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PROBABILISTIC LIMIT THEOREMS FOR CHAOTIC DYNAMICAL
SYSTEMS, SOME RESULTS FOR DISPERSIVE BILLIARDS AND
LORENTZ GASES

FRANCOISE PENE, UNIV BREST, UNIVERSITE DE BREST,
LMBA, UMR CNRS 6205, FRANCE

ABSTRACT. This proceeding is based on a mini-course given at the Summer School "From ki-
netic equations to statistical mechanics" organized by the Centre Henri Lebesgue at Saint Jean
de Monts from the 28th of June to the 2nd of July 2021.

After recalling classical probabilistic limit theorems for sums of independent identically dis-
tributed random variables, we consider analogous results in a dynamical context. Motivated by
examples coming from statistical mechanics, we are mostly interested in the Sinai billiard and in
the Z2-periodic Lorentz gas. We will also consider the Bunimovich stadium billiard and disper-
sive billiards with cusps. All these billiards are chaotic, with different behaviours. Additional
explanations are given in the four independent appendices.

1. FCLT FOR SUMS OF I.I.D. RANDOM VARIABLES AND WIENER PROCESS

Let (Xx)x be a sequence of centered R-valued independent identically distributed (i.i.d.)
random variables defined on the same probability space (2, F,P).

e The Strong Law of Large Numbers (SLLIN) ensures that lim,, % Y1 Xk =0
almost surely (i.e. this convergence holds true with probability one).

The Central Limit Theorem (CLT) deals with the convergence in distribution of (3-}_; Xx/a,)n>1
to a non-degenerate random variable for some sequence (ay,),>1 such that lim,_, . a, = +o0.
Functional Central Limit Theorems (FCLT) state convergence in distribution of the se-

_ t NN
quence of processes (t —a,! ZLn X k) o to a non degenerate cadlagl| process for a,, as above.
n>

Different normalizations and limit processes may appear. In particular:

e (Standard FCLT) If E[X?] < oo, then (t —n2 ZLntJ )n>1 converges in distribu-

tion] to (¢ = || X1]|L2W,) with W : ¢ =+ W) is standard Wiener motion
e (FCLT with non-standard normalization) If lim, ., 2?P(|X1] > z) = 4 > 0,
then X1 is not in L2 but is in LP for any p € [1,2) and the family of processes

Lnt . c s . .
( \/W Do )n21 converges in distribution to AW, with W as above.

e (Convergence to Lévy processes) Let a €]1;2[. If limg,;_>Oo zP(£X; > x) = Ay
with A, + A_ > 0. Then the family of processes (t s na ZLmJ ) ., converges in

dlStI‘lbuthrEI to a Lévy process Z of order .

Date:
lcédlég means right continuous with left limits, in reference to ‘continu a droite et limit’e & gauche’ in french.
2for the uniform topology on every compact
3Here the convergence is in the Skorohorod space of cadlag functions, with respect to the usual J; metric, we
won’t detail this metric.
1
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Let us say a few words about the limit processes W and Z.

FIGURE 1. A trajectory of respectively a Wiener process and a Lévy process of
order a = 3/2 with A_ =0 (no down jump)

The standard Wiener (or Gaussian) process )V has continuous trajectories ¢ — W;, has
independent increments, that Wy = 0 and that W; — W, has centered Gaussian distribution with
variance |t — s|. The Lévy processes Z of order o €]1;2[ are not continuous, but cadlag with

independent centered increments and, for all s < ¢, Z; — Z, has same distribution as |t — s|§Zl.
Throughout this article, W = (¢ — W) will be a standard Wiener process.

2. PROBABILISTIC LIMIT THEOREMS FOR DYNAMICAL SYSTEMS

We consider a deterministic dynamics given by the iterations of a map. Thus, the evolution
in time is completely determined by the perfect knowledge of the initial state of the system. We
assume that this initial state is not perfectly known (e.g. we just know an approximation of
it) and that it is chosen randomly. Formally we consider a probability (resp. o-finite measure)
preserving dynamical system, i.e.

e a probability space (2, F, ) (resp. a measurable space (2, F) endowed with a o-finite
non negative measure p),

e a transformation T : 2 — () preserving the measure pu, this means that, for all
ke N*, uw(T7%(A)) = u(A) forany A € F,ie. [ofoT*du= [ fdufor any f € L*(u).

