

## Décompressions humaines

B. Gardette

#### ▶ To cite this version:

B. Gardette. Décompressions humaines : Méthodes de calcul - Tests - Détection de Bulles. COMEX. 1979. hal-04465049

## HAL Id: hal-04465049 https://hal.univ-brest.fr/hal-04465049

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.





The present document is the property of COMEX SAS. It has been entrusted to the ORPHY laboratory, which scanned and uploaded it.

COMEX (Compagnie Maritime d'Expertises), established in 1962, has positioned itself in the offshore activities sector, where it held a leading international position, becoming the world's foremost company in engineering, technology, and human or robotic underwater interventions. Comex designed a Hyperbaric Testing Center in 1969 and developed its own research programs on various breathing mixtures used in deep-sea diving (helium and later hydrogen). These research efforts led to spectacular advancements in this field, including several world records, both in real conditions and simulations. Comex still holds the world record at -701 meters, achieved in its chambers during Operation HYDRA 10.

The ORPHY laboratory focuses on major physiological functions, their regulation, interactions, and their contribution to the development and prevention of certain pathologies. The primary mechanisms studied involve metabolic aspects (oxygen transport and utilization, energetics, etc.) and electrophysiological aspects (contractility and excitability), mainly related to respiratory, vascular, and/or muscular functions. These mechanisms are studied under various physiological and physiopathological conditions, ranging from the cellular and subcellular levels to the entire organism. In Europe, the ORPHY laboratory is one of the leaders in hyperbaric physiology and diving research.

Being a major player in innovation and expertise in the field of pressure, COMEX maintains a scientific archive from its experimental diving campaigns. The value of this archive is both scientific and historical, as it documents a remarkable chapter in the history of marine exploration and contains results obtained during dives that are very unlikely to be replicated in the future.

# D E C O M P R E S S I O N S H U M A I N E S Méthodes de calcul - Tests - Détection de Bulles

C. E. H. - Janvier 1979

B. GARDETTE

### SOMMAIRE

## 1 - METHODE DE CALCUL DES TABLES DE DECOMPRESSION

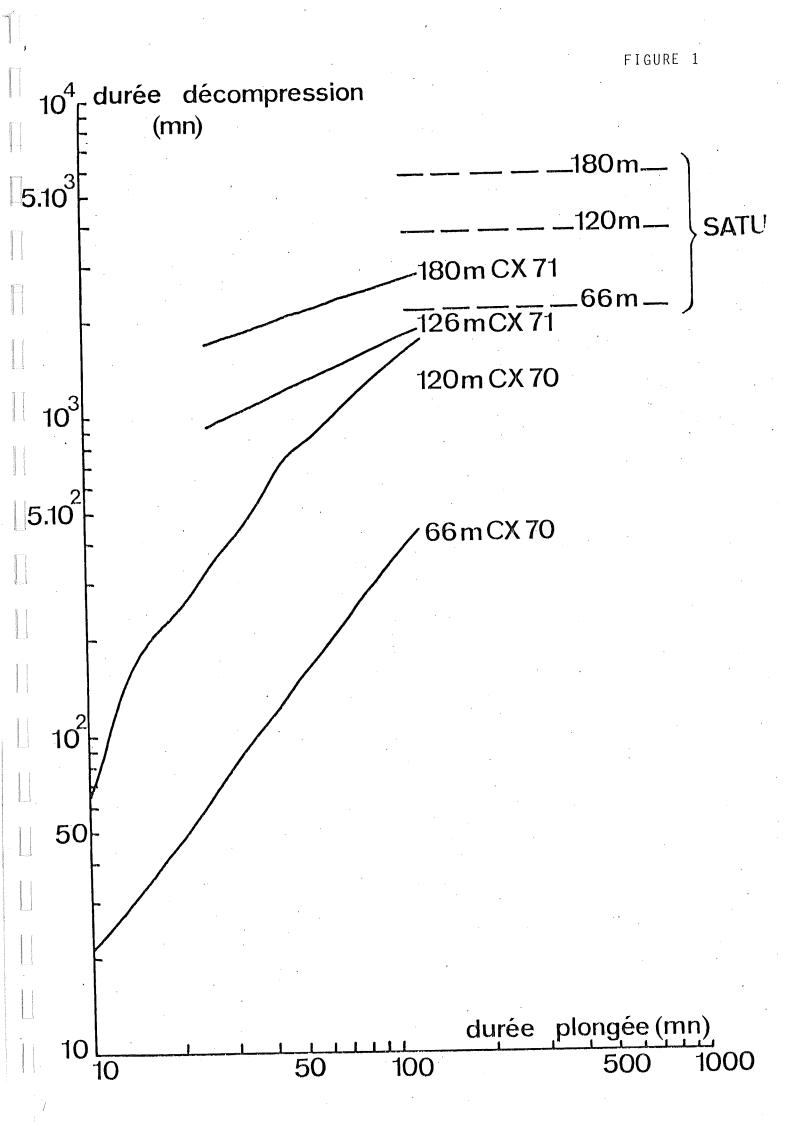
#### 1.1. INTRODUCTION

#### 1.2. METHODE DE CALCUL

- a) Variations des vitesses de décompression en fonction du taux d'oxygène dans le mélange respiratoire
- b) Variations des vitesses de décompression en fonction de la nature du gaz inerte du mélange respiratoire
- c) Généralisation de la méthode.

## 1.3. TESTS DE TABLES REALISES AVEC CETTE METHODE DE CALCUL

- a) Plongées unitaires héliox
- b) Plongées longue durée et saturation héliox
- c) Plongées saturation nitrox
- 2 DECOMPRESSION SATURATION HELIOX AVEC PIO2 CONSTANTE
- 3 CORRELATION ACCIDENT DE DECOMPRESSION ET BULLE CIRCULANTE

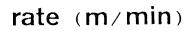

## 1. METHODE DE CALCUL DES TABLES DE DECOMPRESSION

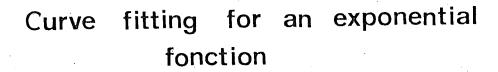
#### 1.1. Introduction

En Juillet 1975, le groupe Recherche Plongée se voyait confier par la Direction Générale COMEX, une étude ayant pour objectif la normalisation des tables de décompression héliox. A cette époque, il était apparu aux utilisateurs que les jeux de tables héliox en application sur les chantiers présentaient des hétérogénéïtés importantes.

Sur la figure 1, représentant le temps de décompression en fonction de la durée du séjour au fond, on remarque en effet, une discontinuïté importante entre les trois jeux de tableshéliox COMEX: table de plongée unitaire 60 m - 120 m. (CX 70); 126 m - 180 m. (CX 71) et table de plongée saturation (CX 74). De plus, pour un même jeu de tables, il y a impossibilité d'extrapoler pour des durées plus importantes au fond (120 min., 150 et 180 min.) et pour des profondeurs plus grandes (en plongées unitaires).

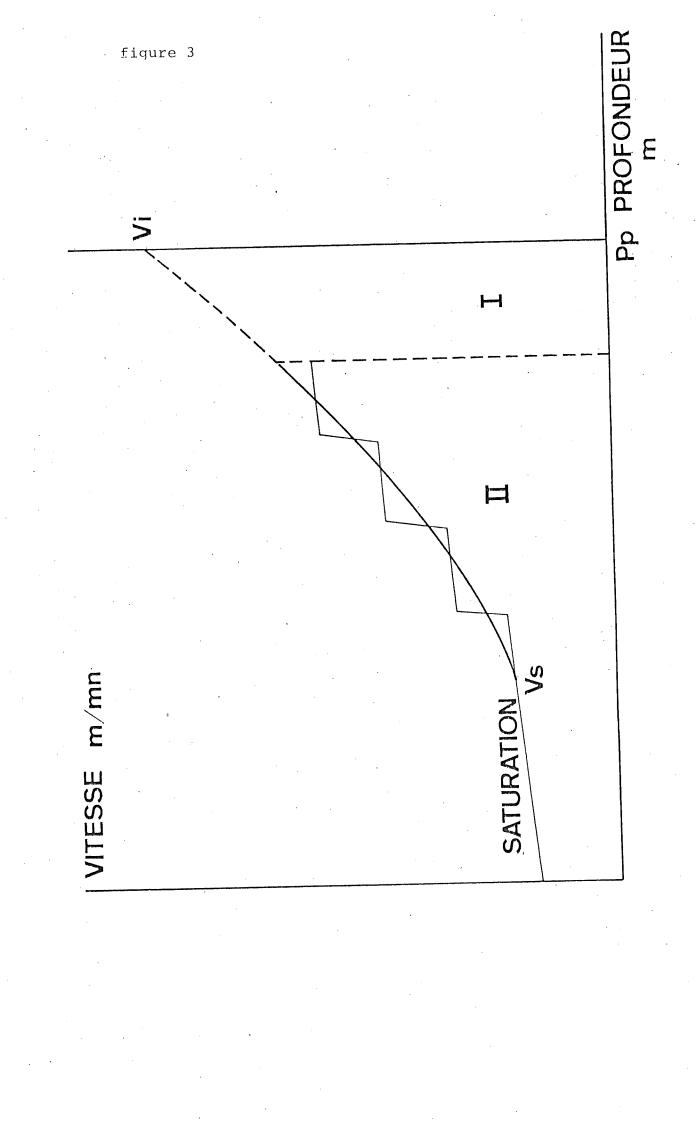
Nous trouvant devant le problème de réaliser des tables de plongée autorisant des séjours au fond de plus longues durées que celles permises par les tables CX 70 et CX 71 (60 et 70 minutes) et voulant dépasser 180 mètres en plongée unitaire, nous avons fait l'hypothèse qu'il était possible, à partir d'un raisonnement globaliste, de mettre au point une méthode de décompression applicable à toutes les circonstances quelle que soit la durée,





la profondeur, les mélanges gazeux. Cette nouvelle manière d'envisager les décompressions faisait l'objet d'une présentation officielle, le 13 Janvier 1976, devant la Direction qui donnait son accord sur le programme de tests de tables de décompression proposé.

#### 1.2. Méthode de calcul

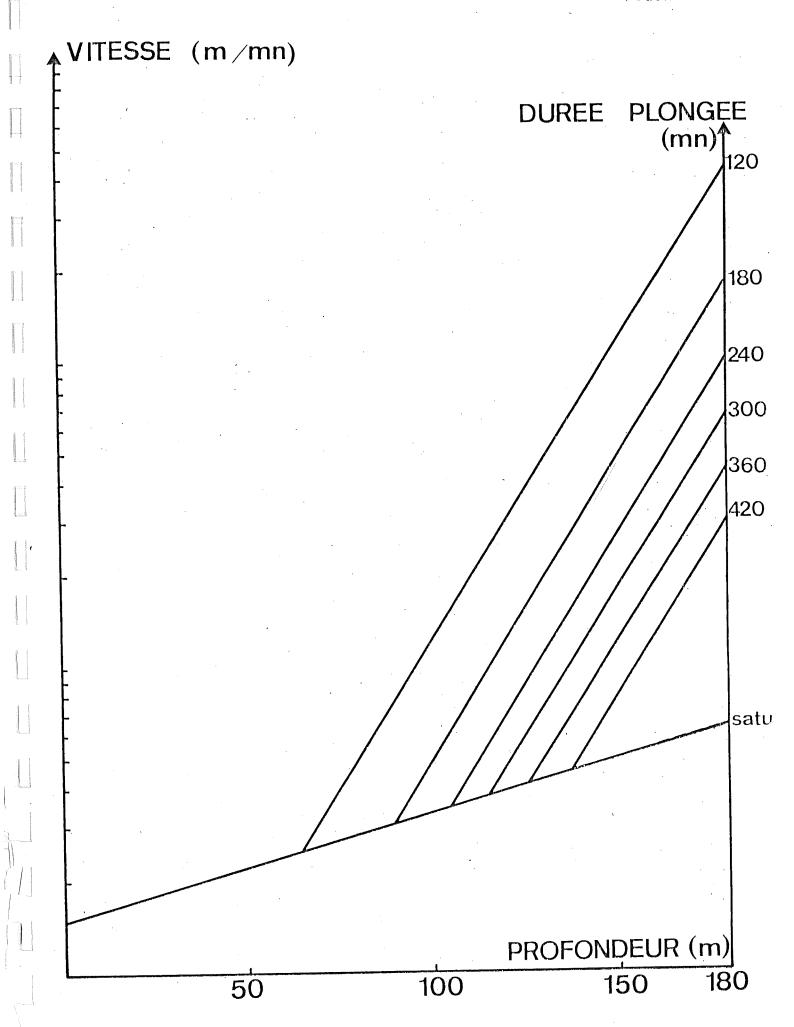
L'élimination globale d'un gaz, au niveau de l'individu saturé se faisant selon une seule fonction exponentielle du temps (SHAW, BEHNKE, MESSER, THOMPSON and MOTLEY, 1935; BALLDIN and LUNDGREN, 1972) nous avons estimé que la vitesse de décompression (équivalente à l'élimination) devait être une seule fonction exponentielle de la pression (représentative de la charge en gaz de l'organisme) pour que l'élimination des gaz dissout soit optimale au cours de la décompression. Le bien fondé de cette hypothèse a été vérifié en étudiant l'évolution des vitesses de décompression en fonction de la profondeur pour la table de décompression de saturation CX 74 (figure 2).

