol; n = 12 at t = 0 and 4 h at the other sample times for
adrenaline and noradrenaline). *Values significantly differ-

ent from control data at p < 0.05
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metabolic and hormonal changes during time without
the interference of handling stress. Moreover, to inves-
tigate the effect of repeated blood sampling on the
measured parameters, blood samples were taken on a
lot of 4 normoxic turbot with the sampling procedure
used for experimental fish. As no significant difference
was observed, it could be concluded that the impact
of multiple sampling did not affect the experimental
results. When blood parameters measurements and
determination of metabolites in muscle and liver were
combined, it was necessary to use a procedure includ-
ing handling, caudal punction, dissection and freeze-
clamping of tissues. In these uncannulated fish, mea-
sured parameters in control samples were close to
values reported in carp (Van Ginneken 1998). More-

over, the liver and muscle adenylate energy charges in
control samples were higher than 0.8, indicating the
absence of tissues damage during sampling (Atkinson
1968).

Three hypoxia levels can be established: (1) slight
hypoxia (90 mm Hg) without any effects on measured
parameters; (2) moderate hypoxia (60 mm Hg) induc-
ing a decrease in PaO2 and a slight increase in muscle
lactate concentrations; and (3) severe hypoxia (30 mm
Hg) with marked hormonal and metabolic perturba-
tions.

In fish, the transport of oxygen from water to cell is in
part controlled by the oxygen tension difference at
each step of respiration (Dejours 1981). PaO2 obtained
under control conditions in turbot was close to the data
reported in the same species (Perry et al. 1996) and
in another flatfish, starry flounder Platichtys stellatus
(Wood et al. 1979). This low arterial oxygen partial
pressure, compared to values reported in salmonids
(Maxime et al. 1991), could explain the absence of
metabolic and hormonal perturbations under slight
hypoxia. This result suggests that the oxygen tension
difference between inspired water and arterial blood is
sufficient to maintain the oxygen supply to the tissues
when fish were exposed to 90 mm Hg.

In a previous study (Maxime et al. 2000), an increase
in amplitude and frequency of ventilation was ob-
served in turbot exposed for 1 h to 60 mm Hg. This
hyperventilation contributes to maintain the oxygen
supply to the tissues by increasing the availability of
oxygen at the gill surface (Lomholt & Johansen 1979,
Glass et al. 1990). In the present study, only PaO2 and
muscle lactate concentrations were affected by expo-
sure of turbot to 60 mm Hg. The increase in muscle lac-
tate concentration indicates undoubtedly the activa-
tion of anaerobic metabolism. These results as a whole
suggest that during moderate hypoxia the supply of
oxygen to the tissues was probably mainly monitored
by an increase in ventilation. Similar observations
were made on rainbow trout Salmo gairdneri (Soivio
et al. 1981), red grouper Epinephelus akaara and black
sea bream Mylio macrocephalus (Woo & Wu 1984).
However, due to the additional energetic cost of
increased ventilation, this mechanism could not be
maintained over a long time. The use of hyperventila-
tion concomitantly with the activation of anaerobic
metabolism could be a way to maintain the oxygen
supply to the tissues throughout several hours of expo-
sure to moderate hypoxia.

During exposure to severe hypoxia (30 mm Hg), con-
comitantly with the decrease in PaO2, a marked in-
crease in plasma adrenaline, noradrenaline and cor-
tisol concentrations was observed. The increase in
plasma cortisol concentrations following deep hypoxia
has been previously reported in most fish species

280

Fig. 3. Plasma, liver and muscle lactate (Lact) concentrations
measured on uncannulated fish at time 0 (Nx = normoxia), 2,
4 and 6 h during the exposure at 30 mm Hg (J), and 2, 4 and
6 h after the end of hypoxia (h). Means ± SE (n = 18 at t = 0
and 6 h at the other sample times). *Values significantly 

different from control data at p < 0.05
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studied (Van Raaij et al. 1996, Van Ginneken et al.
1998). Release of catecholamines from chromaffin
tissues stimulated by a decrease in PaO2 following
deep hypoxia was also reported in many fish species.
These hormones are involved in most adaptative
mechanisms developed by fish to maintain oxygen

supply to the tissues under environmental hypoxia
(Aota et al. 1990, Perry et al. 1991, Perry & Reid 1992,
Reid et al. 1998).