Additionally, we consider

e a probability measure P which admits a density with respect to p,
e a p-integrable function f : @ — R (called observable) satisfying [, f du = 0.

We are interested in probabilistic limit theorems for ergodic sums (also called Birkhoff sums),
that is for sums of the form:

n—1
Sn(f) = ZfoTk'
k=0
We are interested in limit theorems similar to SLLN and FCLT for (foT*)>0 instead of (Xp)g>1-

e If 11 is a probability measure, the ergodicity of the dynamical system (€2, F, i1, T') means
that, for any p-centered observable f : Q@ — R, (S"—(f)> _, converges in distribution to
n>

n

0 (this follows from the Birkhoff ergodic theorem).

e If i is o-finite, the recurrence ergodicity of the dynamical system (€2, F, u, T') means

that, for any u-centered observable f and any g € L'(p), (g”(é ;) -
n n>

converges in dis-

tribution to 0 (this follows from the Hopf ergodic theorem).
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e The FCLT cannot hold for any square integrable observable of a same dynamical system
(even bounded counterexamples with very various behaviours have been constructed).

e Zweimiiller proved in [28] that CLT (or FCLT) for S,,(f) with respect to some probability
measure Py absolutely continuous with respect to p implies the CLT (or FCLT) for S,,(f)
with respect to any P absolutely continuous with respect to .

3. A SIMPLE EXAMPLE OF CHAOTIC DYNAMICAL SYSTEM

To enlight how a deterministic map can give rise to chaotic behaviour, we start by present-
ing a very simple dynamical system modeling independent and identically distributed random
variables. The map T : [0,1[— [0,1] given by T'(x) = 10z mod 1 preserves’| the probability
measure 4 corresponding to the Lebesgue measure on [0, 1[: fol f(T(z))dx = [, f(x)dx.

FI1GURE 2. Graph of the map T : x — 102 mod 1

0 1

o If fo(z) = [10z] (first decimal digit), the random variables (X}, := fo o T*, k > 0) are
iid. with uniform distribution on {0,...,9} and so the SLLN and also the following
FCLT holds true:

[nt]—1

to = S (fooTF—45) | 55 (t || fo—45)2W) .
" k=0 "

—+00

e More generally this system is ergodi(ﬂ thus the SLLN holds for any integrable function:

n—-+o00

1= as. [1
€ , = o — x)dx.
VELIN), — ) foT" | f@)d
k=0

Moreover, for any f Holder continuous and centered with respect to the Lebesgue mea-
sure, then the following FCLT holds trueﬁ:

1 [nt]—1

tr—>ﬁ kz:%) foT* n_éoo (tr—n/a?(f)Wt),

with 02(f) == Y ez Eulf-f o T] = limy, 400 E [(Sn(f)/+v/1)?]. Note that in general
o%(f) # E[f?] (contrarily to the i.i.d. case). The expression > ,c; E,[f.f o T is called

4This can be proved by changes of variables, since T is a C'-diffeomorphism from each ]%; %[ onto ]0; 1[.

5The Birkoff theorem ensures the almost sure convergence of (% ZZ;; fo Tk)n>1 to E[f|Z] where Z is the o-
algebra of invariant measurable sets A, i.e. of measurable sets satisfying A = T~ (A). To prove ergodicity, we may
observe that lim,,— 4 o % ZZ;; foT* is measurable with respect to the asymptotic o-algebra ﬂn>0 o(Xm, m > k)
and then conclude using Kolmogorov’s 0-1 law.