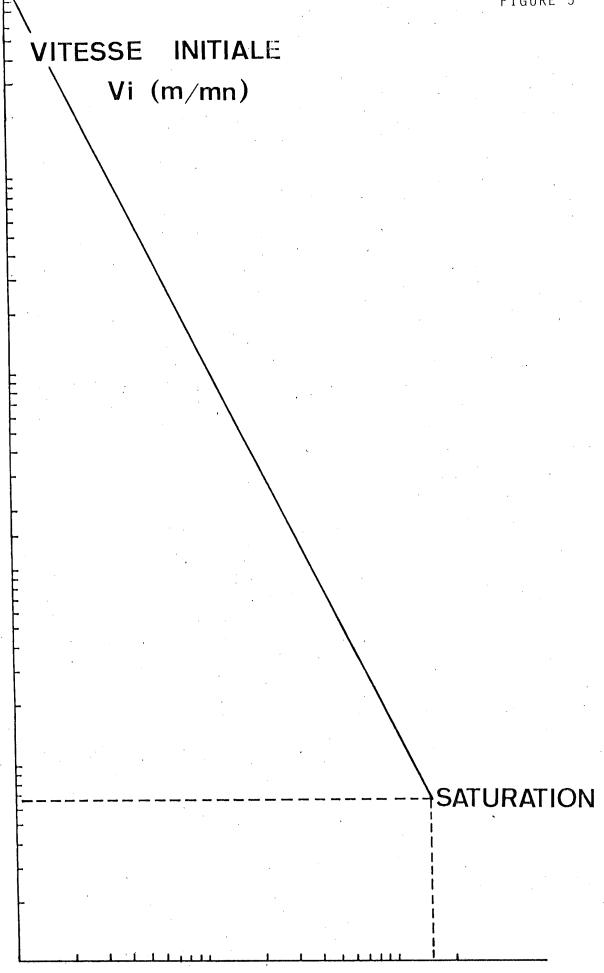

Pour les plongées unitaires, il apparaît que ces vitesses suivent une ligne brisée (courbe en escalier), à travers laquelle, il est possible de faire passer une courbe exponentielle (figure 3). La prolongation de cette exponentielle vers la profondeur de la plongée (Pp) permet de déterminer la vitesse de départ de la décompression (dite vitesse initiale Vi). Selon la durée au fond, l'exponentielle dite d'unitaire peut ou non rejoindre l'exponentielle de décompression de saturation au point Vs.



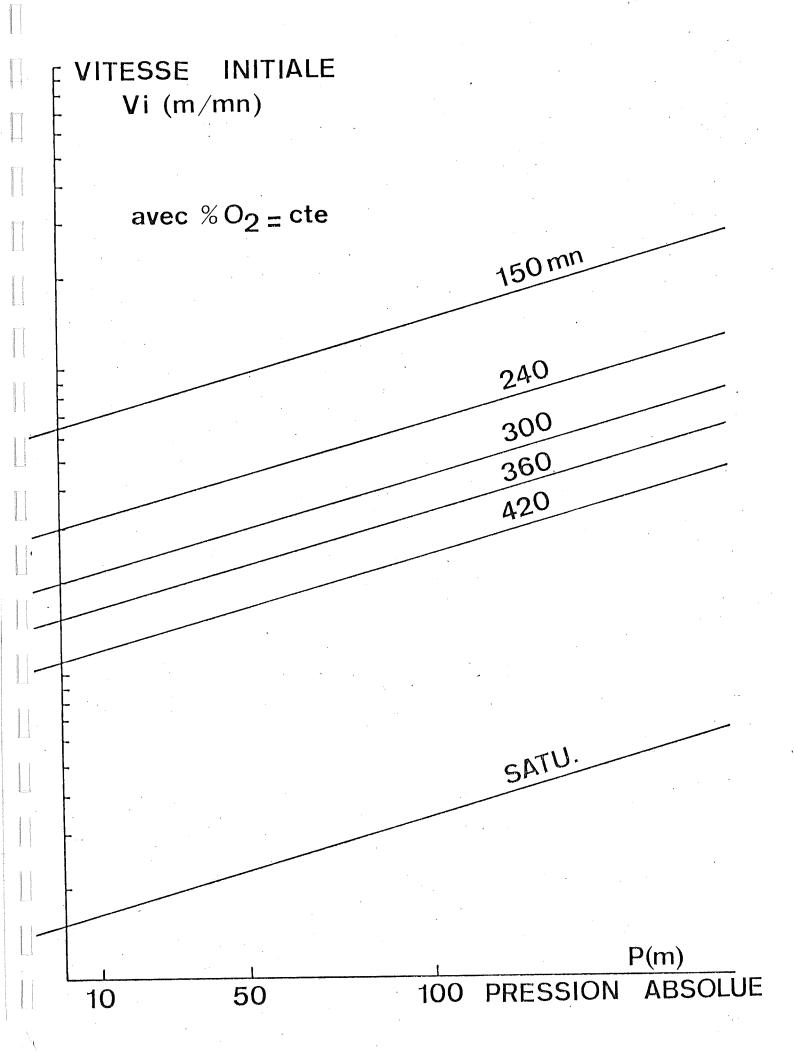


$$r^2 = 0,97$$


depth (msw)




Notre méthode repose donc sur les principes suivants :


- la décompression pour une plongée à saturation se fait suivant une exponentielle unique de la vitesse en fonction de la pression (ou de la profondeur) pour une pression partielle ou un pourcentage d'oxygène donné. La pente de cette droite (en coordonnées semi-logarithmiques) varie avec le pourcentage d'oxygène.
- la décompression pour une plongée de plus courte durée se fait suivant une autre droite (exponentielle d'unitaire) qui vient éventuellement rejoindre l'exponentielle de saturation (si la charge en gaz de l'organisme a été importante, c'est-à-dire si la plongée a été longue et/ou profonde). Pour différentes durées du séjour au fond (pour différentes charges en gaz) les droites de vitesse sont parallèles entre elles (fig. 4). Leur ordonnée (Vi) est liée à la durée de la plongée par une fonction exponentielle (puisque la dissolution des gaz dans l'organisme se fait selon une fonction exponentielle du temps) (fig. 5).

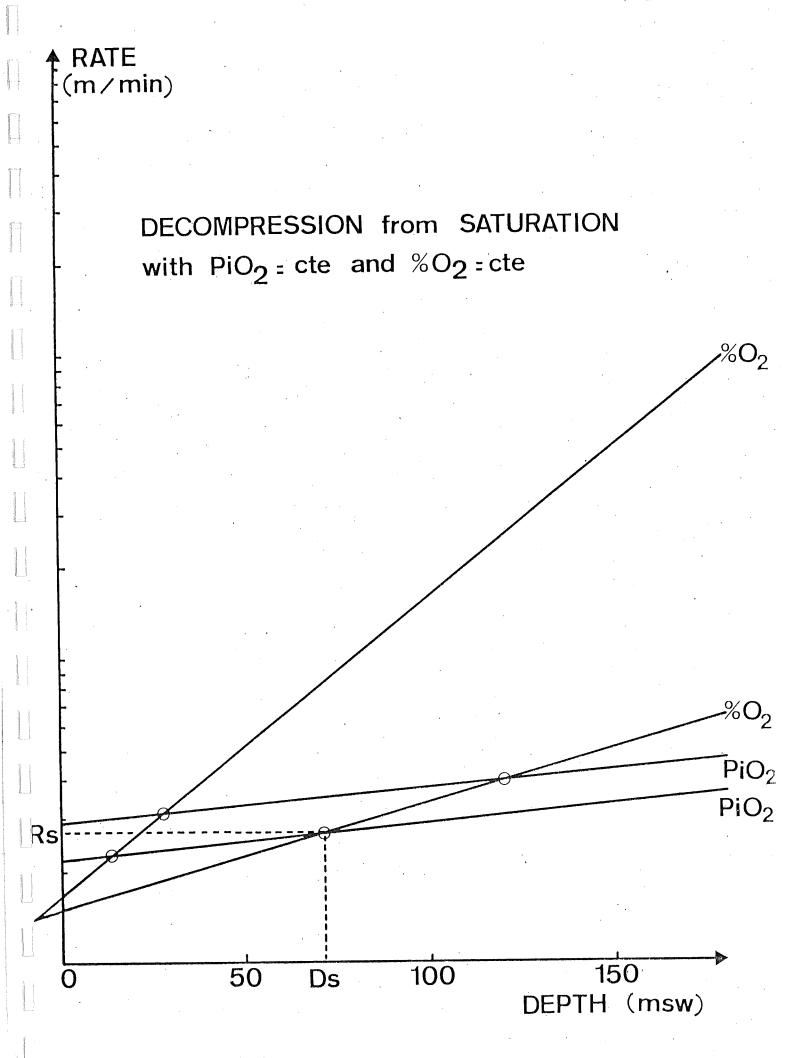
Pour un pourcentage d'oxygène donné, les droites exponentielles des vitesses initiales Vi en fonction de la profondeur évoluent parallèlement à l'exponentielle de la saturation (fig. 6). Ce qui signifie que, pour une durée de plongée donnée, la vitesse initiale sera toujours égale au produit de la vitesse initiale de la décompression de saturation et d'un facteur constant.

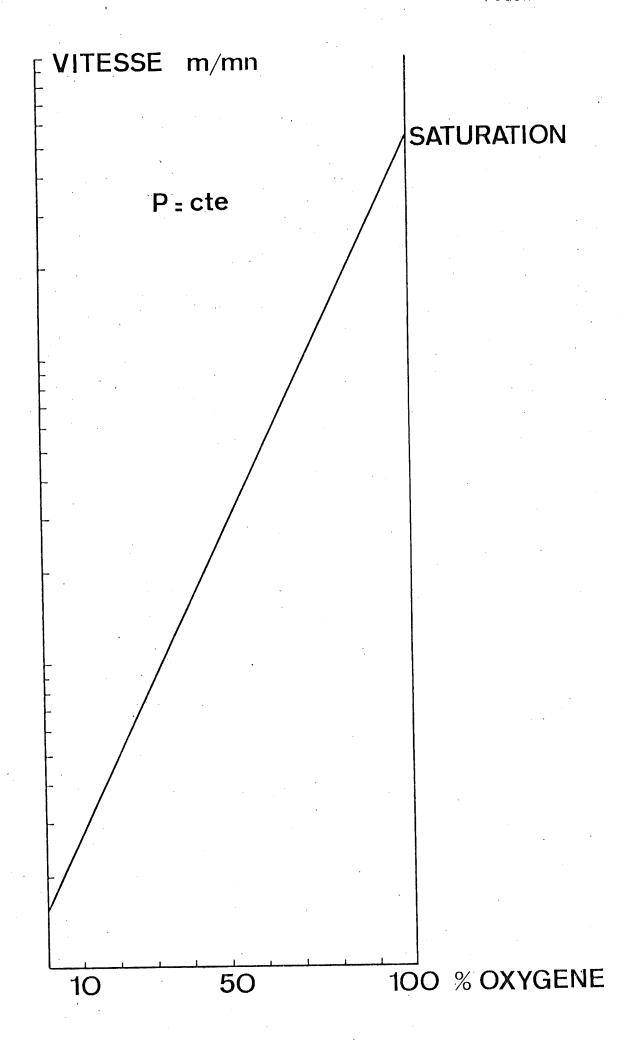




TEMPS SEJOUR FOND : tf (mn)




La détermination de la pente de la droite "exponentielle d'unitaire" nécessite de connaître, en plus de la vitesse initiale Vi, la vitesse Vs au point de rencontre avec la droite "exponentielle de saturation". Dans le cas où le mélange respiratoire est composé d'hélium et d'oxygène, l'abscisse de ce point Vs correspond à une pression (à une profondeur) equivalente à la demi-pression de gaz inerte du mélange respiré sur le fond (demi-charge en gaz inerte), pour une durée au fond de 180 milles. Ce point caractéristique existe pour tous les mélanges gazeux, la durée au fond correspondante dépendant de la nature du gaz inerte.

