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This proceeding is based on a mini-course given at the Summer School "From kinetic equations to statistical mechanics" organized by the Centre Henri Lebesgue at Saint Jean de Monts from the 28th of June to the 2nd of July 2021. After recalling classical probabilistic limit theorems for sums of independent identically distributed random variables, we consider analogous results in a dynamical context. Motivated by examples coming from statistical mechanics, we are mostly interested in the Sinai billiard and in the Z 2 -periodic Lorentz gas. We will also consider the Bunimovich stadium billiard and dispersive billiards with cusps. All these billiards are chaotic, with different behaviours. Additional explanations are given in the four independent appendices. 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000

1. FCLT for sums of i.i.d. random variables and Wiener process Let (X k ) k be a sequence of centered R-valued independent identically distributed (i.i.d.) random variables defined on the same probability space (Ω, F, P).

• The Strong Law of Large Numbers (SLLN) ensures that lim n→+∞ 1 n n k=1 X k = 0 almost surely (i.e. this convergence holds true with probability one).

The Central Limit Theorem (CLT) deals with the convergence in distribution of ( n k=1 X k /a n ) n≥1 to a non-degenerate random variable for some sequence (a n ) n≥1 such that lim n→+∞ a n = +∞. Functional Central Limit Theorems (FCLT) state convergence in distribution of the sequence of processes t → a -1

n ⌊nt⌋ k=1 X k n≥1
to a non degenerate càdlàg 1 process for a n as above.

Different normalizations and limit processes may appear. In particular:

• (Standard FCLT) If E[X 2 1 ] < ∞, then t → n -1 2 ⌊nt⌋ k=1 X k n≥1 converges in distribu- tion 2 to (t → ∥X 1 ∥ L 2 W t ) with W : t → W t is standard Wiener motion • (FCLT with non-standard normalization) If lim x→∞ x 2 P(|X 1 | ≥ x) = A > 0,
then X 1 is not in L 2 but is in L p for any p ∈ [1, 2) and the family of processes t →

1 √ n log n ⌊nt⌋ k=1 X k n≥1
converges in distribution to AW, with W as above.

• (Convergence to Lévy processes)

Let α ∈]1; 2[. If lim x→∞ x α P(±X 1 ≥ x) = A ± with A + + A -> 0.
Then the family of processes t → n -1 α ⌊nt⌋ k=1 X k n≥1 converges in distribution 3 to a Lévy process Z of order α.

Date:

1 càdlàg means right continuous with left limits, in reference to 'continu à droite et limit''e à gauche' in french. 2 for the uniform topology on every compact 3 Here the convergence is in the Skorohorod space of càdlàg functions, with respect to the usual J1 metric, we won't detail this metric.

Let us say a few words about the limit processes W and Z. The standard Wiener (or Gaussian) process W has continuous trajectories t → W t , has independent increments, that W 0 = 0 and that W t -W s has centered Gaussian distribution with variance |t -s|. The Lévy processes Z of order α ∈]1; 2[ are not continuous, but càdlàg with independent centered increments and, for all s ≤ t, Z t -Z s has same distribution as |t -s|

1 α Z 1 .
Throughout this article, W = (t → W t ) will be a standard Wiener process.

Probabilistic limit theorems for dynamical systems

We consider a deterministic dynamics given by the iterations of a map. Thus, the evolution in time is completely determined by the perfect knowledge of the initial state of the system. We assume that this initial state is not perfectly known (e.g. we just know an approximation of it) and that it is chosen randomly. Formally we consider a probability (resp. σ-finite measure) preserving dynamical system, i.e.

• a probability space (Ω, F, µ) (resp. a measurable space (Ω, F) endowed with a σ-finite non negative measure µ), • a transformation T : Ω → Ω preserving the measure µ, this means that, for all

k ∈ N * , µ(T -k (A)) = µ(A) for any A ∈ F, i.e. Ω f • T k dµ = Ω f dµ for any f ∈ L 1 (µ).
Additionally, we consider

• a probability measure P which admits a density with respect to µ,

• a µ-integrable function f : Ω → R (called observable) satisfying Ω f dµ = 0.
We are interested in probabilistic limit theorems for ergodic sums (also called Birkhoff sums), that is for sums of the form:

S n (f ) = n-1 k=0 f • T k .
We are interested in limit theorems similar to SLLN and FCLT for (f

•T k ) k≥0 instead of (X k ) k≥1 .
• If µ is a probability measure, the ergodicity of the dynamical system (Ω, F, µ, T ) means that, for any µ-centered observable f :

Ω → R, Sn(f ) n n≥1
converges in distribution to 0 (this follows from the Birkhoff ergodic theorem). • If µ is σ-finite, the recurrence ergodicity of the dynamical system (Ω, F, µ, T ) means that, for any µ-centered observable f and any g ∈ L 1 (µ), Sn(f )

Sn(g) n≥1
converges in distribution to 0 (this follows from the Hopf ergodic theorem).

