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RESEARCH ARTICLE Open Access

New considerations on pathways involved
in acute traumatic coagulopathy: the
thrombin generation paradox
Cedric Gangloff1,2* , Fanny Mingant3, Michael Theron1, Hubert Galinat3, Ollivier Grimault1,4, Yves Ozier1,5 and
Karine Pichavant-Rafini1

Abstract: Background: An acute traumatic coagulopathy (ATC) is observed in about one third of severely
traumatized patients. This early, specific, and endogenous disorder is triggered by the association of trauma and
hemorrhage. The early phase of this condition is characterized by the expression of a bleeding phenotype leading
to hemorrhagic shock and the late phase by a prothrombotic profile leading to multiple organ failure. The
physiopathology of this phenomenon is still poorly understood. Hypotheses of disseminated intravascular
coagulation, activated protein C-mediated fibrinolysis, fibrinogen consumption, and platelet functional impairment
were developed by previous authors and continue to be debated. The objective of this study was to observe
general hemostasis disorders in case of ATC to confront these hypotheses.

Method: Four groups of 15 rats were compared: C, control; T, trauma; H, hemorrhage; and TH, trauma and
hemorrhage. Blood samples were drawn at baseline and 90 min. Thrombin generation tests, platelet aggregometry,
and standard hemostasis tests were performed.

Results: Significant differences were observed between the baseline and TH groups for aPTT (17.9 ± 0.8 s vs 24.3 ±
1.4 s, p < 0.001, mean ± SEM), MAP (79.7 ± 1.3 mmHg vs 43.8 ± 1.3 mmHg, p < 0.001, mean ± SEM), and
hemoglobin (16.5 ± 0.1 g/dL vs 14.1 ± 0.3 g/dL, p < 0.001, mean ± SEM), indicating the presence of an hemorrhagic
shock due to ATC. Compared to all other groups, coagulation factor activities were decreased in the TH group, but
endogenous thrombin potential was (paradoxically) higher than in group C (312 ± 17 nM/min vs. 228 ± 23 nM/min;
p = 0.016; mean ± SEM). We also observed a subtle decrease in platelet count and function in case of ATC and
retrieved an inversed linear relationship between fibrinogen concentration and aPTT (intercept, 26.53 ± 3.16;
coefficient, − 3.40 ± 1.26; adjusted R2: 0.1878; p = 0.0123).

Conclusions: The clinical-biological profile that we observed, combining normal thrombin generation, fibrinogen
depletion, and a hemorrhagic phenotype, reinforced the hypothesis of activated protein C mediated-fibrinolysis.
The key role of fibrinogen, but not of the platelets, was confirmed in this study. The paradoxical preservation of
thrombin generation suggests a protective mechanism mediated by rhabdomyolysis in case of major trauma. Based
on these results, we propose a new conception concerning the pathophysiology of ATC.
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Background
One third of severe trauma patients present an acute trau-
matic coagulopathy (ATC) upon hospital admission. ATC
is an acute, specific, and endogenous phenomenon
triggered by the association of trauma and hemorrhage.
Its presence is associated with higher mortality and trans-
fusion rates [1, 2]. External factors, such as hypothermia,
anti-thrombotic, and dilution, can reinforce this coagu-
lopathy [3]. In the first hours, hemorrhage and macrocir-
culatory impairment are responsible for an early mortality
peak. In the following days, delayed mortality due to
microcirculatory defects—reflecting a prothrombotic
state—is observed [4]. The physiopathology of ATC is still
debated due to its complexity, but the involvement of an
imbalance between pro- and anti-coagulant pathways,
platelets, and endothelium are currently agreed upon [5–
8]. However, interactions between them remain unclear.
Some authors hypothesized an increased production of ac-
tivated protein C (aPC) to explain the emergence of
hyper-fibrinolysis in case of ATC, but this hypothesis is
contradicted by studies reporting normal or increased
thrombin generation after severe trauma while it should
be reduced due to the inhibitory effect of aPC on FVa and
FVIIIa [9–11]. This argument has been echoed by advo-
cates of an another hypothesis: ATC would be a dissemi-
nated intravascular coagulation (DIC) associated with an
early fibrinolytic phenotype explained by an endothelial
release of tissue plaminogen activator (t-PA) [12–14].
These authors argued that aPC concentrations observed
in case of ATC were insufficient to repress FVa and FVIIIa
and lengthen prothrombin time (PT) in vitro [15, 16].
Contradictory studies reported the absence of clinical cri-
teria of DIC [9] or decreased thrombin generation after
trauma [17]. Observation of thrombin generation on a re-
liable animal model of ATC, not influenced by confound-
ing factors, would therefore make possible to confront
these two hypotheses. Another unresolved concern is the
role of platelet on ATC. Indeed, Jacoby et al. observed a
rise in platelet-activation markers associated with hypo-
functional platelets, suggesting the presence of a refractory
state due to trauma [18, 19]. In addition, a loss of platelet
function was identified as a predictive factor of mortality
in this context [20, 21]. These concerns explain why
thrombin generation test (TGT) and platelet aggregome-
try were identified as potentially useful to explore ATC
[22–24]. The objective of this study was to explore the
general hemostasis disorders involved in ATC’s genesis to
confront them with hypotheses proposed to explain its
pathophysiology.