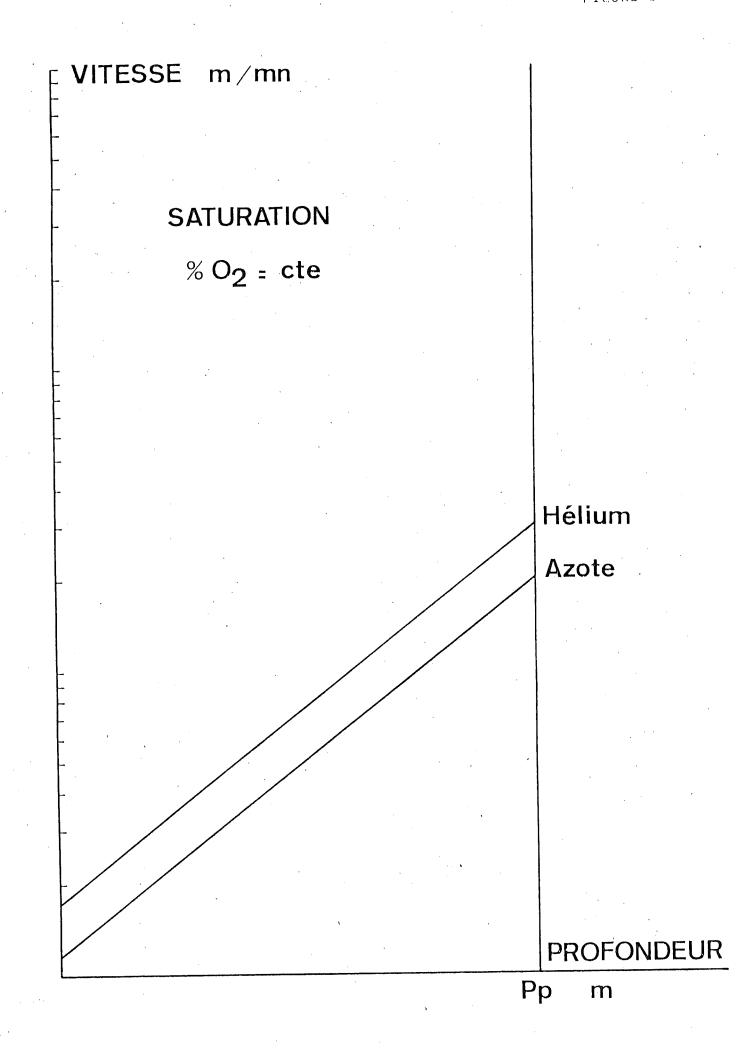

a) <u>Variations des vitesses de décompression en fonction</u> du taux d'oxygène dans le mélange respiratoire

A partir de la droite de vitesse de décompression de saturation (en semi-log), pour une désaturation théorique avec 100 % de gaz inerte, on obtient pour différentes PIO<sub>2</sub> (chacune étant constante tout au long de la décompression) des droites parallèles entre elles, alors que pour différents pourcentages d'O<sub>2</sub> (chacun restant constant au cours de la décompression) ces droites sont convergentes (fig. 7).

La relation est bien établie, puisque les vitesses sont régies par le gradient de gaz inerte et que, pour une profondeur donnée, un pourcentage d'oxygène correspond à une pression partielle et donc, les vitesses sont nécessairement identiques.

Pour une profondeur donnée, la relation qui unit les vitesses de décompression aux différents pourcentages d'oxygène est une exponentielle (fig. 8).






b) Variations des vitesses de décompression en fonction de la nature du gaz inerte du mélange respiratoire

La méthode de calcul établie à partir des plongées hélium-oxygène est applicable pour d'autres mélanges respiratoires contenant un gaz inerte différent, remplacant totalement ou partiellement l'hélium. Seules, les valeurs affectées à certains paramètres vont changer selon des critères physiques. Ainsi, comme il apparaît sur la figure 9 pour une plongée à saturation, lorsqu'on change de gaz inerte, la courbe des vitesses en fonction des profondeurs subit une translation sans que sa pente varie.

Le coefficient de translation à partir de la courbe hélium dépend de la nature du gaz et se montre proportionnel à la solubilité de ce gaz dans les liquides biologiques.

Dans le cas de plongées de durée limitée, avec un mélange azote-oxygène, la durée de la plongée pour laquelle "l'exponentielle d'unitaire" rencontre "l'exponentielle de saturation" au point d'abscisse correspondant à la demi-pression de gaz inerte est de 360 minutes (contre 180 avec l'hélium).



## c) Généralisation de la méthode

Du fait même de son origine, la méthode constitue essentiellement un moyen simple de calcul de toutes les décompressions, sans être une modélisation des phénomènes qui se déroulent dans l'organisme. En effet, nous ne nous intéressons qu'au contenu global (charge en gaz inerte, représentée par la profondeur et la durée de la plongée) et à la sortie (vitesse optimale d'élimination). Il est cependant possible de justifier le choix de certaines relations par des réalités physiques ou physiologiques.

Le but à atteindre est qu'à chaque instant, quelle que soit la plongée, la vitesse de décompression calculée corresponde au débit normal du gaz inerte au niveau pulmonaire (à la vitesse d'élimination optimale) et à une bonne élimination au niveau "tissulaire". Les vitesses de décompression seraient les vitesses maximales permises pour une élimination de la masse gazeuse sans formation importante de bulles, en fonction de la profondeur (ou de la pression).

La vitesse initiale Vi représenterait à la fois un index de charge de l'organisme en gaz inerte et une vitesse maximale d'élimination de ce gaz.

Tout au long de la décompression, ces vitesses tiendraient compte de trois phénomènes essentiels :

- les constantes de diffusion des gaz dans l'organisme,
- le transport du gaz inerte par le sang, c'est-à-dire la perfusion des différents compartiments de l'organisme,
- l'élimination pulmonaire du gaz, sous forme dissoute ou de noyaux gazeux.

Ces vitesses vont donc dépendre principalement de la composition du mélange respiratoire, de la nature du gaz inerte et de la masse de l'organisme soumis à la décompression.

## 1.3. Tests de tables réalisés avec cette méthode de calcul

a) Plongées unitaires Héliox (1976 - 77 - 78)

En Janvier 1976, une première série de tests de tables de décompression commençait au C.E.H.

Les profondeurs de plongées s'étendaient de 66 mètres à 180 mètres, pour être portées à 210 mètres lors de la sélection des plongeurs de JANUS IV (phase I). Les durées d'exposition étaient de 30, 60, 90 minutes puis de 120 et 150 minutes.

A la fin du mois de Novembre 1976, nous avions réalisé au total 45 plongées avec 120 sujets.

En 1977, deux plongées à 180 mètres (120 et 150 minutes) ont eu lieu au C.E.H. d'Aberdeen (sélection Sea-Conquest); en 1978, deux tests à 78 mètres (30 minutes) et 6 à 180 mètres (120 minutes).

Au total, pour ces trois années, 55 plongées unitaires héliox ont été réalisées avec 148 sujets.

Les détails des protocoles de plongées, les résultats des observations cliniques et des détections de bulles circulantes (au moyen du DUG) sont rapportés sur les tableaux ci-joints. De plus, à partir de ces résultats, il est possible de tirer un tableau de corrélation entre accident de décompression et les bulles pour chaque degré observé.

De l'ensemble de ces données, il ressort que ces tables de décompression expérimentales produisent peu de bulles au repos, la grande majorité des plongeurs (91 %) n'ayant pas de bulle. Pour ce type de décompression (unitaires héliox), ce sont les degrés l et 2 de bulle au repos qui présentent une forte probabilité d'accident (33 %). Or, ces degrés de bulle sont observés dans moins de 4 % des cas.

Les accidents et les détections de bulles circulantes ont permis au fur et à mesure d'ajuster les paramètres servant au calcul de la décompression de telle sorte que la méthode étant homogène, chaque modificatione sécurisait l'ensemble du jeu de tables.

L'aboutissement de cette série de tests de tables sont les 6 plongées à 180 mètres (durée fond 120 minutes) réalisées à la fois au GISMER (Marine Nationale de Toulon: 3 plongées avec 6 plongeurs) et au C.E.H. COMEX (3 plongées avec 8 plongeurs).

Sur ces 14 plongeurs, aucun accident n'est à signaler (au dire des plongeurs, la décompression est très "confortable"). De plus, la décompression n'a produit des bulles circulantes (degré 1 au repos et 3 au mouvement) que sur 1 seul plongeur (voir tableau de bulles).

Cette décompression présente donc une bonne sécurité puisque seules les bulles au repos donnent une forte probabilité d'accidents. Ce résultat est encourageant, compte tenu que la profondeur est importante (180 mètres), que la durée du séjour au fond (2 heures) est déjà suffisamment longue pour permettre un travail et que cette décompression est représentative de l'ensemble du jeu de tables. Cependant, ces plongées ont été réalisées en centre expérimental, les plongeurs ne produisant pas d'effort particulier au fond. Il serait nécessaire de confirmer ces bons résultats par des plongées réelles en mer.

## DESCRIPTIF DES PLONGEES UNITAIRES

HELIOX - 1976

# De 60 mètres à 210 mètres / 30 minutes à 150 minutes

Décompressions calculées avec un jeu d'abaques déduits directement des "fit" (droite de régression linéaire de log. vitesse / profondeur) des tables CX 70 et CX 71 (30 et 60 minutes). La saturation utilisée est la table chantier (CX 74) adaptée à pourcentages constants d'oxygène. Elle a été utilisée lors de JANUS IV phase II. Les décompressions sont calculées sur la HP 9821 (service Y. BOUSQUET) avec un programme mis au point par J. POYEN.

| Tripotament Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                  |                                    |                          |                  |                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|------------------------------------|--------------------------|------------------|------------------------------------------------------------------------------|
| Name and Advanced of Printers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                  |                                    |                          |                  |                                                                              |
| els entre en | DATE              | EXAMENS<br>EFFECTUES             | PLONGEURS                          | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP. | OBSERVATIONS                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19/01/76 <b>.</b> |                                  | DELGADO<br>ANDRE<br>BEARD          | 78m - 30mn               | 2h 53mn          | DELGADO douleur<br>articulaire pas-<br>sagère -recomp.<br>à 10m le lendemain |
| Appears and the second  | 20/01/76 <b>2</b> | ·                                | LIUCCI<br>GODARD<br>CHARVET        | 66m - 30mn               | 2h O6mn          |                                                                              |
| Parameter (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21/01/76 3        |                                  | MAVROSTOMOS<br>RENNESSON<br>COMBES | 66m - 60mn               | 3h 48mn          |                                                                              |
| Arramana arr | 22/01/76 4        | Urines                           | BEARD<br>GEORGES<br>ANDRE          | 78m - 60mn               | 6h 00mn          |                                                                              |
| Promotion in such early design of the such ear | 23/01/76          | Prises sang Fact. coagul. Urines | MAVROSTOMOS PANNELLIER LIUCCI      | 78m - 30mn               | 2h 15mn          |                                                                              |
| decide section of the | 26/01/76          | Prises sang<br>Urines            | ANDRE<br>BEARD<br>RENNESSON        | 66m - 90mn               | 6h 17mn          |                                                                              |
| 100 mm m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27/01/76          |                                  | MAVROSTOMOS<br>GEORGES<br>LIUCCI   | 78m - 90mn               | 9h 09mn          |                                                                              |
| Constitution of the Consti | 28/01/76          | Prises sang<br>Urines            | RABIN<br>ROUMEGOUS<br>VERLINDE     | 81m - 60mn               | 7h 32mn          | ROUMEGOUS bend<br>5 heures après<br>sortie (recomp.)                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29/01/76 <b>3</b> | Urines                           | ANDRE<br>MARVALIN<br>ZENEZINI      | 81m - 60mn               | 7h 32mn          |                                                                              |
| egilentinaprocessor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                  |                                    |                          |                  |                                                                              |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |                                    |                          |                  |                                                                              |