• The FCLT cannot hold for any square integrable observable of a same dynamical system (even bounded counterexamples with very various behaviours have been constructed). • Zweimüller proved in [START_REF] Zweimüller | Mixing limit theorems for ergodic transformations[END_REF] that CLT (or FCLT) for S n (f ) with respect to some probability measure P 0 absolutely continuous with respect to µ implies the CLT (or FCLT) for S n (f ) with respect to any P absolutely continuous with respect to µ.

A simple example of chaotic dynamical system

To enlight how a deterministic map can give rise to chaotic behaviour, we start by presenting a very simple dynamical system modeling independent and identically distributed random variables. The map T : [0, 1[→ [0, 1[ given by T (x) = 10x mod 1 preserves 4 the probability measure µ corresponding to the Lebesgue measure on [0, 1[: 

1 0 f (T (x)) dx = 1 0 f (x) dx.
• If f 0 (x) = ⌊10x⌋ (first decimal digit), the random variables (X k := f 0 • T k , k ≥ 0) are i.i.d.
with uniform distribution on {0, ..., 9} and so the SLLN and also the following FCLT holds true:

  t → 1 √ n ⌊nt⌋-1 k=0 (f 0 • T k -4.5)   L -→ n→+∞ (t → ∥f 0 -4.5∥ L 2 W t ) .
• More generally this system is ergodic 5 , thus the SLLN holds for any integrable function:

∀f ∈ L 1 (λ), 1 n n-1 k=0 f • T k a.s. -→ n→+∞ 1 0 f (x) dx .
Moreover, for any f Hölder continuous and centered with respect to the Lebesgue measure, then the following FCLT holds true 6 : 4 This can be proved by changes of variables, since T is a C 1 -diffeomorphism from each ] k 10 ; k+1 10 [ onto ]0; 1[. 5 The Birkoff theorem ensures the almost sure convergence of

  t → 1 √ n ⌊nt⌋-1 k=0 f • T k   L -→ n→+∞ t → σ 2 (f )W t , with σ 2 (f ) := n∈Z E µ [f.f • T |n| ] = lim n→+∞ E (S n (f )/ √ n) 2 . Note that in general σ 2 (f ) ̸ = E[f 2 ] (contrarily to the i.i.d. case). The expression n∈Z E µ [f.f • T |n| ] is called
1 n n-1 k=0 f • T k n≥1 to E[f |I]
where I is the σalgebra of invariant measurable sets A, i.e. of measurable sets satisfying A = T -1 (A). To prove ergodicity, we may observe that limn→+∞ 1 n n-1 k=0 f •T k is measurable with respect to the asymptotic σ-algebra n≥0 σ(Xm, m ≥ k) and then conclude using Kolmogorov's 0-1 law. 6 Several strategies of proof exist, one can follow e.g. the strategy roughly presented in Appendix D.

the Green-Kubo formula. Moreover, the asymptotic variance σ 2 (f ) (and thus the limit process) is null if and only if f is a coboundary in L 2 (λ), meaning that there exists g ∈ L 2 (λ) such that f = g -g • T almost surely. 7 4. Limit theorems for smooth observables of chaotic billiards in a bounded domain