Methods
Animals
Sixty adult Sprague-Dawley rats (430–650 g, Janvier SAS,
Le Genest St. Isla, France) were housed in a controlled

environment (temperature 21 ± 1 °C, relative humidity
27 ± 16%, 12–12 h light-dark cycle). All procedures were
conducted following a protocol approved by the French
ministry of agriculture (APAFIS#5194-201604251313
1045) and the local university animal research ethics
committee. Procedures were in line with the guide for
the care and use of laboratory animals published by the
US National Institute of Health [25].

Preparation
Animals were anesthetized with an intraperitoneal injec-
tion of ketamine (100mg/Kg, Virbac, Carros, France)
and xylazine (10 mg/kg, Virbac, Carros, France). They
were then placed on a warming pad (Z31SY, Ascon
technologic, Italy) to maintain central body temperature
in a normal range (37.5 ± 0.5 °C). A 2-cm cervical inci-
sion was performed, followed by a tracheostomy (2-mm-
diameter polyethylene tube). An arterial catheter (Leader
Flex 22G, 0.7 × 40mm, Vygon, France) was inserted in
the right carotid. A venous catheter was inserted in the
left jugular vein (Leader Flex 22G, 0.7 × 40mm, Vygon,
France) followed by a continuous intravenous infusion
of ketamine (1 mg/kg/h, Virbac Inc., Carros, France).

Experimental procedure
The experimental procedure is summarized in Fig. 1. Rats
were allocated randomly to one of the four experimental
groups (n = 15 per group): control (C), in which neither
trauma nor hemorrhage was performed; trauma (T), in
which trauma was performed but not hemorrhage;
hemorrhage (H), in which hemorrhage was performed but
not trauma; trauma and hemorrhage (TH), in which
trauma and hemorrhage were performed. In groups H
and TH, 20% of total blood mass was gently collected. In
groups T and TH, multiple traumas were performed as
follows: four closed limb fractures on the mid-height of
the bone (two femurs, two humeri) at 90 angular degrees
with pliers. A 4-cm median laparotomy, as well as four
spleen crushings of 1 cm on the inferior border of the
spleen, was done with surgical scissors and a needle
holder.

Blood samples
All blood samples were collected through the arterial
catheter. Three 15-min centrifugations were performed
to obtain poor platelet plasma: one at 1000 g and two at
3000 g (centrifuge 2–16 K, Sigma, Germany). Plasma
was frozen at – 80 °C until measurements.