| DATE               | EXAMENS<br>EFFECTUES                                |                                   | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP. | OBSERVATIONS                                                    |
|--------------------|-----------------------------------------------------|-----------------------------------|--------------------------|------------------|-----------------------------------------------------------------|
| 30/01/76 10        | Prises sang<br>Fact. coagul.<br>Urines              | GODARD<br>SITTERLE<br>BEARD       | 81m - 30mn               | 3h OOmn          |                                                                 |
| 09/02/76 11        | Prises sang                                         | RENNESSON<br>BEARD                | 81m - 90mn               | 10h 44mn         |                                                                 |
| 16/02/76 <b>IL</b> | Prises sang Fact. coagul. Urines (+urines le 17/02) | BEARD<br>GEORGES<br>RENNESSION    | 120m - 30mn              | 6h 30mn          | Légers malaises<br>2 heures après<br>chez BEARD et<br>RENNESSON |
| 17/02/76 <b>13</b> | Urines<br>Prises sang                               | MOORE<br>ROBINAUD<br>MAVROSTOMOS  | 99m - 60mn               | 10h 36mn         |                                                                 |
| 18/02/76 14        | Prises sang<br>Urines                               | GOHON<br>LIENY                    | 120m - 60mn              | 13h 52mn         |                                                                 |
| 19/02/76 15        | Prises sang<br>Fact. coagul.<br>Urines              | BROGNE<br>COMBES<br>GEORGES       | 120m - 90mn              | 18h 54mn         | Douleurs pulm                                                   |
| 24/02/76 16        | Prises sang<br>Urines                               | CHARVET 126m<br>CLEIN<br>ROBINAUD | 126m - 30mn              | 11h 59mn         | ·                                                               |
| 25/02/76 <b>17</b> | Prises sang Urines Fact. coagul.                    | CAYOL<br>COMBES<br>HERTOUT        | 126m - 60mn              | 19h 48mn         |                                                                 |
| 02/03/76 4         | Prises sang Urines Fact. coagul. Detec. bulles      | MOORE<br>ROBINAUD                 | 126m - 90mn              | 24h 15mn         | Douleurs pul<br>Légères douler<br>aux articular                 |
| 04/03/76 /3        | Detec. bulles                                       | CAYOL<br>ROBIN                    | 144m - 60mn              | 23h 38mn         |                                                                 |

Commence of the parties of the parti

flyganian and a second

Gradien management

COOCHE CONTRACTOR CO

| DATE               | EXAMENS<br>EFFECTUES                 | PLONGEURS                          | PROFONDEUR<br>DUREE FOND                                      | DUREE<br>DECOMP.             | OBSERVATIONS                                                                                           |
|--------------------|--------------------------------------|------------------------------------|---------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------|
| 09/03/76 🚜         | Urines Detec. bulles                 | CLEIN<br>ROBINAUD<br>VANOVERCHELDE | 168m - 30mn                                                   | 18h 13mn                     |                                                                                                        |
| 10/03/76 <b>2</b>  | Detec. bulles                        | DIAZ                               | 168m - 60mn                                                   | 28h 20mn                     |                                                                                                        |
| 16/03/76 🏖         | Urines<br>Detec. bulles              | CHARVET<br>SEGERS<br>SENELIER      | 168m - 90mn                                                   | 36h 10mn                     |                                                                                                        |
| 18/03/76 23        | Urines<br>Detec. bulles              | PRUD'HOMME<br>RIVOIRA              | 180m - 30mn                                                   | 24h 27mn                     |                                                                                                        |
| 22/03/76 24        | Detec. bulles                        | SENELIER<br>JOUANNEAU<br>BLEUZET   | 180m - 60mn                                                   | 33h 42mn                     |                                                                                                        |
| 24/03/76 <b>25</b> | Urines<br>Détec. bulles<br>Impédance | RIVOIRA<br>PRUD'HOMME<br>MOORE     | 180m - 90mn                                                   | 02(50/50) so<br>heure prévue | RIVOIRA: Accrochage 2 genoux à 20m. 2m. puis thérap. rtie 12h après - erreur dans le but de la decomp. |
| 07/04/76 <b>%</b>  | Detec. bulles                        | GRESSIER<br>RISPOLI<br>MULLER      | 144m - 90mn<br>(sortie 23 %<br>héliox)                        | 32h 09mn                     |                                                                                                        |
| 13/04/76 27        | Détec. bulles<br>Impédance           | KINGSFORD<br>BROGNE<br>BOULMIER    | 99m - 120m<br>(sortie masque<br>02 à 12 m.)                   | 17h 30mn                     |                                                                                                        |
| 14/04/76 🐉         | Détec. bulles<br>Impédance           | BENAYOUN<br>GODARD<br>FABRE        | 99m - 90mn<br>passage nitro<br>23% à 48m et<br>sortie ambiano |                              | BENAYOUN légère<br>douleur muscul<br>à 1m. (30 mn<br>d'02 pur)                                         |
|                    |                                      |                                    |                                                               |                              |                                                                                                        |

A CONTRACTOR OF THE PROPERTY O

Carrier Commence Control

All Property and a second seco

All property of the second

All the second second second

A CONTRACTOR OF THE PROPERTY O

Egyment 17 CONTO TOTAL

Alleganistic control (SS)

POT COMPANY CONTRACTOR

A TATALOG COMPANY AND A STATE OF THE STATE O

A CONTRACTOR OF THE PARTY OF TH

| DATE               | EXAMENS<br>EFFECTUES       | PLONGEURS                 | PROFONDEUR<br>DUREE FOND                        | DUREE<br>DECOMP. | OBSERVATIONS |
|--------------------|----------------------------|---------------------------|-------------------------------------------------|------------------|--------------|
| 21/04/76 <b>23</b> | Détec. bulles<br>Impédance | MULLER<br>MOORE<br>JOURDE | 180m - 90mn<br>(sortie héliox<br>avec 02 à 6m.) | ·}               |              |
|                    |                            |                           |                                                 |                  |              |

# TESTS DE TABLES POUR LE 'TRAINING CENTER' DE STAVANGER.

| Į |                    | ı                                          | •                               | l " '       |               | 1                                                                           |
|---|--------------------|--------------------------------------------|---------------------------------|-------------|---------------|-----------------------------------------------------------------------------|
|   | 02/08/76 <b>30</b> | Héliox 23/77<br>effort au fond             | DIAZ<br>ROUXEL                  | 105m - 30mn | de bulles gen | DIAZ : passage<br>ou gauche à 4 m.<br>ROUXEL : passage<br>ule gauche à 2 m. |
|   | 03/08/76 31        | Héliox 23/77<br>effort au fond             | CIMINO<br>ANGLADA<br>PANNELLIER | 105m - 60mn | 10h 53mn      |                                                                             |
|   | 04/08/76 32        | Passage à l'air<br>34 m. effort<br>au fond | DIAZ<br>ROUXEL                  | 105m - 30mn | 4h 26mn       |                                                                             |
|   | 05/08/76 33        | Passage à l'air<br>34 m. effort<br>au fond | CIMINO<br>PANNELLIER            | 105m - 60mn | 10h 53mn      |                                                                             |
|   | 10/08/76 <b>34</b> | Héliox 23/77<br>effort au fond             | FAURE<br>TURINI                 | 105m - 90mn | 15h 30mn      |                                                                             |
|   | 11/08/76 35        | Passage à l'air<br>34 m. effort<br>au fond | MENA<br>BESSOUANT               | 105m - 90mn | 15h 30mn      |                                                                             |

|          |    | • •                    | ٠.                                     |                          |                                                                 |                                      |                                                     |
|----------|----|------------------------|----------------------------------------|--------------------------|-----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|
| DATE     |    | EXAMENS<br>EFFECTUES   | PLONGEURS                              | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP.                                                |                                      | OBSERVATIONS                                        |
|          |    |                        |                                        |                          | ·                                                               | PTD                                  |                                                     |
| 5/09/76  | 36 | Détec. bulles<br>C. V. | ROSA<br>LORET                          | 210m - 90mn              | 50h 55mn 1                                                      | 218                                  |                                                     |
| 27/09/76 | 37 | Détec. bulles<br>C. V. | AUBERTIN<br>SAMOLADOPOULOS<br>VERPEAUX | 180m - 120mn<br>(J4 T1)  | 49h 03mn 1                                                      | .278                                 |                                                     |
| 29/09/76 | 38 | Détec. bulles<br>C. V. | MESUREUR<br>SOUSOUY<br>VANOVERSCHELDE  | 180m - 150mn<br>(J4 T2)  | 50h 22mn 1                                                      | 1225                                 |                                                     |
| 04/10/76 | 39 | Détec. bulles<br>C. V. | JEANTOT<br>PICCHIOLI<br>SCHNEIDER      | 210m - 120mn<br>(J4 T3)  | accident (<br>102 m. Rec<br>thérapeut<br>dans le c<br>temps fon | orei<br>comp<br>ique<br>alcu<br>d pa | lle interne à<br>. de 30 m. +<br>. Remplacement     |
| 11/10/76 | lp | Détec. bulles<br>C. V. | BERQUE<br>DUTRIAUX<br>GRENON           | 180m - 120mn<br>(J4 T4)  | de décomp                                                       |                                      | 1                                                   |
| 18/10/76 | 41 | Détec. bulles          | MAC CLELLAN<br>MAC KENNA               | 180m - 150mn<br>(J4 T5)  | 60h 11mn                                                        | 1748                                 |                                                     |
| 25/10/76 | 4  | Détec. bulles<br>C. V. | LEMOUELLIC<br>LENTINI<br>SEILLIER      | 180m - 150mm<br>(J4 T6)  | LENTINI :<br>doigts -                                           | pic<br>LENT                          | LEMOUELLIC + cotements aux INI : douleurs 64 mètres |
| 28/10/76 | 43 | Détec. bulles          | BENOIT<br>COURVOISIER                  | 210m - 90mn<br>(J4 T7)   | 51h 38mn                                                        | 1241                                 | l Gêne respirat<br> a 50m. pour l<br> 2 plongeurs   |
| 09/11/76 | 44 | Détec. bulles          | RAUDE<br>SCHNEIDER                     | 180m - 60mn<br>(J4 T8)   | 35h 36mn                                                        | 697                                  | 7                                                   |

Approximate Landson Physics and Company of the Comp

| DATE               | EXAMENS<br>EFFECTUES | PLONGEURS                                 | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP. | OBSERVATIONS |
|--------------------|----------------------|-------------------------------------------|--------------------------|------------------|--------------|
| 18/11/76 <b>\5</b> | Détec. bulles        | LECURIEUX-<br>BELFOND<br>SEVELLEC<br>VIAL | 180m - 90mn<br>(J4 T9)   | 43h 22mn         |              |
|                    |                      |                                           |                          |                  |              |
|                    |                      |                                           |                          |                  |              |
|                    |                      |                                           |                          |                  |              |
|                    |                      |                                           |                          |                  |              |

Constitution of the

Transcontant diffe

Activities and control of the second

Hardin and desired

\$200/stransmistry

# DESCRIPTIF DES PLONGEES UNITAIRES HELIOX 1977

Homogénéïsation de la méthode de calcul (voir description de la méthode de calcul). Les tables sont calculées sur la HP 9825 du C.E.H. avec un nouveau programme. Ceci est l'aboutissement des tests réalisés en 1976. La saturation utilisée est déduite de la table chantier (CX 74). Elle a été utilisée lors de JANUS IV phase III. Le 10.10.77, ce jeu de table a été fourni à Opé-Diving.

| Comments on advantage of the comments of the c |                    |                                                         |                                        |                          |                     |                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------|----------------------------------------|--------------------------|---------------------|--------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE               | EXAMENS<br>EFFECTUES                                    | PLONGEURS                              | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP.    | OBSERVATIONS                                                                                                 |
| 70 FF 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                         |                                        |                          | UPTE<br>UCL         | ·                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19/04/77           | Sélection<br>plongeurs<br>Sea Conquest                  | RICH<br>COUCH<br>LEMM<br>WREFORD       | 180m - 150mn             | 57h 50mn 1624<br>30 | LEMM: à 6m. douleur muscul. au mollet droit O2 pur au masque 4 plongeurs: légères douleurs aux poumonsà 16 m |
| manus (propriegramment) (comments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/05/77 <b>53</b> | Sélection<br>plongeurs<br>Détec. bulles<br>Sea Conquest | SEALY<br>IMRAY<br>LANGTON<br>ROBERTSON | 180m - 120mi             | 52h 26mn 137<br>2   |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                         |                                        |                          |                     |                                                                                                              |
| The second secon |                    |                                                         |                                        |                          |                     |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | . ,                                                     |                                        |                          |                     |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                         |                                        |                          |                     |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                         |                                        |                          |                     |                                                                                                              |
| A PROCESSION OF THE PROCESSION |                    |                                                         |                                        |                          |                     |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                         |                                        |                          |                     |                                                                                                              |

# DESCRIPTIF DES PLONGEES UNITAIRES HELIOX 1978

La méthode de calcul reste la même qu'en 1977. Elle est décrite dans le texte ci-joint. Certains paramètres de calcul ont été modifiés pour tenir compte des travaux réalisés sur la décompression de saturation.