Let Q ⊂ R 2 or T 2 .
We study the dynamics at collision times of a point particle moving in Q, going straight inside Q and with elastic reflections with ∂Q (reflected angle=incident angle). Let Ω be the set of unit post-collisional vectors. The billiard map T : Ω → Ω maps a post-collisional vector x = (q, ⃗ v) to the post-collisional vector T (x) = (q ′ , ⃗ v ′ ) at the next collision time. This map T preserves the probability measure µ with density ρ : (q, ⃗ v) → 1 2|∂Q| sin ∠(T q ∂Q, ⃗ v) (with T q ∂Q the tangent line to ∂Q at q). We consider the following chaotic models. We refer to the book [START_REF] Chernov | Chaotic billiards[END_REF] by Chernov and Markarian for a general reference on chaotic billiards. The horizon of the billiard is said to be finite if the time between two collisions is uniformly bounded, and is said to be infinite otherwise. The a priori most simple case corresponding to one single obstacle (e.g. second picture of Figure 3) has infinite horizon and is much more complicated to study than the Sinai billiard with finite horizon (e.g. first picture of Figure 3). ( 2) The domain Q of the Bunimovich stadium billiard has C 1 boundary, is delimited by two semicircles and two segments of positive length (see the third picture of Figure 3). (3) The domain Q of a dispersive billiard with corners and cusps is delimited by a continuous, piecewise C 3 , closed curve, the singularity points of which are either corners (i.e. points with two different tangent lines) or cusps, the curvature is assumed to be positive (for the clockwise curvilinear absciss parametrization) except possibly at cusps (see the last picture of Figure 3).

The ergodicity has been proved by Sinai in 1970 [START_REF] Ya | Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards[END_REF] for the Sinai billiard (rough ideas are given in Appendix A) and by Bunimovich in [START_REF] Bunimovich | On the ergodic properties of nowhere dispersing billiards[END_REF] for the billiard in a stadium. Thus the SLLN holds true. Consider now f : Ω → R Hölder continuous and µ-centered. Different limit behaviour occur depending on the billiard domain.

7 Additional explanations If f = g -g • T , then Sn(f ) = g -g • T n and σ 2 (f ) = 0. Conversely, if σ 2 (f ) = 0, we can prove that (Sn(f )) n≥1 is bounded in L 2 and infer that f = g -g • T with g a weak limit in L 2 of 1 N N n=1 Sn(f ) n≥1 .
(1) Standard FCLT for Hölder observables of the Sinai billiard.

Whether the horizon is finite or not, the sequence of random processes t → 1

√ n ⌊nt⌋-1 k=0 f • T k n≥1 converges in distribution to σ(f )W, with again σ 2 (f ) = m∈Z E µ [f.f • T m ].
This result has been proved by Bunimovich and Sinai in 1981 [START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF] in the finite horizon case (see also [START_REF] Bunimovich | Statistical properties of two-dimensional hyperbolic billiards[END_REF] and [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF]) and by Chernov in 1999 [START_REF] Chernov | Decay of correlations and dispersing billiards[END_REF] in the infinite horizon case. We will see in Section 6 that, contrarily to Hölder observables, the asymptotic behaviour of the Birkhoff sums of the free flight function Ψ depends on the finiteness of the horizon. (2) Non-standard CLT for Hölder observables of the Bunimovich stadium.

Bálint and Gouëzel [START_REF] Bálint | Limit theorems in the stadium billiard[END_REF] proved that

n-1 k=0 f •T k √ n log n n≥1
converges in distribution to a centered Gaussian random variables with standard deviation

σ f = c Q I f (q, ↑) dq + J f (q, ↓
) dq, where I and J are the bottom and top flat segments of the boundary of the stadium. (3a) Non-standard CLT for Hölder observables of the dispersing billiard with a single standard cusp.

In Case (3) with a single cusp at a point P with non vanishing curvature, Bálint, Chernov and Dolgopyat [START_REF] Bálint | Limit theorems for dispersing billiards with cusps[END_REF] proved also a CLT with non standard normalization and with σ f := c.

S 1 f (P, ⃗ v) |sin ∠(T P ∂Q, ⃗ v)| 1 2 d⃗ v.
(3b) Convergence to Lévy for Hölder observables of the dispersing billiard with higher order cusps.

Consider Case (3) with cusps at points P i with parametrizations z i,± (s)

≈ ±c i,± s β i , with c i,± ≥ 0, c i,+ + c i,-> 0. Assume β * := max j β j > 2, set α := β * β * -1 . Then the sequence of processes t → n -1 α ⌊nt⌋-1 k=0 f • T k n≥1 converges in distribution 8 to a Lévy process Z := i : β i =max j β j σ f,P i Z (i)
where Z (i) are i.i.d. Lévy processes of order α with

σ f,P i := c. S 1 f (P, ⃗ v) |sin ∠(T P i ∂Q, ⃗ v)| 1 α d⃗ v.
The CLT was proved by Jung and Zhang in 2018 in [START_REF] Jung | Stable laws for chaotic billiards with cusps at flat points[END_REF], the FCLT by Jung, Zhang and the author [START_REF] Jung | Convergence to α-stable Lévy motion for chaotic billiards with cusps at flat points[END_REF] and by Melbourne and Varandas [START_REF] Melbourne | Convergence to a Lévy process in the Skorohod M1 and M2 topologies for nonuniformly hyperbolic systems, including billiards with cusps[END_REF] (see also [START_REF] Jung | Necessary and sufficient condition for M2convergence to a Lévy process for billiards with cusps at flat points[END_REF]).