Blood analysis
Arterial blood pH, lactate, and potassium concentrations
were measured with a point-of-care analyzer (ABL80
FLEX, Radiometer, Copenhagen, Denmark). FII, FV, FX,
fibrinogen, PT, and aPTT assays were performed on an
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automated analyzer (STA-R Evolution, Stago, Asnieres
sur Seine, France). PT, aPTT times, and fibrinogen con-
centrations were measured with neoplastin Cl + 10, tri-
niclot aPTTb, and STA liquid fib, respectively. Specific
factor-depleted plasmas (Stago, Asnieres sur Seine,
France) were used to determine coagulation factor activ-
ities. The thrombin generation test was performed using
the Thrombinoscope CAT (Calibrated Automated
Thrombogram, Maastricht, The Netherlands) assay ac-
cording to the manufacturer’s instructions (Diagnostica
Stago, Asnières, France) [7, 8]. Twenty microliters of
plasma was incubated with 20 μL PPP-ReagentTM (con-
taining 5 pM recombinant tissue factor and 4 μM phos-
pholipids) for 10 min in round-bottomed 96-well black
microplates. For each sample, a calibrator (Thrombin
CalibratorTM) was run in parallel in order to correct the
fluorescence signal for substrate consumption and
plasma color variability. Thrombin generation was initi-
ated by the addition of 20 μL of FluCa-KitTM). Fluores-
cence was detected by a Fluoroskan Ascent1 fluorimeter
(Thermo Fischer Scientific, Waltham, MA), and the
thrombin generation curves were analyzed by the throm-
binoscope software (Thrombino- scope BV, Maastricht,
The Netherlands). Thrombin generation curves was
characterized by 5 parameters: “endogenous thrombin
potential” (ETP), the area under the curve expressed in
nM/min; “lagtime,” the length of time required before
thrombin generation starts; “peak,” the highest thrombin
concentration; “time to peak,” the length of time until
peak; and “start tail,” the duration to end-point of
thrombin generation. Platelet aggregometry was per-
formed with a Multiplate analyzer (Verum Diagnostica
GmbH, Munich, Germany) in a whole blood sample, as
described by the manufacturer. Three platelet agonists
specific to three pathways were tested: “PAR-4 test” (70
mmol/L, PAR-4 receptor, SIGMA, St. Louis, USA);
“ADP test” (10 mmol/L, ADP receptor, Roche Diagnos-
tics GmbH, Sandhofer Mannheim, Germany); and

“COLLtest” (1.4 μg/ml, collagen receptor, Roche Diag-
nostics GmbH, Sandhofer Mannheim, Germany). The
value recorded was the area under the curve (AUC).

Statistical analysis and graphics
Statistical analyses were performed with “SPSS statistics
for Macintosh” software version 21 (I.B.M. corp.,
Armonk, NY, 2012). Line graphs, boxplots, and histo-
grams were generated using “Prism 7 for Mac OS X”
version 7.0a (GraphPad Software, La Jolla, USA, 2016).
At the time of the first sampling, the results were pooled
and compared with the sampling performed at 90 min
for each group (C, T, H, and TH). One-way ANOVA
with adequate post hoc tests was used to compare
means between groups. Results were expressed as the
mean ± standard error of the mean (SEM). A p value <
0.05 was considered statistically significant.

Results
Markers of ATC
The mean PT was statistically higher than baseline at
the end of the experimentation in groups C, T, H, and
TH. At 90min, the group TH had a PT significantly lon-
ger than the C, T, and H groups (Fig. 2a). Similar trends
were observed for aPTT (Fig. 2b).

Trauma, shock, and hemorrhage markers
Significant differences were observed between the base-
line and TH group for MAP, base excess, potassium,
and hemoglobin (Table 1).

Thrombin generation tests
At 90min, the TH group exhibited statistically higher
ETP when compared to group C (Table 1). At the end
of the experimentation, lagtime, peak, time to peak, and
start tail were statistically lower than baseline in group
C. Trauma by itself induced no modification when

Fig. 1 Experimental protocol. Group C, without trauma without hemorrhage; T, trauma without hemorrhage; H, hemorrhage without trauma; TH,
hemorrhage with trauma (n = 15 in each group)
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compared with group C. Hemorrhage alone induced an
increase in lagtime, peak amplitude, and start tail.