Un jeu de tables a été fourni à OPE - DIVING le 25 Septembre 1978. C'est celui qui a servi aux six décompressions de 180 mètres.

| DATE               | EXAMENS<br>EFFECTUES            | PLONGEURS                       | PROFONDEUR<br>DUREE FOND               | DUREE<br>DECOMP. | C            | DBSERVATIONS |
|--------------------|---------------------------------|---------------------------------|----------------------------------------|------------------|--------------|--------------|
|                    |                                 |                                 |                                        | Į U              | PTD<br>U2    | v.           |
| 10/01/78 64        | Détec. bulles                   | BOULMIER<br>EMERY<br>LHERMENIER | 78m - 30mn<br>(sortie amb.)<br>héliox  | 4h 22mn          | -            |              |
| 12/01/78 <b>§5</b> | Détec. bulles                   | BOULMIER<br>EMERY<br>LHERMENIER | 78m - 30mn<br>(sortie masque<br>héliox | 2h 41mn          | -            |              |
| 07/11/78 🕂         | Sélection 450m<br>Détec. bulles | MARIE<br>MULLON                 | 180m - 120mn                           | 56h 15mn         | 1500<br>27,1 |              |
| 14/11/78 11        | Sélection 450m<br>Détec. bulles | BULFO MARCEL - AUDA             | 180m - 120mn                           | 56h 15mn         | 1500<br>27,1 |              |
| 20/11/78           | Sélection 450<br>Détec. bulles  |                                 | 180m - 120mn                           | 56h 15mn         | 1500<br>27,1 | 1            |
| 21/11/78           | Sélection 450<br>Détec. bulles  |                                 | 180m - 120mr                           | 56h 15mn         | 1500<br>27,  | 1            |
| 29/11/78           | Sélection 450<br>Détec. bulles  | 1                               | 180m - 120mi                           | 56h 15mn         | 1500<br>27,  | ł            |
| 06/12/78           | Sélection 450<br>Détec. bulle   | Ĭ                               | 180m - 120m                            | n 56h 15mr       | 150<br>27,   | C<br>1       |
|                    |                                 |                                 |                                        |                  |              |              |
|                    | ·                               |                                 |                                        |                  |              |              |
|                    |                                 |                                 |                                        |                  |              |              |
| • •                |                                 | ,                               |                                        |                  |              |              |

PLONGEES UNITAIRES HELIOX 76 - 77 - 78

|                      |             |              |                          | ţ                         | 1               | Doileirs    |                |
|----------------------|-------------|--------------|--------------------------|---------------------------|-----------------|-------------|----------------|
| ь<br>Б               | Nb Plongées | Nb Plongeurs | Accident<br>Vestibulaire | Bend avec<br>Recomp ou 02 | Recomp, sans 02 | Pulmonaires | Divers         |
|                      |             |              |                          |                           |                 |             |                |
|                      | 4 5         | 120          | 7                        | Ą.                        | · 6             | rv          | м <u> </u>     |
| <br>                 | - [<br>     |              |                          | 1                         | <br>            |             |                |
|                      | 7           | ω            | 0                        |                           | 0               | T'          | 0              |
|                      |             |              | 1                        | <br>                      |                 | ·<br>·      |                |
|                      | · · · · · · | 50           | 0                        | . O                       | 0               | 0           | 0              |
| ;<br> <br> <br> <br> | }<br>1<br>1 |              |                          |                           | 1               | <br>        |                |
|                      | rv<br>rv    | 148          | 1 (0,6 %)                | 5 (3 %)                   | 3 (5 %)         | 9 (5 %)     | (%<br>C)<br>C) |
|                      |             |              |                          |                           |                 |             |                |

# DETECTIONS DE BULLES Plongées unitaires héliox (76 - 77 - 78)

Nombre de plongées avec détection : 31 Nombre de plongeurs avec détection : 82

|   | Degré i  | naxi. de<br>(del | e bulles<br>oout) | s au rep       | ∞s             | Degré maxi. de bulles au mouvement |                 |          |                |                |                |
|---|----------|------------------|-------------------|----------------|----------------|------------------------------------|-----------------|----------|----------------|----------------|----------------|
| · | 0        | 1                | 2                 | 3              | 4              |                                    | 0               | 1        | 2              | 3              | 4              |
| · | 75<br>82 | <u>3</u><br>82   | 3<br>82           | <u>1</u><br>82 | <u>O</u><br>82 |                                    | <u>57</u><br>82 | 11<br>82 | <u>8</u><br>82 | <u>6</u><br>82 | <u>0</u><br>82 |
| 8 | 91,5     | 3,6              | 3,6               | 1,2            | 0              |                                    | 69,5            | 13,4     | 9,7            | 7,2            | . O            |

# DETECTIONS DE BULLES POUR LES 180 METRES . 2 HEURES

#### 6 Plongées avec 14 Plongeurs

| ] | Degré ma | axi. de<br>(debo | bulles           | au repo        | os             | Degré m        | axi. de        | bulles         | au mou         | vement         |
|---|----------|------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|   | 0        | 1                | 2                | 3              | . 4            | 0              | 1              | 2              | 3              | . 4            |
|   | 13<br>14 | $\frac{1}{14}$   | <u>O</u><br>14 , | <u>O</u><br>14 | <u>O</u><br>14 | <u>7</u><br>14 | <u>2</u><br>14 | <u>4</u><br>14 | <u>1</u><br>14 | <u>O</u><br>14 |
| % | 93       | 7                | 0                | 0              | 0              | 50             | 14             | 28,5           | 7              | 0              |

## CORRELATION ACCIDENT / BULLES CIRCULANTES

Nombre de plongées : 31 Nombre de sujets : 82

|                     | Degré maxi. de bulles au repos<br>(debout) |               |                |               |               | Degré maxi. de bulles au mouvement |                  |                |               |               |               |
|---------------------|--------------------------------------------|---------------|----------------|---------------|---------------|------------------------------------|------------------|----------------|---------------|---------------|---------------|
| • .                 | 0                                          | 1             | 2              | 3             | 4             |                                    | 0 '              | 1              | 2             | 3             | 4             |
| Accident<br>vestib. | <u>O</u><br>75                             | <u>O</u><br>3 | <u>O</u><br>·3 | <u>1</u>      | <u>0</u>      |                                    | <u>O</u><br>57   | <u>O</u><br>11 | <u>O</u><br>8 | <u>1</u><br>6 | <u>0</u><br>0 |
| Accident<br>Bend    | <u>O</u><br>75                             | 1<br>3<br>33% | 1<br>3<br>33%  | <u>O</u><br>1 | <u>0</u><br>0 |                                    | . <u>O</u><br>57 | <u>O</u><br>11 | 1<br>8<br>12% | 17%           | 0 0           |

## b) Plongées longue durée et saturation héliox (1977 - 78)

Pour l'année 1977, notre programme de recherches sur les tables avait un objectif double : d'une part, faire la liaison entre les plongées unitaires testées en 1976 jusqu'à 150 minutes au fond et la saturation en calculant des tables pour 3, 4, 5, 6 et 7 heures au fond et d'autre part, améliorer la sécurité de la décompression de saturation existante (CX 74) qui nous servait pour les sorties de décompression de plongées unitaires (voir méthode de calcul) et la rendre homogène avec ces unitaires, du point de vue méthodologique (paliers de décompression mètre par mètre, utilisation de % constants d'O2).

Les tests de décompression des plongées longue durée et de saturation héliox ont débuté le 7 Février 1977 et la dernière expérience a eu lieu de 14 Mars 1978. Auparavant, nous avions calculé une table 400 mètres-surface pour la phase C.E.H. de JANUS IV (Décembre 76) et une table 430 mètres-surface pour la phase III (phase en mer Octobre 77).

Au total, nous avons réalisé 22 plongées avec 76 plongeurs. Les protocoles de plongées, les résultats des observations cliniques et des détections de bulles sont rapportés sur les tableaux ci-joints.

Sur les 11 cas de bends observés, un seul a nécessité une recompression (soit 1,6 %).

Du 7 Février 77 au 16 Mars 77, quatre plongées longue durée (4 heures et 7 heures) ont été testées. Les résultats sont très encourageants puisque ces décompressions n'ont pas donné lieu à des bends et produisent peu de bulles. Il est donc possible, pour des durées de plongée de 2 à 7 heures de décomprimer en toute sécurité les plongeurs beaucoup plus rapidement qu'en décompression de saturation.

Exemple : pour une plongée à 120 mètres

- . décompression de saturation : 57h 39
- . pour 4 heures au fond : 45h O2 (gain de temps 12h 37 soit 21 %)
- . pour 7 heures au fond : 52h 28 (gain de temps O5h 11 soit 9 %)

Ces plongées "longue durée" qui font la liaison entre les plongées unitaires (jusqu'à 2 heures au fond) et les saturations pourraient être largement utilisées sur les chantiers dans l'avenir.

Les résultats cliniques et les détections de bulles ne doivent pas être considérés comme représentatifs de la qualité de la table de décompression de saturation que nous proposons actuellement, puiqu'ils ont été obtenus (comme pour les plongées unitaires) au cours de recherches du meilleur profil et non pas au cours d'une évaluation de la table. Ainsi, depuis les deux décompressions JANUS IV (phases II et III) et jusqu'à la plongée à 300 mètres (soudure) de décembre 77, les paramètres de calcul ont été modifiés au fur et à mesure des tests.

Depuis le 4 Janvier 78, la même table a été utilisée pour un total de 5 plongées (4 à 180 mètres et 1 à 100 mètres). A la vue des résultats cliniques et des détections de bulles, il ressort que lorsqu'aucune excursion n'est effectuée au fond, la courbe de décompression est très satisfaisante ; aucune douleur n'est à signaler, le dégazage est très faible, les plongeurs rapportent une impression de grand confort. Cependant, lorsqu'on effectue des excursions répétées de 10 mètres et de 9 heures par jour et bien que l'on observe que peu de bulles circulantes, 2 plongeurs sur 12 (17 %) ont ressenti des douleurs en fin de décompression. Le même phénomène a été observé lors d'excursions de plus grandes amplitudes (jusqu'à 70 et 80 mètres) lors des plongées JANUS IV (II et III). Cependant, les deux bend observés lors de la mise au point de la décompression à saturation n'ont pas une valeur statistique. Nous pensons en effet qu'il est nécessaire de poursuivre l'étude, cette voie offrant de grandes possibilités quant à l'utilisation de l'oxygène en décompression. De plus, à partir des tests réalisés sur les décompressions singe et grâce à la possibilité d'extrapoler d'une manière simple les vitesses de décompressions nous avons la certitude qu'il est possible dès à présent de proposer une décompression de saturation héliox présentant une meilleure sécurité que celle pratiquée actuellement sur les chantiers.

# DESCRIPTIF DE PLONGEES LONGUE DUREE HELIOX 1977

Ces tables de décompression sont directement déduites des plongées unitaires héliox 1977.