The present results suggest a significant role of cat-
echolamines in ventilation control under deep hy-
poxia as was also reported in rainbow trout (Aota et
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Time (h): 0 2 4 6 R2 R4 R6

90 mm Hg
Plasma Lact 0.26 0.16 0.17 0.15 0.18 0.26 0.27 NS
(mmol l–1) ±0.07 ±0.03 ±0.03 ±0.03 ±0.02 ±0.05 ±0.01

Liver Lact 1.30 1.62 1.24 1.51 1.47 1.65 1.74 NS
(µmol g–1) ±0.45 ±0.47 ±0.69 ±0.24 ±0.47 ±0.54 ±0.26

Muscle Lact 2.39 1.89 2.35 1.65 2.12 2.65 2.47 NS
(µmol g–1) ±0.54 ±0.98 ±0.54 ±0.63 ±0.57 ±0.65 ±0.78

60 mm Hg
Plasma Lact 0.26 0.29 0.16 0.56 0.28 0.24 0.31 NS
(mmol l–1) ±0.07 ±0.06 ±0.01 ±0.02 ±0.01 ±0.01 ±0.03

Liver Lact 1.30 2.21 2.54 2.89 2.84 2.95 1.69 NS
(µmol g–1) ±0.45 ±0.62 ±0.85 ±0.34 ±0.52 ±0.85 ±0.24

Muscle Lact 2.39 3.15 4.25* 4.53* 4.52* 3.45 2.54 S
(µmol g–1) ±0.54 ±0.69 ±0.98 ±0.34 ±0.64 ±0.58 ±0.52

Table 3. Plasma, liver and muscle lactate (Lact) concentrations measured on cannulated fish at time 0 (normoxia), 2, 4 and 6 h dur-
ing the exposure at 90 and 60 mm Hg, and 2, 4 and 6 h after the end of hypoxia  (R2, R4 and R6). Means ± SE (n  = 18 at t = 0 and
6 h at the other sample times). *Values significantly different from control data at p < 0.05. NS = no significant difference and 

S = significant difference

Time (h): 0 2 4 6 R2 R4 R6

90 mm Hg
Plasma Gluc 1.56 1.47 1.69 1.67 1.34 1.86 1.76 NS
(mmol l–1) ±0.21 ±0.13 ±0.14 ±0.30 ±0.19 ±0.23 ±0.27

Liver Gluc 1.70 1.42 1.75 1.63 1.54 1.68 1.73 NS
(µmol g–1) ±0.43 ±0.31 ±0.47 ±0.61 ±0.61 ±0.41 ±0.47

Muscle Gluc 0.64 0.74 0.59 0.56 0.54 0.76 0.65 NS
(µmol g–1) ±0.16 ±0.13 ±0.14 ±0.13 ±0.17 ±0.16 ±0.14

60 mm Hg
Plasma Gluc) 1.56 1.69 1.89 1.98 1.98 1.84 1.63 NS
(mmol l–1 ±0.21 ±0.36 ±0.21 ±0.27 ±0.17 ±0.16 ±0.15

Liver Gluc 1.70 1.47 1.69 1.78 1.84 1.63 1.75 NS
(µmol g–1) ±0.43 ±0.63 ±0.27 ±0.05 ±0.42 ±0.16 ±0.41

Muscle Gluc 0.64 0.64 0.75 0.57 0.67 0.61 0.54 NS
(µmol g–1) ±0.16 ±0.14 ±0.20 ±0.21 ±0.14 ±0.16 ±0.19

30 mm Hg
Plasma Gluc 1.56 1.95 2.53* 2.43* 1.96 1.65 1.67 S
(mmol l–1) ±0.21 ±0.26 ±0.45 ±0.47 ±0.16 ±0.27 ±0.19

Liver Gluc 1.70 1.63 1.57 2.16 1.85 1.63 1.74 NS
(µmol g–1) ±0.43 ±0.24 ±0.34 ±0.41 ±0.41 ±0.42 ±0.51

Muscle Gluc 0.64 0.62 0.58 0.69 0.65 0.49 0.54 NS
(µmol g–1) ±0.16 ±0.26 ±0.18 ±0.16 ±0.12 ±0.16 ±0.12

Table 4. Plasma, liver and muscle glucose (Gluc) concentrations measured on uncannulated fish at time 0 (normoxia), 2, 4 and 6 h
during the exposure at 90, 60 and 30 mm Hg, and 2, 4 and 6 h after the end of hypoxia (R2, R4 and R6). Means ± SE (n = 18 at
t = 0 and 6 h at the other sample times). *Values significantly different from control data at p < 0.05. NS = no significant 

difference and S = significant difference
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al. 1990). Indeed, as previously described (Maxime et
al. 2000), when exposed to 30 mm Hg, turbot resorted
to an increase of ventilation leading to a respiratory
alkalosis (+ 0.11 pH in this study). In this case, hyper-
ventilation did not appear to be efficient enough to
maintain the oxygen supply to the tissues. Turbot
resorted to anaerobic metabolism, resulting in lactate
production and, as a consequence, in a marked de-
crease in arterial pH. Such a response was observed
in most fish species, such as flounder (Jorgensen &
Mustafa 1980), european eel Anguilla anguilla (Van

Waarde 1983), sole (Dalla Via et al. 1994), and carp
Cyprinus carpio (Van Ginneken et al. 1998).