Specific coagulation assays
In the control group, FII and FX times increased and fi-
brinogen concentration decreased when compared to
baseline. In group TH, all of the measured parameters
were modified: FII, FV, and FX times were longer than in
group C, and the fibrinogen concentration was sig-
nificantly lowered (Fig. 2c–f). A statistically significant
inversed relationship between fibrinogen concentration
and aPTT was observed (intercept, 26.53 ± 3.16; coeffi-
cient, − 3.40 ± 1.26; adjusted R2: 0.1878; p = 0.0123).

Platelet count and aggregometry
Platelets slightly decreased from baseline in all groups at
90 min (Table 1). There was no effect of the different
procedures at the end of the experimentation. Concern-
ing aggregometry parameters, there was no statistical
difference between groups C, T, H, or TH.

Discussion
Model relevance: this model reproduced the early phase
of ATC
The mean PT and aPTT were statistically longer in
group TH than in all other groups at the end of the ex-
perimentation. These coagulation disorders resulted in a

Fig. 2 Markers of ATC and coagulation factors. Baseline, pooled values from all groups at 0 min; C90, control at 90 min; T90, trauma at 90min; H90,
hemorrhage at 90min; TH90, trauma and hemorrhage at 90 min. Data are presented as mean ± SEM. *ANOVA I significance was designated at the
p < 0.05 level of confidence. †Significantly different from baseline. Letter differences indicate statistical differences between groups at 90 min
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bleeding phenotype because MAP remained lower in this
group at 90min (Fig. 3). Persisting hypotension was asso-
ciated with an increase in lactate, reflecting an energetic
imbalance in this context (Table 1). This state is called
“uncompensated shock” [26]. Shock leaded to metabolic
acidosis, as measured by the decrease in base excess
(Table 1). Bicarbonate buffer and alveolar hyperventilation
were activated in this group. Indeed, bicarbonates and

pCO2 decreased drastically, leading to a subtle rise in pH
despite the presence of metabolic acidosis. In synthesis,
the TH group reproduced the early phase of shock, with-
out acidemia. Concerning potential bias, we did not use a
fluid replacement that could dilute coagulation factors or
antithrombotic injection to prevent clot formation, and
we prevented hypothermia that could reduce clotting
factor enzymatic protease activity. In consequences, the
coagulation disorder observed in group TH fits all the
characteristics defining ATC: an acute and endogenous
coagulopathy specifically triggered by trauma and
hemorrhage [18, 19].

Early activation of pro- and anticoagulant pathways in
case of ATC
The thrombin generation paradox: a statement
ETP reflects the total amount of thrombin that a plasma
sample can generate under the action of pro- and anti-
coagulant drivers [27–30]. In the case of coagulation fac-
tor depletion, thrombin generation tends to decrease
[31]. This coagulation profile was observed in group C.
Indeed, FV, FX, and ETP decreased in this group, prob-
ably due to cervical incision, tracheostomy, and catheter
insertions. Paradoxically, we observed higher ETPs in
group TH than in group C at the end of the experimen-
tation despite higher FV and FX times.

Table 1 Biological assays at baseline and after procedure in each group

Biological test Baseline Group C90 Group T90 Group H90 Group TH90 p value

Trauma, shock, and hemorrhage

pH 7.39 ± 0.01 7.36 ± 0.04 a 7.41 ± 0.01 ab 7.43 ± 0.02 b 7.45 ± 0.05 b† 0.049*

Base excess (mmol/L) 0.4 ± 0.2 − 2.4 ± 0.3 a† − 5.4 ± 0.8 b† − 2.6 ± 0.5 a† − 8.03 ± 0.9 c† < 0.001*

PCO2 43 ± 0.86 34.9 ± 2 29.6 ± 1.8 † 30.6 ± 1.9 † 30.8 ± 7.9 † < 0.001*

Bicarbonates 24.7 ± 0.8 19.1 ± 0.9 a† 18.1 ± 0.8 ab† 20.4 ± 0.5 a† 15.5 ± 0.8 †b < 0.001*