La même méthode et les mêmes paramètres de calcul y sont utilisés.

|                   | ·                      |                   |                          |                                                                                  | 1                                                                                                |
|-------------------|------------------------|-------------------|--------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| DATE              | EXAMENS<br>EFFECTUES   | PLONGEURS         | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP.                                                                 | OBSERVATIONS                                                                                     |
| 07/02/77 46       |                        | DEMERLE<br>JOURDE | 87m - 240mn              | 31h 23mn                                                                         |                                                                                                  |
| 14/02/77 <b>4</b> | Détec. bulles<br>C. V. | DEMERLE JOURDE    | 78m - 240mn              | 28h 01mn                                                                         |                                                                                                  |
| 07/03/77          | Détec.                 |                   | mn                       | 45h 02mn                                                                         |                                                                                                  |
| 16/03/77          | Détec.                 |                   | 1                        | 1 - 10 0/\ 3                                                                     | n Douleurs pulmo.<br>au fond au<br>2 (passage de 3 %<br>60m. + picotements<br>près de la surface |
| 30/03/77          | Détec. bu              |                   |                          | 52h 28r<br>(+ 2h 21m<br>arrêt à 7<br>59h 49mn)<br>même duré<br>pour 420m<br>fond | mm   DAVIES : douleurs<br>n                                                                      |
|                   |                        |                   | DT!N                     |                                                                                  |                                                                                                  |
|                   |                        |                   |                          |                                                                                  |                                                                                                  |
|                   |                        |                   |                          |                                                                                  |                                                                                                  |

# (AVEC % CONSTANTS D'02 en DECOMPRESSION)

| Observations   | MC KENNA: douleur articulaire à 16 m prise de 50/50 (ce plongeur avait fait un accident vestibulaire au retour de sa dernière plongée excursion (480 - 400 m) VERPEAUX: douleur articulaire à 1 mètre - prise d'02                                                                                               | VERPEAUX : douleur articulaire à 333 mètres<br>SCHNEIDER : douleur articulaire à 8 mètres - prise d'02.                                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| But du Test    | Plongée JANUS IV phase II (C.E.H.) table de décompression directement issue de la table chantier (CX 74) mais utilisation pour la lêre fois en saturation de pourcentage constant d'O2 en décompression.  La décompression a été interrompue par deux paliers:  à 370 mètres - 15h 44mn et 255 mètres - 12h 47mn | Plongée JANUS IV phase III (en mer<br>Décompression tirée comme pour la<br>phase II de la table chantier<br>(CX 74). Utilisation de pourcen-<br>tages constants d'O2 en décomp.<br>Pas d'arrêt durant la décompression |
| Durée décomp.  | 8 jours 10 h<br>35 mn                                                                                                                                                                                                                                                                                            | 7 jours 1 h<br>8 mn                                                                                                                                                                                                    |
| Prof. et durée | 400 - 430m<br>460<br>480<br>6 jours                                                                                                                                                                                                                                                                              | 430 - 460m<br>501m<br>4 jours                                                                                                                                                                                          |
| Plongeurs      | JEANTOT<br>LENTINI<br>MC KENNA<br>RAUDE<br>SCHNEIDER<br>SEVELLEC<br>VERPEAUX<br>VIAL                                                                                                                                                                                                                             | JEANTOT RAUDE SCHNEIDER SEVELLEC VERPEAUX VIAL                                                                                                                                                                         |
| Date           | 04/12/76                                                                                                                                                                                                                                                                                                         | 15/10/77                                                                                                                                                                                                               |

(AVEC % CONSTANTS D' 02 EN DECOMPRESSION).

| Date     | Plongeurs                          | Prof. et durée | Durée décomp. | But du Test                                                                                                    | Observations                                                           |
|----------|------------------------------------|----------------|---------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 05/04/77 | HOWIE<br>L AV RO                   | 120m - 22 h    | 57h 39mn      | ler test de table de décompression<br>de saturation utilisant des %                                            |                                                                        |
| 67       | BARRY                              |                |               | constants d'02 et des paliers tous<br>les mètres. Décompression servant<br>de base aux unitaires testées en 76 |                                                                        |
| 23/05/77 | LAURO<br>HOWIE<br>TURINI           | 120m - 21 h    | 55h 54mn      | Basculement de la courbe des vitesses en fonction de la profondeur.<br>Accélération du début de la décomp      | LAURO : douleur légère au genou<br>droit à 9 mètres. A 3 mètres O2 pur |
| 31/05/77 | DUBREUIL<br>SANTAMARIA<br>ESPOSITO | 120m - 19 h    | 52h 33mn      | Nouvelle accélération du début de<br>la décompression                                                          | ESPOSITO : douleurs aux genous à<br>8 mètres. O2 pur.                  |
| 14/06/77 | GARBE<br>LUICCI<br>TEMPIER         | 35m - 27 h     | 21h 46mn      | Même décompression que la fin de<br>la décompression de la plongée<br>précédente                               | TEHPIER Rul : 1 when                                                   |
| 26/09/77 | AUGE<br>FABRE<br>OUZENANE          | 35m - 26 h     | 20h 15mn      | Accélération de la décompression                                                                               |                                                                        |
| 7        | _                                  | _              | •             |                                                                                                                |                                                                        |

(AVEC % CONSTANTS D' O2 EN DECOMPRESSION).

| Date     | Plongeurs                           | Prof. et durée               | Durée décomp.                      | But du Test                                                                                       | Observations                                                                                                                                         |
|----------|-------------------------------------|------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04/10/77 | KORKOUNOFF<br>RIABSTSEV<br>SMIRNOV  | 200m - 8h<br>(subsaturation) | 99h 07mn                           | Décompression utilisant la même<br>fin de décompression que précédem-<br>ment                     |                                                                                                                                                      |
| 15/11/77 | ALLEX<br>FABRE<br>GREGOIRE          | 35m - 30h                    | 19h 39mn                           | Même décompression que celle testée<br>le 26/09/77 mais avec une accélé-<br>ration du départ      |                                                                                                                                                      |
| 21/11/77 | BEDNAR<br>CHERRUAULT<br>MAVROSTOMOS | 180m - 26h 30                | 89h 56mn<br>(+ 2h palier à<br>7m.) | Mêmes paramètres de calcul que pour<br>la plongée du 04/10/77 mais avec<br>accélération du départ | MAVROSTOMOS : douleur au genou â<br>19m. A 7m:02 pur + palier.                                                                                       |
| 05/12/77 | CASOULI<br>PACCHIONI<br>SEGURA      | 150m - 24h                   | 74h Olmn                           | Même paramètre de calcul que pour<br>la décompression précédente                                  | SEGURA : douleur musculaire jambe<br>gauche. A 33m. prise de 50/50. A 22m<br>palier de 1h 30. A 7m. recompression<br>à 13m. Palier de 2h. et 02 pur. |
|          |                                     |                              |                                    |                                                                                                   |                                                                                                                                                      |

(AVEC % CONSTANTS D' 02 EN DECOMPRESSION).

| Plongeurs                          | Prof. et durée          | Durée décomp. | But du Test                                                                                                                                                             | Observations                                             |
|------------------------------------|-------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                    | 300m - 35h 09           | 153h 55mn     | Ralentissement de l'ensemble des<br>décompressions                                                                                                                      | JALPI : douleur musculaire jambe<br>gauche à 6m. 02 pur. |
| CASOULI<br>GAND<br>MAVROSTOMOS     | 180m - 24h              | 103h 45mn     | Même décompression que précédem-<br>ment mais avec rajouts d'02 anti-<br>cipés, passage à l'air à 8 mètres<br>et changement de palier en 20 mn<br>à partir de 22 mètres |                                                          |
| <br>                               | 170 - 180m -<br>4 jours | 103h 45mn     | Même table que précédemment mais<br>avec une excursion à 180 mètres<br>de 9 heures par jour                                                                             | TOLMAN et ROUX à 12m douleurs<br>articulaires. O2 pur.   |
| BRAUD<br>COULOIGNIER<br>KORKOUNOFF | 170 - 180m -<br>4 jours | 103h 53mn     | Une excursion de 9 heures par jour<br>même décompression que précédemment<br>mais avec 4 recompressions de 3 m.<br>à chaque changement de % d'O2                        |                                                          |

(AVEC % CONSTANTS D' 02 EN DECOMPRESSION).

| Observations  |                |                                                                                       |                                                                                                                             |  |
|---------------|----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| But du Test   | 1              | Une excursion de 9 heures par jour<br>même décompression que la plongée<br>précédente | Une seule excursion. Le séjour au<br>fond prévu à 4 jours a été écourté.<br>Pas de recompression durant la<br>décompression |  |
| niráe décomo. |                | 103h 53mn                                                                             | 66h 33mn                                                                                                                    |  |
| +             | Proi. et auree | 170 - 180m<br>4jours                                                                  | 90 - 100m<br>1 jour                                                                                                         |  |
|               | Plongeurs      | COMBES<br>DUPRAT<br>HUSS                                                              | DIAZ<br>NICOD<br>ROZOTTE                                                                                                    |  |
|               | Date           | 28/02/78                                                                              | 14/03/78                                                                                                                    |  |

# DECOMPRESSION LONGUE DUREE ET SATURATION HELIOX AVEC % O2 CONSTANT

|                                                                                    | Nb plongées | Nb plongeurs | Accident<br>Vestibulaire | Accident bend<br>avec recomp.<br>ou O2 |          |
|------------------------------------------------------------------------------------|-------------|--------------|--------------------------|----------------------------------------|----------|
| TESTS TABLES 77-78 C.E.H.  Avec JANUS IV phases II et III de Déc. 76 au 14 Mars 78 | . 22        | 76           | 0                        | 11<br>(14 %)                           | 2 (2,6%) |

### DETECTION DE BULLES

Nb plongées : 22 Nb plongeurs : 75

|   |   | Degré           | maxi. d        | e bulle:<br>out) | s au re        | pos            | Degré m         | axi. de        | e bulles | au mou          | ivement        |
|---|---|-----------------|----------------|------------------|----------------|----------------|-----------------|----------------|----------|-----------------|----------------|
|   |   | Ö               | 1              | 2                | 3              | 4              | 0               | 1              | 2        | 3               | 4              |
|   |   | <u>57</u><br>75 | <u>8</u><br>75 | 10<br>75         | <u>O</u><br>75 | <u>0</u><br>75 | <u>25</u><br>75 | <u>9</u><br>75 | 14<br>75 | <u>27</u><br>75 | <u>0</u><br>75 |
| g | ò | 76              | 10,6           | 13,3             | 0              | 0              | 33,3            | 12             | 18,6     | 36              | 0              |

# DECOMPRESSION LONGUE DUREE ET SATURATION HELIOX AVEC % O2 CONSTANT

# CORRELATION BULLE / ACCIDENT (BEND)

22 plongées avec 75 plongeurs (10 bends)

|    | Degré          | maxi. dek     | le bulle<br>xout) | s au re       | pos           | Degré       | maxi. d       | e bulle | es au mo       | ouvement       |
|----|----------------|---------------|-------------------|---------------|---------------|-------------|---------------|---------|----------------|----------------|
| ·  | 0              | 1             | 2 .               | 3             | 4             | O           | 1             | 2       | 3              | 4              |
|    | <u>5</u><br>57 | <u>1</u><br>8 | <u>4</u><br>10    | <u>0</u><br>0 | <u>o</u><br>o | <u>O</u> 25 | <u>2</u><br>9 | 3<br>14 | <u>5</u><br>27 | <u>0</u><br>0. |
| 90 | 9              | 12            | 40                |               | <u>-</u>      | 0           | 22            | 21      | 18             | _              |

### c) Plongées saturation nitrox

Ce programme de tests a été intercalé dans l'étude des saturations héliox, sur une demande de COMEX SERVICES. Il possédait un double objectif :

- savoir s'il était possible de réaliser des plongées à l'air pour un niveau travail de 50 mètres à partir d'une saturation nitrox.
- mettre au point un jeu de tables de saturation à l'air permettant le travail entre 17 et 50 mètres.

Après une première plongée réalisée d'après les instructions spéciales Comex Services utilisées sur 'TALISMAN', trois autres plongées ont été faites au C.E.H. entre le 24 Janvier 78 et le 11 Février 78. Ces décompressions constituent donc une première généralisation de la méthode de calcul à d'autres gaz que l'hélium.

Le descriptif des plongées, les résultats cliniques et les détections de bulles sont rapportés sur les tableaux ci-joints. Sur les 9 plongeurs, un seul a présenté une douleur au genou 3 heures après la sortie. Il faut noter également que ces décompressions ne présentent pratiquement pas de bulles circulantes (sauf l cas). Ces tables présentent donc une bonne sécurité. De plus, cette décompression a déjà été modifiée (dans le sens d'un rallongement) en fonction des résultats obtenus sur les saturations héliox.