6Several strategies of proof exist, one can follow e.g. the strategy roughly presented in Appendix @
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the Green-Kubo formula. Moreover, the asymptotic variance o2(f) (and thus the
limit process) is null if and only if f is a coboundary in L?()), meaning that there
exists g € L2(\) such that f = g — g o T almost surely. E|

4. LIMIT THEOREMS FOR SMOOTH OBSERVABLES OF CHAOTIC BILLIARDS IN A BOUNDED
DOMAIN

Let Q C R? or T2. We study the dynamics at collision times of a point particle moving in Q,
going straight inside ) and with elastic reflections with 0Q (reflected angle=incident angle). Let
Q) be the set of unit post-collisional vectors. The billiard map 7" : 2 — 2 maps a post-collisional
vector = (g, V) to the post-collisional vector T'(x) = (¢',7") at the next collision time. This
map T preserves the probability measure p with density p : (¢, ¥) — ﬁ sin Z(7,0Q, V) (with
T,0Q the tangent line to Q) at ¢). We consider the following chaotic models. We refer to the
book [§] by Chernov and Markarian for a general reference on chaotic billiards.

FI1GURE 3. Sinai billiard in the torus with finite and with infinite horizon, Buni-
movich stadium billiard, billiard with corners and cusps

P6
P5

P1

P4

(1) The domain @ of the Sinai billiard (corresponding to the two first pictures of Figure [3])
is contained in the torus T? = R2/Z? and is given, for some I > 1, by the complement
in the torus of a union of I convex sets O; (called obstacles) with pairwise disjoint
closures, with C? boundary and non null curvature. The horizon of the billiard is
said to be finite if the time between two collisions is uniformly bounded, and is said to
be infinite otherwise. The a priori most simple case corresponding to one single obstacle
(e.g. second picture of Figure [3) has infinite horizon and is much more complicated to
study than the Sinai billiard with finite horizon (e.g. first picture of Figure |3)).

(2) The domain Q of the Bunimovich stadium billiard has C! boundary, is delimited by
two semicircles and two segments of positive length (see the third picture of Figure [3).

(3) The domain @ of a dispersive billiard with corners and cusps is delimited by a
continuous, piecewise C3, closed curve, the singularity points of which are either corners
(i.e. points with two different tangent lines) or cusps, the curvature is assumed to be
positive (for the clockwise curvilinear absciss parametrization) except possibly at cusps
(see the last picture of Figure [3)).

The ergodicity has been proved by Sinai in 1970 [22] for the Sinai billiard (rough ideas
are given in Appendix and by Bunimovich in [4] for the billiard in a stadium. Thus the
SLLN holds true. Consider now f : @ — R Holder continuous and p-centered. Different limit
behaviour occur depending on the billiard domain.

TAdditional explanations If f = g — g o T, then S.(f) =g—goT™ and ¢*(f) = 0. Conversely, if o%(f) = 0,
we can prove that (S,(f))n>1 is bounded in L? and infer that f = g — g o T with g a weak limit in L? of

(% 27]:]:1 S"(f)>n21'
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(1) Standard FCLT for Hé6lder observables of the Sinai billiard.

Whether the horizon is finite or not, the sequence of random processes (t — f ZWJ ! foT k) .
n>

converges in distribution to o(f)W, with again o?(f) = 3,,cz Eu [f-f o T™]. This result

has been proved by Bunimovich and Sinai in 1981 [5] in the finite horizon case (see also

[6] and [27]) and by Chernov in 1999 [7] in the infinite horizon case.

We will see in Section [6] that, contrarily to Holder observables, the asymptotic behaviour

of the Birkhoff sums of the free flight function ¥ depends on the finiteness of the horizon.

(2) Non-standard CLT for Holder observables of the Bunimovich stadium.
n—1

Balint and Gouézel [2] proved that <&;%fk>n>1 converges in distribution to a cen-

tered Gaussian random variables with standard deviation ¢ F=c[; fla, D) da+ [, flg, )

) dgq, where I and J are the bottom and top flat segments of the boundary of the stadium.
(3a) Non-standard CLT for Holder observables of the dispersing billiard with a

single standard cusp.