Lactates (mmol/L) 0.5 ± 0.1 1 ± 0.1 a† 0.9 ± 0.2 a† 1.3 ± 0.2 a† 2 ± 0.4 b† < 0.001*

Potassium (mmol/L) 3.51 ± 0.05 4.55 ± 0.22 a† 4.68 ± 0.13 a† 4.39 ± 0.13 a† 5.95 ± 0.33 b† < 0.001*

Hemoglobin (g/dL) 16.5 ± 0.1 14.8 ± 0.2 ab† 15.6 ± 0.3 a† 13.4 ± 0.6 c† 14.1 ± 0.3 bc† < 0.001*

Thrombin generation

Endogenous thrombin potential (nM/min) 269 ± 9 228 ± 23 a 262 ± 15 ab 297 ± 17 ab 312 ± 17 b 0.016*

Lagtime(min) 2.07 ± 0.07 2.49 ± 0.10 † 2.38 ± 0.08 † 2.41 ± 0.14 † 2.47 ± 0.09 † < 0.001*

Peak (nmol/L) 93.0 ± 5.2 60.5 ± 6.7a† 73.6 ± 5.7 ab† 86.9 ± 6.8 b 79.2 ± 6.6 ab 0.009*

Time to peak (min) 4.0 ± 0.1 4.3 ± 0.1 a† 4.1 ± 0.1 a 4.1 ± 0.1 a 4.5 ± 0.1 a† 0.02*

Start tail(min) 53.6 ± 3.9 34.3 ± 4.2 a† 42.2 ± 3.2 a 52.8 ± 4.1 b 40.9 ± 4.3 a 0.02*

Platelets

Platelets (platelets/L) 570 ± 8 517 ± 12 a† 533 ± 26 a 493 ± 17 a† 525 ± 15 a† < 0.001*

PAR-4 (AUC) 74.7 ± 2.5 69.4 ± 4.1 83.5 ± 7.0 63.3 ± 5.7 70.3 ± 4.7 0.146

ADP (AUC) 91.0 ± 1.8 90.9 ± 4.1 100.0 ± 5.7 87.3 ± 4.4 85.3 ± 4.3 0.214

COLL (AUC) 86.0 ± 2.0 77.4 ± 2.5 a† 84.3 ± 2.8 a 80.5 ± 3.6 a 75.5 ± 4.0 a† 0.047*

Data are presented as mean ± SEM. Baseline, pooled values from all groups at 0 min; C90, control at 90 min; T90, trauma at 90min; H90, hemorrhage at 90 min;
TH90, trauma and hemorrhage at 90min. *ANOVA I significance was designated at the p < 0.05 level of confidence. †Significant difference with baseline. Letter
differences indicate statistical differences between groups. N = 15 per group

Fig. 3 Evolution of MAP during the time in each group. C, control; T,
trauma; H, hemorrhage; TH, trauma and hemorrhage, n = 15 per
group. Values represent mean ± SEM. †Significantly different from
baseline. Letter differences indicate statistical differences between
groups at 90 min
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This clinical-biological profile combining a hemorrhagic
phenotype, a depletion of coagulation factors, and the
paradoxical preservation of thrombin generation must be
confronted with the two hypotheses that have been in
opposition for several years concerning ATC’s pathophysi-
ology: trauma-related DIC and aPC-mediated fibrinolysis.
In the case of DIC, a major decrease in thrombin

generation [32] and platelet count [12, 14] should be ob-
served. In this experimentation, thrombin generation
was preserved, and platelet count was only slightly de-
creased in group TH. These results are inconsistent with
the DIC hypothesis. This assumption is reinforced by
the observation of a marked decrease in fibrinogen con-
centration, as usually observed in case of aPC-mediated
fibrinolysis, and supported by several studies reporting
an increase in aPC in the presence of ATC [15, 16, 33].
But the inhibition of FVa and FVIIIa by aPC should lead
to a decrease in thrombin generation, suggesting the ex-
istence of a protective mechanism.
In synthesis, we observed the preservation of normal

thrombin generation despite a clinical-biological profile
indicating aPC-mediated fibrinolysis. These results sug-
gest the existence of a mechanism protecting thrombin
generation against aPC. We called this phenomenon the
“thrombin generation paradox.”