Heuristic explanations on these CLT or FCLT are given in Appendix B.

5.

A billiard in an unbounded domain: the Z 2 -periodic Lorentz gas

The Z 2 -periodic Lorentz gas describes the evolution of a point particle moving between a Z 2periodic configuration of convex obstacles. More precisely, it corresponds to the billiard system in the unbounded domain

Q = R 2 \ I i=1 ℓ∈Z 2 O i + ℓ.
The obstacles O i + ℓ are assumed to have pairwise disjoint closures, C 3 boundary and non null curvature. The horizon is said to be finite if every line of R 2 intersects the boundary of at least one obstacle and is said to be infinite otherwise. We will say that the horizon is 2-dimensionally infinite, if there exist at least two non parallel lines in R 2 meeting no obstacle boundary. This corresponds to a dynamical system preserving an infinite measure:

• We consider Ω for the set of all possible post-collisional vectors based on obstacles.

• As previously, we consider the transformation T : Ω → Ω which maps a post-collisional vector to the post-collisional vector corresponding to the next reflection time.

8 Complements for readers interested in questions of metrics in the Skorohod space: the convergence does not hold with respect to J1 because when a trajectory enters a cusp where e.g. f ≥ c > 0 it increases of at least c at each collision in the cusp, and long succession of collisions in the cusp occur. The convergence holds with respect to M1 if the function has constant sign around cusps and in some other situations, and with respect to M2 in any case (we refer to [START_REF] Whitt | Stochastic-process limits. An introduction to stochastic-process limits and their application to queues[END_REF] for a presentation of the J1, M1 and M2 metrics). • The map T preserves the infinite measure µ with density proportional to (q, ⃗ v) → sin ∠(T q ∂ Q, ⃗ v), normalized so that µ I i=1 ∂O i = 1, where C ℓ , called the ℓ-th cell, is the set of x = ( q, ⃗ v) ∈ Ω such that q ∈ I i=1 O i + ℓ.

This dynamical system is strongly related to the Sinai billiard:

• Let p : R 2 → T 2 = R 2 /Z 2 be the canonical projection. We consider the Sinai billiard (Ω, µ, T ) in the domain Q = T 2 \ I i=1 p(O i ). The dynamics of this Sinai billiard corresponds to the dynamics of the Lorentz gas modulo Z 2 for the position, i.e. T • P = P • T , with P the projection given by P(q, ⃗ v) = (p(q), ⃗ v) .

• Conversely, the Lorentz gas ( Ω, T , µ) can be modeled using the Sinai billiard, by identifying (x = (q, ⃗ v), ℓ) ∈ Ω × Z 2 with ( q, ⃗ v) ∈ Ω where p( q) = q and q ∈ ℓ i=1 ∂O i + ℓ. The Z 2 -periodicity ensures that, with this representation, T : ( q, ⃗ v) → ( q ′ , ⃗ v) corresponds to:

(x, ℓ) → (T (x), ℓ + Φ(x)) , for some Φ : Ω → Z 2 .
In other terms, the Lorentz gas ( Ω, T , µ) can be represented by the Z 2 -extension over the Sinai billiard (Ω, T, µ) by some Φ : Ω → Z 2 .

Periodic Lorentz gas: Limit theorem for the position

We choose the initial position and direction randomly with respect to some probability measure P absolutely continuous with respect to the Lebesgue measure. We are interested in the asymptotic behaviour of the position q n at the n-th collision. We observe that, if the initial state is (x = (q, ⃗ v), ℓ) ∈ Ω × Z 2 , then the corresponding q n = ℓ + n-1 k=0 Ψ(T k (x)), for some Ψ : Ω → R 2 called the free flight. We will see that this quantity is asymptotically Gaussian with either a standard or nonstandard normalization, depending whether the horizon is finite or infinite. More precisely the behaviour is the following: • If the horizon is finite, then Ψ is centered, bounded, piecewise 1 2 -Hölder continuous and satisfies a standard FCLT as the Hölder functions studied in Case (1) of Section 3:

t → q ⌊nt⌋ √ n n≥1
converges in distribution 9 to Σ(Ψ)W where W is a standard two-dimensional Wiener process 10 and where Σ(Ψ) is the nonnegative symmetric matrix square root of