In Case (3) with a single cusp at a point P with non vanishing curvature, Balint, Chernov

and Dolgopyat [I] proved also a CLT with non standard normalization and with oy :=

c. / F(P,5) [sin Z(TpdQ, 0)|* di
Sl
(3b) Convergence to Lévy for Holder observables of the dispersing billiard with
higher order cusps.
Consider Case (3) with cusps at points P; with parametrizations z; +(s) ~ :l:ciisﬁi,

with ¢;+ > 0, ¢; 4 +¢;— > 0 Assume B, := max; f; > 2, set o 1= ijl. Then the

sequence of processes (t —n o LmJ ! fo Tk) ., converges in distributio to a Lévy

process Z =3, .5

‘:man
ofp, = c [q1 f(P,U) |sin 4(7}:1.8@,17)\é dv. The CLT was proved by Jung and Zhang
in 2018 in [I4], the FCLT by Jung, Zhang and the author [I5] and by Melbourne and
Varandas [16] (see also [13]).

5, 0F, P2 (1) where Z() are i.i.d. Lévy processes of order o with

Heuristic explanations on these CLT or FCLT are given in Appendix

5. A BILLIARD IN AN UNBOUNDED DOMAIN: THE Z2-PERIODIC LORENTZ GAS

The Z2-periodic Lorentz gas describes the evolution of a point particle moving between a Z2-
periodic configuration of convex obstacles. More precisely, it corresponds to the billiard system
in the unbounded domain Q = R?\ UL, Urezz O; +£. The obstacles O; + ¢ are assumed to have
pairwise disjoint closures, C? boundary and non null curvature. The horizon is said to be finite
if every line of R? intersects the boundary of at least one obstacle and is said to be infinite
otherwise. We will say that the horizon is 2-dimensionally infinite, if there exist at least two
non parallel lines in R? meeting no obstacle boundary.

This corresponds to a dynamical system preserving an infinite measure:

e We consider Q for the set of all possible post-collisional vectors based on obstacles.
e As previously, we consider the transformation T :Q — Q which maps a post-collisional
vector to the post-collisional vector corresponding to the next reflection time.

8Complements for readers interested in questions of metrics in the Skorohod space: the convergence does not
hold with respect to Ji because when a trajectory enters a cusp where e.g. f > ¢ > 0 it increases of at least ¢ at
each collision in the cusp, and long succession of collisions in the cusp occur. The convergence holds with respect
to M; if the function has constant sign around cusps and in some other situations, and with respect to M2 in any
case (we refer to [26] for a presentation of the Ji, M; and Ms metrics).
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FIGURE 4. Z’-periodic Lorentz gas with respectively finite and with 2-
dimensionally infinite horizon

e The map T preserves the infinite measure fi with density proportional to (q,0) —
sin 4(7;8@,17), normalized so that z (Ule 801-) = 1, where Cp, called the ¢-th cell,
is the set of = (¢,7) € Q such that § € U, O; + L.

This dynamical system is strongly related to the Sinai billiard:

e Let p: R? — T? = R?/Z? be the canonical projection. We consider the Sinai billiard
(Q,p,T) in the domain Q@ = T2\ UL, p(O0;). The dynamics of this Sinai billiard
corresponds to the dynamics of the Lorentz gas modulo Z? for the position,
ie. ToP =PoT, with P the projection given by B(q, 7) = (p(q), 7) .

e Conversely, the Lorentz gas (€, 7, i) can be modeled using the Sinai billiard, by identi-
fying (z = (¢,7),0) € Q x Z2 with (§,7) € Q where p(§) = ¢ and § € ', dO; + £. The
Z2-periodicity ensures that, with this representation, 7 : (¢, V) — (¢, V) corresponds to:

(z,0) — (T(x),L+ ®(x)), for some & :Q — Z2.

In other terms, the Lorentz gas (Q, IN’, fi) can be represented by the Z2-extension
over the Sinai billiard (2,7, 1) by some ® : Q — Z2.