Pathways involved in the thrombin generation paradox: a
hypothesis
We identified a mechanism that could explain this para-
dox. Indeed, the activity of the prothrombinase complex,
which plays a crucial role in thrombin generation, is
enhanced by two proteins whose plasma concentration
increases in case of trauma-related hemorrhage: myosin
and tissue factor (TF).
Major trauma leads directly to cellular damages by

mechanical action on tissues [34]. Plasmatic rises in po-
tassium, TF [35], and myosin [36, 37] due to cellular
leakage are observed in this condition. This mechanism,
called rhabdomyolysis or “crush syndrome,” is potentia-
lized by shock [38]. Indeed, in the case of shock, the in-
crease in blood potassium level is correlated with the
importance of tissue hypoxia [39]. Hyperkalemia is sec-
ondary to the blockage of the Na-K ATPase pump [40]
and the activation of the KATP channels triggered by cel-
lular hypoxia [41, 42]. This activation leads to a hyper-
polarization of the cellular plasmatic membrane and
blocks voltage-dependent calcium channels. Hyperpolar-
ization leads to a decrease in myocardial contractility
and vasoplegia, reinforcing shock [43, 44]. This vicious
circle, leading to death, was reproduced in this experi-
mentation: uncompensated shock and hyperkalemia
were observed in group TH. For these reasons, the rise
in blood potassium observed in our study reflects the se-
verity of tissue damages, and it can be reasonably

hypothesized that it was associated with higher myosin
and TF serum concentrations in group TH [45].

The role of myosin A recent study demonstrated that
myosin can bind factors Xa and Va, consistent with their
ability to create a stable ternary complex called pro-
thrombinase that promotes prothrombin activation [46].
Thus, a rise in myosin in group TH could promote
thrombin generation, explaining normal ETPs despite
the consumption of coagulation factors and fibrinolysis.

The role of TF As previously described, the prothrombi-
nase complex is composed of factor Va and factor Xa, and
thrombin generation is directly dependent on its activity.
As a consequence, a decrease in factor X should lead to a
lowering in ETP. However, this lowering is limited in the
presence of high levels of TF that promote activation of
factor X [47]. These patterns were retrieved in groups C
and TH. Indeed, a lowering in FX activity and ETP was
observed in group C, reflecting a subtle impairment in the
coagulation process due to cervical incisions, tracheos-
tomy, and catheter insertions. In contrast, a lowering of
FX without a decrease in ETP was observed in group TH.
In this last group, a higher level of TF due to trauma
should have limited the decrease in ETP.

Clinical implications The observation of paradoxically
normal ETPs in the TH group indicates the presence of
procoagulant processes in case of trauma-related shock
and is consistent with a recent study on humans [45]. The
main advantage of this procoagulant mechanism in terms
of survival could be to counterbalance the effect of coa-
gulation factors depletion and aPC-mediated fibrinolysis.
However, thrombosis is the price to pay to lower mortality
[24]: a recent publication concluded that a procoagulant
phenotype was a predictor of symptomatic venous
thromboembolism after trauma [48]. These observations
are consistent with the fact that, after several days, patients
with ATC present higher mortality rates despite the
restoration of normal blood pressure. Indeed, the presence
of ATC is associated with multiple organ failures related
to microcirculation defects [49–55].