D'autres tests seront nécessaires pour confirmer ces résultats.

| 8/ - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NITROX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SATURATION NITROX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PI,ONGEES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DES.                                       | COPTDUTE         | O<br>T<br>C                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|-----------------------------------------|
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And the state of t | PER SALAMAN AND AND SALAMAN AND AND AND AND AND AND AND AND AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | specific of the Period Add Principles      |                  | *************************************** |
| Special (management) Special S | popularity of the encountered before a falling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Charlest and confirmation of the Confirmatio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                  |                                         |
| A Proposed Annual Community (Community Community Communi | APAGE PROPERTY APAGE APA | Section of the sectio | TOTAL STREET,  | Special Control of the Control of th | P271 - 10000000000000000000000000000000000 | Compromoporation | Short-belles to the second              |

Total second married

| Observations   |                                                                                 |                                                                                     | BOULMIER : 3 heures après la sortie<br>douleur au genou. Diminution de la<br>capacité vitale chez les 3 plongeurs<br>le 3ème jour au fond |                                                                                      |
|----------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| But du Test    | Une excursion à 27m de 9 heures<br>par jour. Instructions spéciales<br>TALISMAN | Décompression extrapolée de la<br>saturation héliox. Passage à l'air<br>à 34 mètres | Une excursion à 50m de 6 heures<br>par jour à l'air. Même table de<br>décompression que précédemment                                      | Une excursion à 30m de 6 heures<br>par jour à l'air. Même table que<br>précédemment. |
| Durée décomp.  | 17h 01mn                                                                        | 64h 54mn                                                                            | 64h 54mn                                                                                                                                  | 45h 00mn                                                                             |
| prof. et durée | 17 - 27m - 4 Jrs                                                                | 50m - 36h                                                                           | 36 - 50m - 4 jrs                                                                                                                          | 20 – 30m – 4 jrs                                                                     |
| Plongeurs      | GINTZ<br>GUILLOU<br>MARTIN                                                      | MULLER<br>PRUD'HOMME<br>ROBINAUD                                                    | BOULMIER<br>BRESSON<br>SEILLIER                                                                                                           | LHERMENIER<br>ROUSSEL<br>ROZOTTE                                                     |
| Date           | 28/11/77                                                                        | 24/01/78                                                                            | 30/01/78                                                                                                                                  | 06/02/78                                                                             |

## DECOMPRESSION SATURATION NITROX

| •                                            |             |              |                          |   |                                                    |
|----------------------------------------------|-------------|--------------|--------------------------|---|----------------------------------------------------|
|                                              | Nb plongées | Nb plongeurs | Accident<br>Vestibulaire |   | Douleur art.<br>ou muscul. sans<br>recomp. sans 02 |
| DECOMPRESSION 'TALISMAN' 28.11.77            | . 1         | 3            | 0                        | 0 | 0                                                  |
| DECOMPRESSION C.E.H. du 24.01.78 au 06.02.78 | 3           | 9            | 0                        | Ο | 1                                                  |
| TOTAL                                        | 4           | 12           | 0                        | 0 | 1                                                  |

### DETECTION DE BULLES

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | degré i  |                | le bulle:<br>ebout) | s au re        | epos           | degré i      | maxi. d | e bulle        | es au moi | uvement        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|----------------|---------------------|----------------|----------------|--------------|---------|----------------|-----------|----------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 0        | 1              | 2                   | 3              | 4              | <br>0        | 1       | 2              | 3         | 4              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 11<br>12 | <u>O</u><br>12 | 1<br>12             | <u>O</u><br>12 | <u>O</u><br>12 | <br>10<br>12 | 1<br>12 | <u>0</u><br>12 | 1<br>12   | <u>O</u><br>12 |  |
| Control of the last of the las | 00 | 91,6     | 0              | 8,3                 | 0              | 0              | 83,3         | 8,3     | 0              | 8,3       | 0              |  |

# CORRELATION BULLE / ACCIDENT SATURATION NITROX

|            | Degré           | maxi d        | e bulle<br>ebout) | s au rep      | xxs           | Degré          | maxi de       | bulles        | au mouv       | vement        |
|------------|-----------------|---------------|-------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
|            | 0               | 1             | 2                 | 3             | 4             | 0              | 1             | 2             | 3             | 4             |
| 'TALISMAN' | <u>O</u><br>3   | <u>0</u><br>6 | <u>0</u><br>0     | <u>0</u><br>0 | <u>0</u><br>0 | <u>O</u><br>3  | <u>0</u><br>0 | <u>0</u><br>0 | <u>0</u><br>0 | <u>o</u><br>o |
| С. Е. Н.   | <u>O</u><br>8   | <u>0</u><br>0 | 1<br>1            | <u>0</u><br>0 | <u>o</u><br>o | <u>0</u><br>7  | <u>O</u><br>1 | <u>0</u>      | 1             | <u>o</u><br>o |
| TOTAL      | <u>O</u><br>1.1 | <u>O</u><br>O | 1<br>1            | <u>o</u><br>o | <u>o</u><br>o | <u>0</u><br>10 | <u>O</u><br>1 | <u>o</u><br>o | <u>1</u>      | <u>0</u><br>0 |

# 2. DECOMPRESSION SATURATION HELIOX AVEC PI O2 CONSTANT (0,6 b)

Depuis les plongées à 300 mètres CORAZ III et IV (1975) nous avons systématiquement recueilli les observations comportementales et pratiqué des détections de bulles circulantes sur les plongées réalisées au C.E.H. Ces plongées sont, pour la plupart, des soudures à 150 mètres. Elles peuvent se séparer en deux catégories : d'une part, celle qui utilisent pour la décompression la table saturation chantier (CX 74) et d'autre part, celles qui sont réalisées avec une table de décompression 'rallongée' mise au point par 'OPE-DIVING'.

Les résultats cliniques et des détections de bulles sont rapportés sur les tableaux ci-joints. On remarque que la décompression type CX 74 produit un pourcentage de bends important (21 %), des bulles au repos (degré 1 dans 19,6 % des cas) et un dégazage important de bulles au mouvement (degré 3 dans 46,9 % des cas). Quand on sait que pour ce type de décompression, la probabilité d'accident pour un degré 1 au repos est de 38 % et de 26 % pour un degré 3 au mouvement, on peut prévoir que cette table ne présente pas une sécurité suffisante.

En ce qui concerne la décompression type 'OPE-DIVING' celle-ci présente un taux de bends beaucoup plus faible. Moins de 5 % de bulles au repos et peu de bulles au mouvement (moins de 10 % pour le degré 3 au mouvement).

Bien que le nombre des plongeurs soit peu important (21) et la profondeur faible (150 mètres maxi.). Cette table se révèle incontestablement meilleure que la CX 74.

# DESCRIPTIF DES PLONGEES SATURATION HELIOX (avec PIO2 constante)

TABLE DE DECOMPRESSION CHANTIER CX 74

| ${f T}$               | ABLE DE DECOMP       | RESSION CHANT                                                       | ER CX 7,4                |                                           | . }                                                                                                   |
|-----------------------|----------------------|---------------------------------------------------------------------|--------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|
| DATE                  | EXAMENS<br>EFFECTUES | PLONGEURS                                                           | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP.                          | OBSERVATIONS                                                                                          |
| 10/06/75<br>CORAZ III | Détec. bulles        | GAURET<br>GANGLOFF                                                  | 300 m.<br>Saturation     | 136 heures                                |                                                                                                       |
| 09/12/76<br>CORAZ IV  | Détec. bulles        | GRISELIN<br>MARY                                                    | 300 m<br>Saturation      | 136 heures                                | MARY : bend art.<br>à 14 mprise 02                                                                    |
| 24/02/77              | Eétec. bulles        | STEVENSON BARRY DEWSNAP CARTER HOWIE ROBINS SMITH TAYLOR D.         | 150 m.<br>saturation     | type chantier<br>78h 18mn<br>3j. 6h. 18mn | STEVENSON : bend<br>articulaire à<br>12 mètres -<br>prise 02                                          |
| 04/03/77              | Détec. bulles        | SAUNDERS JOHNSON YOUNG VAUGHAN HUTCHINSON BAKER FITZSIMMONS GRENIER | 150 m.<br>saturation     | type chantien<br>78h 18mn                 | BAKER: bend articulaire à 2m FITZSIMMONS: bend articulaire à 7 m. GRENIER: bend art. à 9m.            |
| 18/03/77              | Détec. bulles        | HOWIE BARRY TAYLOR D. MOLE WRIGHT DUMON TAYLOR L. BOWDEN            | 150 m.<br>saturation     | <u> </u>                                  | r TAYLOR : bend<br>articulaire à<br>10 m.<br>BOWDEN : bend<br>articulaire à<br>5 m.                   |
| 25/03/77              | Détec. bulles        | CHAUVET JALPI ROUMEGOUS ALBERTO MILLION GABBI CAPOBILLA MARVALIN    | 150 m.<br>saturation     | type chantie<br>78h 18mn                  | cr CHAUVET : bend<br>articulaire à<br>124 mètres puis<br>à 4 mètres.<br>GABBI : bend à<br>124 mètres. |
|                       |                      |                                                                     |                          |                                           |                                                                                                       |

| DATE          | EXAMENS<br>EFFECTUES | PLONGEURS          | PROFONDEUR<br>DUREE FOND | DUREE<br>DECOMP.            | OBSERVATIONS                           |
|---------------|----------------------|--------------------|--------------------------|-----------------------------|----------------------------------------|
| 03/04/77      | Détec. bulles        | DUMON<br>MOLE      | 150 m.                   | type chantier<br>78 h 18 mn | DUMON : bend articulaire à , 7 metres. |
|               | 86                   | SAUNDERS           |                          |                             |                                        |
|               |                      | TAYLOR D.          |                          |                             |                                        |
|               |                      | TAYLOR L.          |                          |                             |                                        |
| 11/04/77      |                      | BRESAN             | 150 m.                   | type chantier               | FAGET : bend<br>articulaire à          |
| , - · · , · · | . •                  | MIMOT              | saturation               | 78 h 18 mn                  | 2 mètres.                              |
|               |                      | GALIFI             |                          |                             |                                        |
| •             |                      | RABIN              |                          |                             | ·                                      |
|               | 87                   | CHAUVET            |                          |                             |                                        |
|               |                      | GAUBALD            |                          |                             | ·                                      |
| •             |                      | FAGET              |                          |                             | ,                                      |
|               |                      | MARVALIN           | •                        |                             |                                        |
| 06/05/77      | Détec. bulles        | MELQUION           | 150 m.                   | type chantier               | SAUNDERS : ben                         |
| 00/03/77      |                      | RABIN              | saturation               | 78 h 18 mn                  | articulaire à<br>15 mètres.            |
|               |                      | NAPIERALA          |                          |                             | NAPIERALA : be                         |
|               | 41                   | DEWSNAP            |                          |                             | articulaire à 5 mètres.                |
|               | 88                   | TAYLOR D.          |                          |                             | J me or es,                            |
|               |                      | SAUNDERS           |                          |                             |                                        |
|               |                      |                    |                          |                             | r ARRANGIO : ber                       |
| 17/10/77      | Détec. bulles        | ARANGIO            | 200 m.                   | 105 heures                  | articulaire a                          |
|               |                      | MENDOZA            | saturation               | 105 neures                  | 20 mètres -<br>  prise 02 (50/5        |
|               |                      | ORTIZ              | 'argentins'              |                             | ρι ισε σε (σσ) σ                       |
|               | 9 @                  | SUELDO             |                          |                             |                                        |
|               | 89                   | VASQUEZ            | ,                        |                             |                                        |
|               |                      | LESCANO            |                          |                             |                                        |
|               |                      | ROMERO<br>PACCIOLI |                          |                             |                                        |
|               |                      | FACCIOLI           |                          |                             |                                        |
| 24/1977       | Détec. bulles        | GUTTIERREZ         | 200 m.                   | type chantie                | er                                     |
| 24/17//       | De tec. Duries       | OLMOS              | saturation               | 103 heures                  |                                        |
|               | 10                   | AGUILLAR           | 'argentins               | avec saut                   |                                        |
|               | # V                  | RUFINO             | _                        | initial ralen               | ti                                     |
| ,             |                      | BRUNET             |                          | avec 650mb                  | 02                                     |
|               |                      | CASOULI            |                          |                             | }                                      |

| DAT    | !E | EXA    | AMENS<br>ECTUES | PLONGEURS                                  | PROFONDEUR<br>DUREE FOND           | DUREE<br>DECOMP.                                    | OBSERVATIONS                                                                                     |
|--------|----|--------|-----------------|--------------------------------------------|------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 04/12/ | 78 | Détec. | bulles          | CROITORU DINU LISTARU PAVEL ROTARU ROUSSEL | 200 m.<br>saturation<br>'roumains' | type chantier<br>114 heures<br>sans saut<br>initial | LISTARU: douleur articulaire à 19 mètres. CROITORU: bend articulaire à 5 mètres - pris d'02 pur. |
|        |    |        |                 |                                            |                                    |                                                     |                                                                                                  |
|        |    |        |                 |                                            |                                    |                                                     |                                                                                                  |
|        |    |        |                 |                                            |                                    |                                                     |                                                                                                  |
|        |    |        |                 |                                            |                                    |                                                     |                                                                                                  |
|        | •  |        |                 |                                            |                                    |                                                     |                                                                                                  |
|        |    |        |                 |                                            |                                    |                                                     |                                                                                                  |
|        |    |        |                 |                                            |                                    |                                                     |                                                                                                  |