Σ 2 (Ψ) := ( m∈Z E[ψ i .ψ j • T m ]) i,j=1,2 (Green-Kubo formula for Ψ). • If the horizon is infinite, then Ψ is not in L 2 (µ), but centered and µ(|Ψ| > t) ∼ At 2 .
Szász and Varjú proved in 2007 [START_REF] Szász | Limit laws and recurrence for the planar Lorentz process with infinite horizon[END_REF] that

qn √ n log n n≥1
converges in distribution to a Gaussian random variable with variance matric Σ 2 expressed explicitely in terms of the width and the periodical length of the corridors of parallel lines meeting no obstacle.

The same limit theorems holds true for (S n Φ) n≥1 since sup n≥1 ∥S n (Φ) -S n (Ψ)∥ ∞ < ∞. Let τ be the return time (i.e. number of collisions before coming back) to the initial cell. Let τ ε be the return time to the ε-neighbourhood of the initial state (recall a is a couple position-direction). Note that the function τ (q + ℓ, ⃗ v) = τ (q, ⃗ v) τ ε (q + ℓ, ⃗ v) = τ ε (q, ⃗ v) for any ℓ ∈ Z 2 . So we identify them with their quotient defined on the Sinai billiard (Ω, µ, T ).

• Lorentz gas with finite horizon.

-The fact that τ < ∞ a.e. (i.e. the recurrence of this Lorentz gas) follows from the standard CLT for the cell-change function Φ combined with a general argument (for Z 2 -extensions) by Conze [START_REF] Conze | On a two-dimensional recurrence criterion for stationary walks, applications. (Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications[END_REF], extended by Schmidt [START_REF] Schmidt | On joint recurrence[END_REF].

Another proof of the recurrence has been given by Szász and Varjú [24]. This proof uses Local limit Theorem (LLT) type estimates of the form µ(S n (Φ) = 0) ∼ c 0 /n (not summable) and µ(S n (Φ) = S n+m (Φ) = 0) ∼ c 2 0 /(nm) combined with a Borel-Cantelli type argument (Lamperti's lemma).

-Dolgopyat, Szász and Varjú proved in 2008 [START_REF] Dolgopyat | Recurrence properties of planar Lorentz process[END_REF] 

that µ(τ > N ) ∼ N →∞ 1 c 0 log N .
-The author and Saussol proved in 2010 [START_REF] Pène | Back to balls in billiards[END_REF] that µ(τ ε > e t 4ε 2 ρ(•) )-→ ε→0 1 1+c 0 t , ensuring the convergence in distribution of (ε 2 log τ ε ) ε>0 when ε → 0 to some random variable, showing that the return times to small sets are very long.

• Lorentz gas with 2-dimensionally infinite horizon. 9 with respect to the infinite norm 10 A standard two-dimensional Wiener process is a process t → (W

(1) t , W (2)
t ) where W (1) and W (2) are two independent standard Wiener processes -The fact that this Lorentz gas is recurrent has been proved by Szász and Varjú in [START_REF] Szász | Limit laws and recurrence for the planar Lorentz process with infinite horizon[END_REF] using again LLT type estimates:

µ(S n Φ = 0) ∼ c 0 /(n log n) and µ(S n (Φ) = S n+m (Φ) = 0) ∼ c 2 0 /(n log(n)m log(m)
). The argument by Conze or Schmidt does not apply directly to this context. The question whether the CLT with nonstandard normalization for Φ implies or not the recurrence is still open.

-The author and Terhesiu proved in [START_REF] Pène | Sharp error term in local limit theorems and mixing for Lorentz gases with infinite horizon[END_REF] 

that µ(τ > N ) ∼ N →∞ 1 c 0 log log N .
Note that, both in finite and infinite horizon, the above estimates of µ(τ > N ) can be rewritten:

µ (τ > N ) ∼ N →+∞ 1 N n=0 µ(S n (Φ) = 0) = 1 E µ [N N ]
,

where N N is the number of visits to (S n (Φ)) n≥0 to 0, i.e. the number of visits to 0-cell before the N -th collision considering the particle starts from the 0-cell, and

µ(S n (Φ) = 0) ∼ c 0 a 2 n ,
where a n is the normalization of S n (Φ) in the CLT: a n = √ n if the horizon is finite and a n = √ n log n if the horizon is infinite (the presence of a square above in a 2 n comes from the fact that Φ is 2-dimensional). See Appendix C for a presentation of the proof of these results.