In fish, part of blood lactate originates from muscle
glycogen, as uptake rates of blood glucose in fish are
low due to the slow transport of glucose across the
membrane and to the low activity of hexokinase in
peripheral tissues (Johnston & Moon 1979, Knox et al.
1980). However, in this study, despite the increase in
muscle lactate concentrations, no significant change in
muscle glycogen content was observed. In this experi-
ment, in turbot, another part of blood lactate was pro-
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Time (h): 0 2 4 6 R2 R4 R6

90 mm Hg
Liver Glyc 287 269 321 274 296 266 230 NS

±119 ±98 ±152 ±141 ±123 ±147 ±152

Muscle Glyc 76 71 78 64 76 67 72 NS
±40 ±34 ±29 ±28 ±37 ±37 ±36

60 mm Hg
Liver Glyc 287 296 314 247 285 304 274 NS

±119 ±123 ±124 ±96 ±124 ±150 ±94

Muscle Glyc 76 74 85 82 71 76 69 NS
±40 ±30 ±42 ±34 ±26 ±28 ±32

30 mm Hg
Liver Glyc 287 290 247 125* 183 247 212 S

±79 ±98 ±80 ±50 ±78 ±98 ±53

Muscle Glyc 76 59 75 82 79 64 86 NS
±40 ±21 ±31 ±26 ±36 ±29 ±48

Table 5. Liver and muscle glycogen (Glyc) concentrations (µmol g–1) measured on uncannulated fish at time 0 (normoxia), 2, 4
and 6 h during the exposure at 90, 60 and 30 mm Hg, and 2, 4 and 6 h after the end of hypoxia (R2, R4 and R6). Means ± SE (n = 18
at t = 0 and 6 h at the other sample times). *Values significantly different from control data at p < 0.05. NS = no significant 

difference and S = significant difference

Time (h): 0 2 4 6 R2 R4 R6

90 mm Hg
Liver AEC 0.86 0.87 0.87 0.87 0.88  0.89 0.84 NS

±0.11 ±0.05 ±0.04 ±0.02 ±0.04 ±0.03 ±0.04

Muscle AEC 0.94 0.94 0.95 0.95 0.94 0.94 0.94 NS
±0.14 ±0.08 ±0.07 ±0.06 ±0.05 ±0.04 ±0.08

60 mm Hg
Liver AEC 0.86 0.88 0.86 0.87 0.90 0.88 0.86 NS

±0.11 ±0.09 ±0.08 ±0.07 ±0.08 ±0.12 ±0.14

Muscle AEC 0.94 0.94 0.95 0.95 0.94 0.94 0.94 NS
±0.14 ±0.23 ±0.19 ±0.10 ±0.11 ±0.05 ±0.09

30 mm Hg
Liver AEC 0.86 0.85 0.87 0.83 0.87 0.89 0.89 NS

±0.11 ±0.13 ±0.09 ±0.15 ±0.14 ±0.16 ±0.17

Muscle AEC 0.94 0.94 0.93 0.94 0.94 0.94 2 0.94 NS
±0.14 ±0.13 ±0.09 ±0.11 ±0.10 ±0.1 ±0.13

Table 6. Liver and muscle adenylate energy charge (AEC) measured on uncannulated fish at time 0 (normoxia), 2, 4 and 6 h dur-
ing the exposure at 90, 60 and 30 mm Hg, and 2, 4 and 6 h after the end of hypoxia (R2, R4 and R6). Means ± SE (n = 18 at t = 0 

and 6 h at the other sample times). NS = no significant difference
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duced from the liver glycogen pool, as indicated by a
marked glycogen depletion observed in this tissue
associated with the high lactate levels during severe
hypoxia. A similar response was reported in flounder
by Jorgensen & Mustafa (1980). Hypoxia induces con-
tradictory effects on blood lactate levels in fish. In
hypoxic rainbow trout, the major part of lactate was
retained in white muscle tissue (Dunn & Hochachka
1986), whereas such a retention of lactate was absent
in carp (Driedzic & Hochachka 1975) and sole (Dalla
Via et al. 1994). In turbot, the possibility of retention of
a large part of lactate in muscle despite the continuous
lactate diffusion from muscle fibers to blood was put
forward (Maxime et al. 2000). During the exposure to
severe hypoxia, the slight increase in plasma lactate
compared to the increase in muscle lactate observed in
this study has confirmed this hypothesis. Retention of
lactate in muscle could be due to a peripheral vasocon-
striction mediated by catecholamines (Wardle 1978).
During recovery, blood, liver and muscle lactate con-
centrations remained at a high level, and several hours
were required for lactate to return to control levels.
Lactate produced under hypoxia would be mainly
metabolized in situ in muscle or liver by glucogenesis
or oxidation, the relative contribution of both processes
being unknown (Scarabello et al. 1991).