6. PERIODIC LORENTZ GAS: LIMIT THEOREM FOR THE POSITION

We choose the initial position and direction randomly with respect to some probability mea-
sure [P absolutely continuous with respect to the Lebesgue measure. We are interested in the
asymptotic behaviour of the position ¢, at the n-th collision. We observe that, if the initial
state is (v = (g,7),£) € Q x Z2, then the corresponding g, = ¢ + Y72} ¥(T*(x)), for some
U : Q — R? called the free flight. We will see that this quantity is asymptotically Gaussian
with either a standard or nonstandard normalization, depending whether the horizon is finite
or infinite. More precisely the behaviour is the following:

FIGURE 5. A trajectory of a 2-dimensional Wiener process

e If the horizon is finite, then V¥ is centered, bounded, piecewise %—Hélder continuous and

satisfies a standard FCLT as the Holder functions studied in Case (1) of Section
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Jn
Wiener processEUI and where X () is the nonnegative symmetric matrix square root of
Y2W) = (X nez Bl o T™]); j=1 (Green-Kubo formula for ).

e If the horizon is infinite, then ¥ is not in L?(x), but centered and u(|¥| > t) ~ At

7 . 7 . qn . . . .
Szész and Varju proved in 2007 [25] that ( W)n21 converges in distribution to a

(t o ot ) _, converges in distributionﬂ to X(U)W where W is a standard two-dimensional
nz

Gaussian random variable with variance matric 2 expressed explicitely in terms of the
width and the periodical length of the corridors of parallel lines meeting no obstacle.

The same limit theorems holds true for (S, ®),>1 since sup, > [[Sn(®) — Sn(¥)[lee < 0.

FIGURE 6. Corridors for two different periodic billiard domains (from [19])

7. PERIODIC LORENTZ GAS: STUDY OF RETURN TIMES

Let 7 be the return time (i.e. number of collisions before coming back) to the initial cell.
Let 7. be the return time to the e-neighbourhood of the initial state (recall that a state
is a couple position-direction).

Note that the function 7(q + ¢, %) = 7(q,?) 7-(q + ¢,¥) = 7-(q,?) for any £ € Z2. So we identify
them with their quotient defined on the Sinai billiard (€2, i, T').

e Lorentz gas with finite horizon.

— The fact that 7 < 0o a.e. (i.e. the recurrence of this Lorentz gas) follows from the

standard CLT for the cell-change function ® combined with a general argument (for
Z2-extensions) by Conze [9], extended by Schmidt [23].
Another proof of the recurrence has been given by Szasz and Varja [24]. This proof
uses Local limit Theorem (LLT) type estimates of the form p(S,(®) =0) ~
co/n (not summable) and (S, (®) = S, 1m(®) = 0) ~ ¢/(nm) combined with a
Borel-Cantelli type argument (Lamperti’s lemma).

— Dolgopyat, Szész and Varju proved in 2008 [10] that p(r > N) ~MN—00 o 1;gN'

— The author and Saussol proved in 2010 [I8] that p(7. > e*? o )) ensur-

1+c t’
ing the convergence in distribution of (¢2log.).~o when ¢ — 0 to some random
variable, showing that the return times to small sets are very long.

e Lorentz gas with 2-dimensionally infinite horizon.

Iwith respect to the infinite norm
10A standard two-dimensional Wiener process is a process t > (th, Wt(2>) where W and W are two
independent standard Wiener processes
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— The fact that this Lorentz gas is recurrent has been proved by Szasz and Varjd in
[25] using again LLT type estimates: u(S,® = 0) ~ co/(nlogn) and u(S,(®) =
Spim(®) = 0) ~ c&/(nlog(n)mlog(m)). The argument by Conze or Schmidt does
not apply directly to this context. The question whether the CLT with nonstandard
normalization for ® implies or not the recurrence is still open.

— The author and Terhesiu proved in [19] that u(7 > N) ~n_00 m.