Pinball in finite horizon

In the Lorentz gas with finite horizon, we assume that the point particle wins β O each time it hits the obstacle O. Let Z n be the amount won up to time n. This random variable Z n is a Birkhoff sum n-1 k=0 f • T k for the Lorentz gas system Ω, µ, T . We consider the following cases:

(a) Z 2 -periodic values. Assume β O j +ℓ = β O j for all ℓ ∈ Z 2 .
Then Z n can be expressed as a Birkhoff sum S n (f ) for the Sinai billiard and, applying the results of Section 4, we obtain that (Z n /n) n≥1 converges almost surely to I 0 (β) := J j=1 β O j , and that, if converges in distribution to c 0 I(β)E, with E an exponential random variable with mean 1. (b2) The author and Thomine proved in [START_REF] Pène | Potential kernel, hitting probabilities and distributional asymptotics arXiv Ergodic Theory and Dynamical Systems[END_REF][START_REF] Pène | Central limit theorems for the Z 2 -periodic Lorentz gas[END_REF] that if I(β) = 0 and if there exists

I 0 (β) = 0, then (Z n / √ n) n≥1 converges
η > 0 such that O d(0, O) η |β O | < ∞, then Zn √ log n n≥1
converges in distribution to σ 2 (β)c 0 EW 1 , with E as above independent of W 1 , where σ 2 (β) is given by the Green Kubo formula with respect to T . (c) i.i.d. values (see [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF]) If the β O are i.i.d. centered and square integrable and independent of the Lorentz gas, then

Zn √ n log n n≥1
converges in distribution to c 4 W 1 , where c 4 depends on the common distribution of β O .

Ideas of proofs for (b-c):

We prove the convergence with respect to the measure µ |C 0 ( µ restricted to the 0-cell) and conclude, by a result by Zweimüller [START_REF] Zweimüller | Mixing limit theorems for ergodic transformations[END_REF], the convergence with respect to any probability measure P absolutely continuous with respect to the Lebesgue measure on Ω.

• For (b1): Since the Lorentz gas is recurrent ergodic 11 , the Hopf ergodic theorem ensures that Z n /N n a.e.

-→ n→+∞ β O , with N n := n-1 k=0 1 S k (Φ)=0 the number of visits to 0-cell before 11 Recurrence ergodicity follows from recurrence combined with the argument presented in Appendix A.

time n. So it is enough to prove the convergence result for N n instead of Z n . This can be done by proving the convergence of every moment. The moment of order m of N n is n-1 k 1 ,...,km=0 µ(S k 1 (Φ) = ... = S km (Φ) = 0), which can be estimated by using a multi-time local limit theorem.

• For (b2): we can prove the convergence of every moment of Z n with respect to µ |C 0 (this is doable but more difficult than for (b1) since cancellations happens). another argument: Note that Z n ≈ Nn k=0 Y k , Y k being the amount won between the k-th and (k + 1)-th visit to the 0-cell. Prove, via coupling, that it behaves as if the Y k and N n were independent and so, roughly speaking using the CLT for (Y k ) k and (a2) for N n :

Z n ≈ Nn k=0 Y k ≈ N n σ 2 (β)W 1 ≈ log nc 0 E σ 2 (β)W 1 .
• For (c): Z n behaves as a random walk in random scenery n-1 k=0 ζ X 1 +...+X k : we can adapt Bolthausen's proof [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF], with the use of the mixing local limit theorem (see Appendix D for a proof of the mixing local limit theorem which appears also in Appendix C).

Appendix A. Scheme of Sinai's proof of the ergodicity of the Sinai billiard via hyperbolicity via Hopf's chains A.1. Hyperbolicity and Hopf's chains. Recall that the states space of the billiard is the set Ω of unit post-collisional vectors x = (q, ⃗ v) with q ∈ ∂Q = I i=1 ∂O i and ⃗ v ∈ S 1 such that ⟨⃗ n q , ⃗ v⟩ ≥ 0, where ⃗ n q is the inward unit normal vector to ∂Q at q. This space is two-dimensional (one dimension for the position in ∂Q, one dimension for the direction). A main difficulty in the study of the Sinai billiard comes from the fact that the billiard map T is discontinuous x = (q, ⃗ v) such that T (x) is tangent to an obstacle. But this system enjoys hyperbolicity:

• the action of T (resp. T -1 ) expands the length of the increasing (resp. decreasing) C 1 -curve of Ω, increasing (resp. decreasing) meaning that the angle ∠(⃗ n q , ⃗ v) increases (resp. decreases) with the counter-clockwise curvilinear absciss.