TABLE DE DECOMPRESSION TYPE 'OPE-DIVING'

(AVEC PIO2 CONSTANTE , 600 mb)

| Date             | Plongeurs | Prof. et durée                          | Durée décomp.  | But du Test                       | Observations                          |
|------------------|-----------|-----------------------------------------|----------------|-----------------------------------|---------------------------------------|
| 28/03/78         | COLOM     | 130 - 140m                              | 86h 40mn       | Une excursion par jour            |                                       |
|                  | COMBES    | 4 jours                                 |                |                                   |                                       |
|                  | JACOBS    |                                         |                |                                   |                                       |
| 22               | (         | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | AAh (60 mètres | SOUDURE à 150 et 60 mètres        |                                       |
| 02/05/78         | BAKKY     | 150M - AVEC                             | surface)       |                                   |                                       |
|                  | BOIVIN    | paller de 48n                           | sur ו מכת )    |                                   |                                       |
|                  | HOWIE     | à 60m                                   |                |                                   |                                       |
|                  | SASSANO   |                                         |                |                                   |                                       |
|                  | SAVES     | -                                       |                |                                   |                                       |
| 7                | SMITH     |                                         |                |                                   |                                       |
| 8                | TAYLOR    |                                         |                |                                   |                                       |
| <b>)</b>         | ZOLLO     |                                         |                |                                   |                                       |
|                  |           |                                         |                |                                   |                                       |
| 23/05/78         | BARRY     | 100m                                    | 69 heúres      | SOUDURE                           |                                       |
| owednia sussilia | BOIVIN    |                                         |                |                                   |                                       |
|                  | GAUBALD   |                                         |                |                                   |                                       |
|                  | SAUNDERS  |                                         |                | ÷                                 |                                       |
| 3                | SMITH     |                                         |                |                                   |                                       |
| 5                | ZENEZINI  |                                         |                |                                   |                                       |
|                  |           |                                         |                |                                   |                                       |
| 21/12/78         | BARRY     | 150m                                    | 73 heures      | Décompression metre               | MAIL et BAKKY : bend                  |
| X                |           |                                         |                | par mètre. Rinçage à l'anr a lUm. | a 8 metres - prise UZ pur             |
| <b>)</b>         | FRAIZ     |                                         |                |                                   |                                       |
|                  | ZENEZINI  |                                         | ,              |                                   | · · · · · · · · · · · · · · · · · · · |

# DECOMPRESSION SATURATION HELIOX AVEC PIO2 CONSTANTE

|                                                                             | Nb plongées | Nb plongeurs | Accidents<br>Vestibulaires | Bend avec<br>Recomp. au 02 |
|-----------------------------------------------------------------------------|-------------|--------------|----------------------------|----------------------------|
| Tables saturation CX 74  CORAZ III et IV  SOUDURES PLONGEE COMEX INDUSTRIES | 12          | 75           | 0                          | 16<br>(21 %)               |
| Saturation<br>Tables opé-diving<br>du 28.03.78<br>au 19.12.78               | 4           | 21           | 0                          | 2 (9,5 %)                  |
| TOTAL                                                                       | 16          | 96           | ·                          | 18<br>(19 %)               |

# DETECTION BULLE PLONGEES SATURATION HELIOX AVEC PIO2 CONSTANTE

|                    | degré n          | naxi. de<br>(debc |                | s au re             | pos            | degré               | maxi.          | de bull          | es au mo         | uvenent        |
|--------------------|------------------|-------------------|----------------|---------------------|----------------|---------------------|----------------|------------------|------------------|----------------|
|                    | 0                | 1                 | 2 .            | 3                   | 4              | 0                   | 1.             | 2                | 3                | 4              |
| CX 74              | 50<br>66<br>75,7 | 13<br>66<br>19,6  | 3<br>66<br>4,5 | <u>0</u><br>66<br>0 | <u>0</u><br>66 | <u>6</u><br>66<br>9 | 10<br>66<br>15 | 19<br>66<br>28,8 | 31<br>66<br>46,9 | <u>O</u><br>66 |
| %<br><br>Opé-Dving | 18               | 19,0<br>          | <u></u>        | <br><u></u>         | 0              | 12                  |                | <u>6</u>         |                  | <u>o</u>       |
| 90                 | 21<br>85,7       | 21                | 21             | 21                  | 21<br>O        | 21<br>57,1          | 21             | 21<br>28,6       | 21<br>9,5        | 21<br>O        |
| TOTAL              | 68<br>87         | 14<br>87          | 3<br>87        | <u>O</u><br>87      | <u>O</u><br>87 | 18<br>87            | 11<br>87       | <u>25</u><br>87  | 33<br>87         | <u>0</u><br>87 |
| 8                  | 78               | 16                | 3              | 0                   | 0              | 21                  | 13             | 29               | 38               | ,<br>O         |

# CORRELATION BULLE / ACCIDENT (BEND)

CX 74 : 11 plongées et 66 plongeurs Opé-diving : 4 plongées et 21 plongeurs

TOTAL : 15 plongées et 87 plongeurs (16 bends)

|            | legré ma             | xi. de !<br>(debou   | oulles a<br>ut) | u reņos            |               | degré n             | naxi. de            | bulles        | au mouv        | ement         |
|------------|----------------------|----------------------|-----------------|--------------------|---------------|---------------------|---------------------|---------------|----------------|---------------|
|            | 0                    | 1                    | 2               | 3                  | 4             | 0                   | 1                   | 2             | 3              | 4             |
| CX 74      | <u>9</u><br>50<br>18 | <u>9</u><br>13<br>38 | <u>O</u><br>3   | <u>0</u><br>0<br>- | 0 -           | <u>2</u><br>6<br>-  | <u>0</u><br>10<br>- | 4<br>19<br>21 | 8<br>31<br>26  | <u>0</u><br>0 |
| OPE-DIVING | 1<br>18<br>5,5       | $\frac{1}{3}$        | <u>o</u><br>o   | <u>o</u><br>o      | <u>0</u> 0    | <u>O</u><br>12<br>– | <u>O</u><br>1       | 2<br>6<br>33  | <u>O</u> 2     | <u>0</u><br>0 |
| TOTAL      | 10<br>68<br>15       | 6<br>16<br>37        | <u>O</u> 3      | <u>o</u><br>o      | <u>O</u><br>O | 2<br>18             | <u>O</u><br>11      | 6<br>25<br>24 | $\frac{8}{33}$ | <u>0</u><br>0 |

# 3. CORRELATION ACCIDENT DE DECOMPRESSION ET BULLES CIRCULANTES

Les accidents de décompression peuvent-ils être prévenus par la détection de bulle ?

A partir de l'ensemble des résultats des détections, on peut tirer des corrélations entre les bulles et la probabilité d'apparition des accidents de décompression.

La situation est différente suivant le type de plongée : unitaire ou saturation.

En ce qui concerne les accidents vestibulaires, ceux-ci ne sont survenus que lors des décompressions de plongées unitaires ou des plongées excursions. Il apparaît qu'ils sont toujours précédés d'un dégazage important (degré 3 de bulle au repos). Malgré le peu de cas, on peut déduire que le degré 3 au repos présente une très forte probabilité d'accidents vestibulaires (2/3) en début de décompression (phase rapide) des plongées unitaires ou en retour des plongées excursions. Aucun accident de ce type n'est survenu lors des décompressions des plongées à saturation.

Pour ce qui est des douleurs articulaires ou musculaires (bends) observées généralement dans les derniers mètres, de la décompression (10 mètres ± 7 mètres), leurs probabilités d'apparition en fonction des divers degrés de bulles sont différentesen décompression de plongée unitaire et de plongée à saturation. En effet, en unitaire, l'absence de bulle au repos donne 0 % d'accident (p.12), par contre, en saturation on a 12 % (voir tableau corrélation bend-bulle - total.décomp. saturation).

De même, les bulles observées au mouvement dans le cas des plongées unitaires donnent moins de bends (0 %, 12 %, 17 % respectivement pour les degrés 1, 2, 3) que dans le cas de plongées à saturation (10 %, 23 %, 22 %).

Pour qu'une table de décompression soit considérée comme sûre (probabilité d'accident < 5 %) il est donc nécessaire d'éliminer en décompression de saturation même le degré 1 au mouvement (10 % d'accident) alors qu'en décompression d'unitaire, celui-ci ne présente pas de danger (0 % d'accident). Or, dans l'état actuel de nos tests, nous n'avons pas encore mis au point une telle décompression de saturation. Mais il existe un moyen détourné d'arriver au même résultat. En effet, sur l'ensemble de nos décompressions de saturation, ce sont les bulles apparaissant au cours de la décompression qui présentent un danger et non celles qui pourraient apparaître dans les derniers mètres. Il suffigait donc de déterminer les plongeurs ayant des bulles au mouvement (détectables au DUG) au cours de la décompression (par exemple, entre 80 et 30 mètres, pour une plongée à 150 mètres) et d'entreprendre une ACTION Préventive (respiration au moyen d'un mélange suroxygéné) pour ramener les cas d'accidents à moins de 5 %. Cette action préventive, peut être faite en 2 temps : une première prise d'oxygène 50/50 à 25 mètres (PIO2 = 1,7 b) en 2 fois 30 minutes (avec un arrêt de 5 minutes) et une seconde prise d'oxygène pur à 12 mètres (PIO2 = 2,2 b) également en 2 fois 30 minutes. Cette action préventive ne constitue évidemment qu'une mesure provisoire mais qui peut être rapidement mis en place sur les chantiers COMEX.

La poursuite du travail sur les tables de décompression de saturation calculées avec la méthode décrite précédemment devrait permettre dans un proche avenir de posséder une table donnant un taux d'accidents inférieur à 5 % quelle que soit la profondeur de la plongée.

### CORRELATION BULLE / ACCIDENT VESTIBULAIRE

50 plongées - 139 sujets

|                      | Degré i         |            | e bulle       | au repo       | S   | Degré maxi. de bulles au mouvement |                 |                |                |               |                |  |
|----------------------|-----------------|------------|---------------|---------------|-----|------------------------------------|-----------------|----------------|----------------|---------------|----------------|--|
| 4                    | 0               | <u>l</u> . | 2             | 3             | 4   |                                    | 0               | 1              | 2              | 3             | 4              |  |
| Unitaires<br>héliox  | <u>O</u><br>75  | <u>O</u>   | <u>0</u><br>3 | <u>1</u><br>1 | 0   |                                    | <u>O</u><br>57  | <u>O</u><br>11 | <u>O</u><br>8  | <u>1</u><br>6 | <u>0</u><br>0  |  |
| Excursions<br>héliox | <u>O</u><br>52  | 0 0        | <u>O</u><br>3 | 1<br>2        | 0 0 |                                    | <u>O</u><br>46  | <u>O</u><br>4  | <u>O</u><br>2  | 3             | <u>1.</u><br>2 |  |
| TOTAL                | <u>0</u><br>127 | . <u>О</u> | <u>0</u><br>6 | <u>2</u><br>3 | 0 0 |                                    | <u>0</u><br>103 | <u>0</u><br>15 | <u>0</u><br>10 | <u>1</u><br>9 | <u>1</u><br>2  |  |
| 00                   | 0 %             | 0 %        | 0 %           | 75 º          | 0 % |                                    | O %             | 0 %            | O %            | 11 %          | 5O %           |  |

### CORRELATION BULLE / BEND TOTAL DECOMP. SAT.

| <u>degré</u> | maxi. de       | bulles au      | repos (       | debout)  | [ | deg     | ré maxi.       | de bulle       | s au mouve      | ment          |
|--------------|----------------|----------------|---------------|----------|---|---------|----------------|----------------|-----------------|---------------|
| 0            | 1              | 2              | 3             | 4        |   | 0       | 1              | 2              | 3               | . 4           |
| 15<br>125    | <u>7</u><br>24 | <u>4</u><br>13 | <u>0</u><br>0 | <u>0</u> |   | 2<br>43 | <u>2</u><br>20 | <u>9</u><br>39 | <u>13</u><br>60 | <u>0</u><br>0 |
| 12 %         | 29 %           | 31 %           | <b>-</b>      | <u></u>  |   | 5. %    | 10 %           | 23 %           | 22 %            | _             |
| ·            |                |                | 162 pl        | ongeurs. | 5 | (26 be  | ends)          |                |                 |               |