Fibrinogen plays a key role in ATC
In our study, fibrinogen concentration was dramatically
decreased in the TH group at the end of the experimen-
tation. At the same time, the mean ETP was higher in
group TH than in group C. These results could be ex-
plained by the structure of fibrinogen, thrombomodulin,
and thrombin. Indeed, fibrinogen and thrombomodulin
have the same binding site on thrombin, the FRS site,
suggesting a competitive inhibition of fibrinogen on the
thrombin/thrombomodulin complex [56]. We, therefore,
hypothesize that, in the case of ATC, a decrease in
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fibrinogen concentration could decrease thrombin con-
sumption. At the same time and despite the preservation
of normal thrombin concentrations, the lowering in fi-
brinogen concentration could decrease its competitive
inhibition on the thrombin/thrombomodulin complex
and activate the protein C pathway, reinforcing fibrinoly-
sis. Also, we observed an inversed correlation between
fibrinogen levels and aPTT, suggesting a protective role
of fibrinogen against ATC. This result strengthens the
hypothesis of a central role of fibrinogen in ATC’s
pathophysiology [57], which could be explained by a
decrease in the competitive inhibition of fibrinogen on
the thrombin/thrombomodulin complex, and is coherent
with the hypothesis of an increase in aPC leading to
fibrinolysis.

ATC can occur without platelet function impairment
Another hypothesis to explain the pathophysiology of
ATC would be a loss of platelet function leading to a
hemorrhagic phenotype on the early phase of trauma.

According to this hypothesis, the burst in thrombin would
cause diffuse platelet activation via their PAR receptors.
This excessive activation would be followed by a refractory
period characterized by a loss in platelet function. In this
study, we observed no increase in thrombin generation
and platelet response was similar in groups C, T, H, and
TH at 90min. These results invalidate the hypothesis of a
decrease in platelet function mediated by thrombin as a
key driver in ATC’s genesis. Similar results were observed
in traumatized patients [22].

Limitations
This experimentation was conducted on rats, and conclu-
sions cannot be directly transposed on humans. Previous
studies enlightened quantitative differences between the
two species. In particular, clot formation is more efficient
on rats [58]. However, hemostasis mechanisms, playing a
crucial role in survival, are highly conserved. Indeed, key
components such as cells, coagulation factors, and regula-
tion mechanisms are similar in rats and humans [15, 57,

Fig. 4 New considerations on pathways involved in acute traumatic coagulopathy. Hemorrhage leads to fibrinogen depletion and decreases its
competitive inhibition on the thrombin/thrombomodulin complex, enhancing protein C activation. In addition, shock induces a decrease in
thrombin clearance, also increasing thrombin/thrombomodulin interactions and protein C activation. The result is a hyperfibrinolysis triggered by
aPC. Shock also lead to an increase in endogenous epinephrine, leading to heparan sulfate exposition on endothelial cells, activating
antithrombin. The repression on coagulation mediated by antithrombin and activated protein C is counteracted by increases in tissue factor and
myoglobin triggered by tissular damages, explaining the preservation of thrombin generation despite the expression of a hemorrhagic
phenotype due to hyperfibrinolysis.
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59–64]. It is therefore reasonable to assume that
hemostasis disorders are also very close [1, 61, 65, 66].
Moreover, in this experimentation, low volumes of blood
were sampled in order to avoid mimicking excessive bleed-
ings, which would have biased the experiment. The small
volumes of blood samples collected were insufficient to
confirm all hypothesis developed in this experimentation,
especially concerning fibrinolysis. All these hypothesis
needs to be validated in clinical studies.

Conclusion
ATC resulted in a specific clinical-biological profile
combining a hemorrhagic phenotype, the depletion of
coagulation factors, and the preservation of thrombin
generation. These results are consistent with excessive
fibrinolysis mediated by aPC. The crucial role of fibrino-
gen in ATC was confirmed in this experimentation and
could be explained by a decrease of its competitive in-
hibition on the thrombin/thrombomodulin complex, re-
inforcing fibrinolysis. The paradoxically preserved
thrombin generation in this setting suggests a protective
mechanism mediated by myoglobin and TF. We also ob-
served that ATC could occur without significant impair-
ment in platelet function. As a consequence, this
experimentation led to a better understanding of ATC’s
pathophysiology, which appears to be partially counter-
balanced by survival-related mechanisms at the cost of
an increase in thrombotic events. We propose a new
conception concerning ATC’s pathophysiology based on
these results (Fig. 4).
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