Luckily, hyperbolicity wins against discontinuities. The map T is uniformly hyperbolic: there exist C > 0, Λ > 1 such that, for µ-almost every x ∈ Ω, there exist two C 1 -curves γ (s) (x) and γ (u) (x), called respectively stable and unstable manifold, containing x and satisfying

∀n ∈ N, diam(T n (γ (s) (x)) + diam(T -n (γ (u) (x)) ≤ Λ -n .
These stable and unstable manifolds do not exist everywhere, can be arbitrarily small, but satisfy the nice following property enabling the adaptation of Hopf's argument 12 to the billiard context: For any measurable set Ω 0 ⊂ Ω of full measure, there exists a set Ω ′ 0 of full measure such that, for every i = 1, ..., I, every x, y ∈ Ω ′ 0 belonging to the connected set Ω i := {(q, ⃗ v) ∈ Ω, q ∈ ∂O i }, there exists a Hopf's chain (or zig-zag line), i.e. x 0 , ..., x n ∈ Ω ′ 0 such that: Applying this with M = N (first inequality below) and M = N ⌊log N ⌋ (second inequality below) and using the decreasingness of n → µ(τ > n), we infer that

• x 0 = x, x N = y, • ∀j = 1, ..., N -1, x j ∈ Ω ′ 0 ∩ γ (s) (x j-1 ) ∩ γ (u) (x j+1 ) or x j ∈ Ω ′ 0 ∩ γ (u) (x j-1 ) ∩ γ (s) (x j+1 ),
N n=1 c 0 a 2 n µ (τ > N ) ≲ 1 ≲ N ⌊log N ⌋-N -1 n=1 c 0 a 2 n µ (τ > N ) ≈ N n=1 c 0 a 2 n µ (τ > N ) ,
where we used also the fact that a 2 n = n or a 2 n = n log n. The estimate of µ(τ ε > ...) uses the same idea (we take for A atoms of a finer and finer partition).

Appendix D. Proof of probabilistic limit theorems using operators

We present here an important tool behind most of the results stated in this article: the study of perturbation of quasi-compact operators. For a detailed and rigourous presentation of this method, we refer to [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] and the references therein.

(1) Consider P the dual of g → g • T (P is called the transfer operator of (Ω, µ, T )):

Ω P (h).g dµ = Ω h.g • T dµ.

(2) Prove that P is quasi-compact with only and simple dominating eigenvalue 1:

P n (h) = Ω h dµ + O(e -an ) in L(B) for some nice complex Banach space B and a > 0.

If we cannot work directly with (Ω, µ, T ), we may use auxiliary dynamical systems (In [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF] and [START_REF] Chernov | Decay of correlations and dispersing billiards[END_REF] Young towers are constructed for the Sinai billiard adapted to this purpose). (3) Set P t (h) = P (e i⟨t,Φ⟩ h) and use characteristic functions. Observe that converges in distribution to ΣW (applies e.g. to Sinai billiard with infinite horizon).

E µ 1 A e i⟨t, Sn(Φ) an ⟩ 1 B • T n = E µ [
(7) Proof of the mixing local limit theorem using point (4) above and λ n t/an ∼ e - 

µ A ∩ {S n (Φ) = 0} ∩ T -n (B) = 1 (2π) 2 [-π,π[ 2 E µ 1 A e i⟨u,Sn(Φ)⟩ 1 B • T n du = 1 (2πa n ) 2 [-πan,πan[ 2 E µ 1 A e i⟨ t an ,Sn(Φ)⟩ 1 B • T n dt ≈ µ(A)µ(B) (2πa n ) 2 R 2 λ n t/an dt ≈ µ(A)µ(B) (2πa n ) 2 R 2 e -

Figure 1 .

 1 Figure 1. A trajectory of respectively a Wiener process and a Lévy process of order α = 3/2 with A -= 0 (no down jump)

Figure 2 .

 2 Figure 2. Graph of the map T : x → 10x mod 1

Figure 3 .

 3 Figure 3. Sinai billiard in the torus with finite and with infinite horizon, Bunimovich stadium billiard, billiard with corners and cusps

Figure 4 .

 4 Figure 4. Z 2 -periodic Lorentz gas with respectively finite and with 2dimensionally infinite horizon

Figure 5 .