In turbot, exposure to severe hypoxia has also been
shown to induce significant hyperglycemia as in most
fish species, such as flounder (Jorgensen & Mustafa
1980), carp and rainbow trout (Van Raaij et al. 1996).
Although no change in glucose liver concentration was
observed throughout the hypoxic period in this study,
part of liver glycogen could be metabolized to glucose
which was immediately transferred to the blood as
only the liver could enzymatically release glucose in
significant amounts (Johnston & Moon 1979). More-
over, in fish, glycogenolysis has been shown to account
for the major part of the hepatic glucose production
whereas gluconeogenesis plays a minor role during
exposure to deep hypoxia (Dunn & Hochachka 1986,
Janssens & Waterman 1986, Mommsen et al. 1988). In
fish, liver glycogenolysis can be stimulated by cate-
cholamines which inhibit the pyruvate kinase activity
and simul-taneously activate the glycogen phosphory-
lase (Janssens & Waterman 1986, Mommsen et al.
1988). During the exposure to severe hypoxia, hyper-
glycemia was concomitant with the large increase in
adrenaline and the slight increase in noradrenaline. As
these 2 hormones could stimulate hepatic glycogeno-
lysis (Sheridan & Muir 1988), the hyperglycemia ob-
served in turbot could be mainly due to the adrenergic
stimulation of hepatic glycogenolysis.

Throughout exposure to severe hypoxia, no change
in nucleotide contents (ATP, ADP, AMP and IMP) was
observed in turbot liver and muscle. Therefore, in tur-

bot, unlike sole (Dalla Via et al. 1994), no metabolic
depression (decrease in total ATP production) was ob-
served during exposure to severe hypoxia. The an-
aerobic ATP production appears efficient enough to
compensate for the loss of energy production by the
aerobic metabolism when fish were exposed to deep
hypoxia. ATP production could also be stabilized by
the buffer capacity of the phosphocreatine pool, a stor-
age reservoir of chemical energy in vertebrate muscles
(Dalla Via et al. 1994, Van Den Thillart & Van Raaij
1995).

The adenylate energy charge (AEC) is an important
regulatory factor in energy metabolism (Atkinson
1968). In turbot, normoxic values of AEC observed in
white muscle are close to values reported in previous
studies on goldfish Carassius auratus (Van Den
Thillart et al. 1976), flounder (Jorgensen & Mustafa
1980) and rainbow trout (Caldwell & Hinshaw 1994).
Normoxic values of liver AEC measured in turbot are
higher than those previously determined in flounder
(Jorgensen & Mustafa 1980), goldfish (Van den
Thillart et al. 1980) and eel (Van Waarde et al. 1983).
In the present study, no change in AEC in both the
liver and muscle was observed throughout the expo-
sure to severe hypoxia. This result indicates the high
efficiency of anaerobic glycogenolysis in maintaining
the ATP production in turbot exposed to deep hy-
poxia.

In this study, an increase in hematocrit was also
observed during exposure to severe hypoxia. Two
hypotheses could be put forward to explain this result:
(1) An increase in erythrocyte release due to spleen
contraction stimulated by catecholamines as previ-
ously shown in the antarctic fish Pagothenia borch-
grevinky (Wells et al. 1989) and in rainbow trout (Wells
& Weber 1990). (2) An increase in erythrocyte volume
due to the adrenergic activation of Na+/H+ exchange
mechanism across the cell membrane; if this was the
case, the subsequent increase in intracellular pH could
enhance hemoglobin oxygen affinity (Mahé et al. 1985,
Borgese et al. 1986). These 2 mechanisms could con-
tribute to facilitate oxygen transport to tissues as a
compensation of the decrease in oxygen availability.
Further investigations are necessary to confirm these
hypotheses.

As a conclusion to this study, it could be confirmed
that turbot is able to develop high adaptative mecha-
nisms to face hypoxic environmental conditions. This
high capacity to cope with low water O2 tension could
be related to its way of life. Turbot, like sole (Dalla Via
et al. 1998), is a benthic flatfish, and when exposed to
hypoxic areas from which they cannot escape they are
unable to sustain a high swimming activity. Therefore,
this species has had to develop a wide range of physio-
logical adaptative strategies to face hypoxia. 
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