Note that, both in finite and infinite horizon, the above estimates of u(7 > N) can be rewritten:
1 1
p(r>N) ~Nog = ;
T TN a(Sn(@) = 0) | B[]

where Ny is the number of visits to (S, (®))n>0 to 0, i.e. the number of visits to 0-cell before
the N-th collision considering the particle starts from the 0-cell, and

H(Sa(®) = 0) ~ 5,

n

where a,, is the normalization of S,(®) in the CLT: a, = y/n if the horizon is finite and
a, = v/nlogn if the horizon is infinite (the presence of a square above in a2 comes from the fact

that ® is 2-dimensional). See Appendix [C| for a presentation of the proof of these results.

8. PINBALL IN FINITE HORIZON

In the Lorentz gas with finite horizon, we assume that the point particle wins S» each time
it hits the obstacle O. Let Z,, be the amount won up to time n. This random variable Z, is a

Birkhoff sum EZ;& fo T* for the Lorentz gas system (Q, i, f) We consider the following cases:

(a) Z2-periodic values. Assume Bo;+¢ = Bo, for all £ € 7Z?. Then Z, can be expressed as a
Birkhoff sum S,,(f) for the Sinai billiard and, applying the results of Section we obtain
that (Z,/n),>, converges almost surely to Io(3) := ‘jjzl Bo,, and that, if Io(3) = 0,

then (Z,/v/n),>, converges in distribution to \/o?(3)W1.
(b) Summable Values: Assume > [Bo| < oo and set I(3) := > » fo. Then
Zn,
logn n>1
to col(B)E, with € an exponential random variable with mean 1.
(b2) The author and Thomine proved in [20, 21] that if I(8) = 0 and if there exists

n > 0 such that >, d(0,0)"|Bo| < oo, then (J%) _, converges in distribution
nz

to /2(B)coEWr, with € as above independent of W, where 72(B) is given by the
Green Kubo formula with respect to 7T'.

(c) ii.d. values (see [I7]) If the Bo are i.i.d. centered and square integrable and indepen-

dent of the Lorentz gas, then ( V%)ng converges in distribution to c4W;, where ¢4

(bl) Dolgopyat, Szasz and Varju proved in [10] that ( converges in distribution

depends on the common distribution of Be.

Ideas of proofs for (b-c):

We prove the convergence with respect to the measure fic, (i restricted to the 0-cell) and
conclude, by a result by Zweimiiller [28], the convergence with respect to any probability measure
P absolutely continuous with respect to the Lebesgue measure on §2.

e For (bl): Since the Lorentz gas is recurrent ergodiﬂ the Hopf ergodic theorem ensures
that Z,, /N, i—i> 3 Bo, with N, := Zz;é 1g, (@)—0 the number of visits to O-cell before
n o

HRecurrence ergodicity follows from recurrence combined with the argument presented in Appendix A.
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time n. So it is enough to prove the convergence result for N, instead of Z,,. This can
be done by proving the convergence of every moment. The moment of order m of N, is
ZZ;I‘wkm:O w(Sky (@) = ... = Sk, (P) = 0), which can be estimated by using a multi-time
local limit theorem.
e For (b2): we can prove the convergence of every moment of Z,, with respect to fic, (this

is doable but more difficult than for (b1) since cancellations happens).
another argument: Note that Z,, ~ ZQ/’;LO Y;, Y, being the amount won between the k-th
and (k 4 1)-th visit to the 0- cell. Prove, via coupling, that it behaves as if the Y; and
N, were independent and so, roughly speaking using the CLT for (Yj)x and (a2) for N,:

N

Zn = Y Vi [ NpG2(B)W1 & y/log neo€52(B)W .
k=0

e For (c): Z, behaves as a random walk in random scenery ZZ;& CX,+..+X,: we can adapt
Bolthausen’s proof [3], with the use of the mixing local limit theorem (see Appendix D]
for a proof of the mixing local limit theorem which appears also in Appendix .