 5 Figure 5. A trajectory of a 2-dimensional Wiener process

Figure 6 . 7 .

 67 Figure 6. Corridors for two different periodic billiard domains (from [19])

  in distribution to σ 2 (β)W 1 . (b) Summable Values: Assume O |β O | < ∞ and set I(β) := O β O . Then (b1) Dolgopyat, Szász and Varjú proved in [10] that Zn log n n≥1

Figure 7 .

 7 Figure 7. A Hopf's chain

  with lim t→0 λ t = 1 in C, with either lim t→0 ∥Π t -E µ [•]1∥ L(B) (possible if the horizon is finite) or lim t→0 ∥Π t -E µ [•]1∥ L(B,L 1 (µ)) (if the horizon is infinite) and conclude that E µ 1 A e i⟨t, Sn(Φ) If λ u ∼ u→0 e -|Σu| 2 2 | log(|u| 2 )| , then λ n

	|Σu| 2 2 2	, then λ n t/ √	n ∼ n→+∞ e -	|Σt| 2 2 2	and so Sn(Φ) √ n	n≥1	converges in distribu-
	tion to ΣW (applies e.g. to Sinai billiard with finite horizon).
	(6) t/ √	n log(n)	∼ n→+∞ e -	|Σt| 2 2 2	and so	Sn(Φ) √ n log(n) n≥1

1 B P n t/an (1 A )] .

(4) Deduce from the quasi-compactness of P , by spectral perturbation method, that

P n t = λ n t Π t (•) + O(θ n 0 ) in L(B) an ⟩ 1 B • T n ≈ λ n t/an E µ 1 B Π t/an (1 A ) ∼ λ n t/an µ(B)µ(A) .

(5) If λ u ∼ u→0 e -

cheme of the proof of the ergodicity.

• Let f ∈ L 1 (µ) Hölder continuous. By Birkhoff's ergodic theorem, there exists Ω 0 ⊂ Ω so that µ(Ω \ Ω 0 ) = 0 and, for every

• Prove that h is constant on stable and unstable manifolds, and T -and T -1 -invariant.

• Infer, by the above Hopf argument, that h is µ-a.e. constant on each Ω i .

• Prove that, for any couple of connected components (Ω i , Ω j ) of Ω, there exists m ∈ Z such that µ(Ω i ∩ T -m Ω j ) > 0. • Conclude that h is constant almost everywhere and so that h

This proof can be adapted to prove the recurrence ergodicity of the Lorentz gas, up to:

• replacing Birkhoff's theorem by Hopf's ergodic theorem which ensures that, since the Lorentz gas is recurrent, for every f, g ∈ L 1 ( µ), g > 0,

-→ Case (1) (Sinai billiard) is as chaotic as the example of Section 3 and the method explained in Appendix D can be implemented to prove the standard CLT. In cases (2) (Bunimovich stadium) and (3) (billiard with cusps), the non-standard behaviour comes from the following facts:

• Let A be the set of states (q, ⃗ v) with position q belonging: to I ∪ J for (2), to a neighbourhood of cusps for (3). • The dynamics outside A is in some sense as chaotic as the example of Section 3.

• The number R of collisions during an excursion in A is not L 2 and satisfies µ(R > x) ∼ cx -α for some c > 0 (with α as defined in Case (3b) or with α = 2 in Cases ( 2) and (3a)). This explains heuristically the type of CLT. • For (2), during a trajectory of length N out of semi-disks, the direction is very close to vertical and the successive positions form a O(N -1 )-packing of I ∪ J. • For (3), during a trajectory of length N in a neighbourhood of a cusp at P , the position is very close to P and the successive directions form essentially a O(N -1 )-packing of S 1 (with, on each side of the cusp, angular increments of ⃗ v of size N -1 (sin ∠(T P ∂Q, ⃗ v)) -1 α ).

The two last points explain heuristically the integral appearing in the limit.

Appendix C. Ideas behind the proofs of quantitative recurrence

The first ingredient is a mixing local limit theorem saying roughly speaking that

with a n = √ n if the horizon is finite and a n = n log(n) if the horizon is infinite.

Then, the idea consists in adapting the following argument by Dvoretzki and Erdös in 1951 [START_REF] Dvoretzky | Some problems on random walk in space[END_REF] for planar random walks (i.e. sums of i.i.d. random variables in Z 2 ): considering the last visit time n to the 0-cell before time M and applying the mixing local limit theorem, we obtain