APPENDIX A. SCHEME OF SINAI’S PROOF OF THE ERGODICITY OF THE SINAI BILLIARD VIA
HYPERBOLICITY VIA HOPF’S CHAINS

A.1. Hyperbolicity and Hopf’s chains. Recall that the states space of the billiard is the
set 2 of unit post-collisional vectors x = (g, ¥) with ¢ € 0Q = U,‘I:1 00; and ¥ € S! such that
(fig, ) > 0, where 71, is the inward unit normal vector to 0Q at g. This space is two-dimensional
(one dimension for the position in 9@, one dimension for the direction). A main difficulty in the
study of the Sinai billiard comes from the fact that the billiard map 7T is discontinuous = = (g, ¥)
such that T'(x) is tangent to an obstacle. But this system enjoys hyperbolicity:

e the action of T (resp. T~ !) expands the length of the increasing (resp. decreasing)
Cl-curve of €, increasing (resp. decreasing) meaning that the angle /(7i,,¥) increases
(resp. decreases) with the counter-clockwise curvilinear absciss.

Luckily, hyperbolicity wins against discontinuities. The map 7" is uniformly hyperbolic: there
exist C' > 0, A > 1 such that, for p-almost every x € Q, there exist two C'-curves 7(*)(z) and
@) (z), called respectively stable and unstable manifold, containing = and satisfying

vneN, diam(T"(v® (z)) + diam(T (v (z)) < A™™.

These stable and unstable manifolds do not exist everywhere, can be arbitrarily small, but satisfy
the nice following property enabling the adaptation of Hopf’s argumenﬂ to the billiard context:
For any measurable set Qp C Q of full measure, there exists a set €, of full measure such that,
for every i = 1,..., I, every x,y € € belonging to the connected set Q; := {(¢, V) € Q, ¢ € 00;},
there exists a Hopf’s chain (or zig-zag line), i.e. xo,...,z, € € such that:

® Lo =, TN =Y,
eVj=1.,N-1z;¢€ 96 ﬂy(s)(xj_l) N 'y(“)(x]url) or x; € Q6 ﬂ’y(“)(xj_l) 07(8)(:Uj+1),

FIGURE 7. A Hopf’s chain

12coming from Hopf’s proof of ergodicity of the geodesic flow on a negatively curved finite volume surface.
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A.2. Scheme of the proof of the ergodicity.

e Let f € L'(n) Holder continuous. By Birkhoff’s ergodic theorem, there exists o C £

_ Yig T @) —
so that u(Q2\ Qo) = 0 and, for every x € Qq, - ‘ |—> h(z) :=E,[f|Z] (x).
n|—-+oo

e Prove that h is constant on stable and unstable manifolds, and T- and 7~ !-invariant.

e Infer, by the above Hopf argument, that h is p-a.e. constant on each €;.

e Prove that, for any couple of connected components (£2;,€;) of Q, there exists m € Z
such that p(; NT~™Q;) >0

e Conclude that h is constant almost everywhere and so that h = E,[f].

This proof can be adapted to prove the recurrence ergodicity of the Lorentz gas, up to:

e replacing Birkhoff’s theorem by Hopf’s ergodic theorem which ensures that, since the
n—1
Lorentz gas is recurrent, for every f, g € L'(j1), g > 0, Zig ot 28 h= Ez {f’I]
Z QOT [n|—+oc0
e taking f Holder continuous compactly supported, g € L>0( ) constant on each obstacle.

APPENDIX B. HEURISTIC EXPLANATIONS OF THE LIMIT THEOREMS FOR SMOOTH
OBSERVABLES OF BILLIARDS IN BOUNDED DOMAINS

Case (1) (Sinai billiard) is as chaotic as the example of Section [3|and the method explained in
Appendix [D|can be implemented to prove the standard CLT. In cases (2) (Bunimovich stadium)
and (3) (billiard with cusps), the non-standard behaviour comes from the following facts:

e Let A be the set of states (¢, ¥) with position ¢ belonging: to I U J for (2), to a neigh-
bourhood of cusps for (3).

e The dynamics outside A is in some sense as chaotic as the example of Section

e The number R of collisions during an excursion in A is not IL? and satisfies u(R > z) ~
cz™® for some ¢ > 0 (with « as defined in Case (3b) or with @ = 2 in Cases (2) and
(3a)). This explains heuristically the type of CLT.

e For (2), during a trajectory of length N out of semi-disks, the direction is very close to
vertical and the successive positions form a O(N~!)-packing of I U .J.

e For (3), during a trajectory of length N in a neighbourhood of a cusp at P, the position
is very close to P and the successive directions form essentially a O(N~!)-packing of S!

(with, on each side of the cusp, angular increments of ¥ of size N~ (sin Z(Tp0Q, 17))_%)

The two last points explain heuristically the integral appearing in the limit.

APPENDIX C. IDEAS BEHIND THE PROOFS OF QUANTITATIVE RECURRENCE

The first ingredient is a mixing local limit theorem saying roughly speaking that

1 (AN {Su(®) = 0} NT"(B)) = u(A) u(B),

n

with a,, = y/n if the horizon is finite and a,, = y/nlog(n) if the horizon is infinite.

Then, the idea consists in adapting the following argument by Dvoretzki and Erdés in 1951
[T1] for planar random walks (i.e. sums of i.i.d. random variables in Z?): considering the last
visit time n to the 0-cell before time M and applying the mixing local limit theorem, we obtain

N
Co
1:Zu(5n(<l>):0, T>M—n)~ZEM(T>M—TL) .

n=1
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Applying this with M = N (first inequality below) and M = N |log N | (second inequality below)
and using the decreasingness of n +— u(7 > n), we infer that
N co Nllog N|-N-1 co N co
Y Su(r>N)S1S > aﬁﬂ(T>N)%Z*2M(T>N)7
n=1""n n=1 n n=1""
where we used also the fact that a2 = n or a2 = nlogn. The estimate of u(7. > ...) uses the
same idea (we take for A atoms of a finer and finer partition).

APPENDIX D. PROOF OF PROBABILISTIC LIMIT THEOREMS USING OPERATORS

We present here an important tool behind most of the results stated in this article: the study
of perturbation of quasi-compact operators. For a detailed and rigourous presentation of this
method, we refer to [12] and the references therein.

(1) Consider P the dual of g — go T (P is called the transfer operator of (2, u,T)):
Jo P(h).gdp = Jqh.goTdp.

(2) Prove that P is quasi-compact with only and simple dominating eigenvalue 1:
P*(h) = [ohdp+ O(e™) in L(B) for some nice complex Banach space B and a > 0.
If we cannot work directly with (€2, u, T'), we may use auxiliary dynamical systems (In
[27] and [7] Young towers are constructed for the Sinai billiard adapted to this purpose).

(3) Set P;(h) = P(e'>®'h) and use characteristic functions. Observe that

< Sn(®)

1,070 o T”] = Eu[15F}),, (14)].

By

(4) Deduce from the quasi-compactness of P, by spectral perturbation method, that
P = MNIL(-) + O6F) in £L(B) with lim;,o A+ = 1 in C, with either lim; o ||II; —
E.[]1]|zs) (possible if the horizon is finite) or lim;—o [z — EL[]1|lz8,01(s) (if the
horizon is infinite) and conclude that

. Sn (®)
E# {1146@(157 an >1B o T”} ~ )‘?/anEH [lBHt/un(lA)} ~ )‘?/an'u(B)N(A) .
|Su|2 |st)2
(5) If Ay ~us0 6_72, then )‘?/\/ﬁ ~n—s oo e~ 2> and so (SHT(:))nN converges in distribu-
tion to YW (applies e.g. to Sinai billiard with finite horizon). -

2
~ —[Sul3| log(|ul)| n N _E Su(®)
(6) If Ay ~us0 € 2 2)l, then )\t/m nosico € 2 and so oz )~
converges in distribution to XW (applies e.g. to Sinai billiard with infinite horizon).
|5t
(7) Proof of the mixing local limit theorem using point (4) above and A, €2 o
1 .
= -n = i(u,Sn () n
p(AN{SH(®) =0} N T(B)) = 5, /[—mz E, [Lac 107" du
| " w(A)u(B)
= E, |14 @51 p o] dt m S50 [ N0t
(2may,)? /[mn,mn[? “[ A€ Be } (2may)2  Jge "t/

Y arde ()2 a2t
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