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Abstract—The eye diagram is one of the most common tools
used for quality assessment in high-speed links. This paper
proposes a method of predicting the shape of the inner-eye for
a link subject to uncertainties. The approach relies on machine
learning regression and is tested on the very challenging example
of flexible link for smart-textiles. Several sources of uncertainties
are taken into account related to both manufacturing tolerances
and physical deformation. The resulting model is fast and
accurate. It is also extremely versatile: rather than focusing on a
specific metric derived from the eye-diagram, its aim is to fully
reconstruct the inner eye and enable designers to use it as they see
fit. The paper investigates the features and convergence of three
alternative machine learning algorithms, including the single-
output support vector machine regression, together with its least
squares variant, and the vector-valued kernel ridge regression.
The latter method is arguably the most promising, resulting in
an accurate, fast and robust tool enabling a complete parametric
stochastic map of the eye.

Index Terms—signal integrity, high-speed interconnects, smart
textiles, wearable electronics, eye diagram, uncertainty quantifi-
cation (UQ), kernel-machine regressions.

I. INTRODUCTION

Benefiting from constant interest from both industry and
academia, stochastic analysis evolved significantly over the
past years. Various techniques are currently available, allow-
ing designers to evaluate the impact of system uncertainties
for various circuit applications, packaging and interconnects.
Historically, the most common approach to stochastic analysis
was Monte Carlo (MC). Featuring several improved versions,
the technique is straightforward. Data is collected via repeated
simulation and allows various metrics to be computed, quan-
tifying the performance and robustness of a system subject
to uncertainties related either to the manufacturing process
or environment parameters. [1], [2]. The main drawback of
MC is its computational cost. This prompted researchers to
look for alternative solutions to the computationally expensive
brute-force MC sampling, allowing them to infer the statistical
characteristics of a system from limited data. Many of the
first successful approaches were based on polynomial chaos
expansion (for an overview of this family of algorithms see
[3]). These were followed by other machine learning inspired
solutions falling mainly into the category of kernel machine
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regression (e.g., [4]–[9]) and artificial neural networks (ANNs)
(e.g. [10]–[14]).

This paper focuses on kernel-machine regression tech-
niques, such as: the support vector machine (SVM) regres-
sion [15], the least-squares support vector machine (LS-
SVM) [16] regression and the more recent vector-valued
kernel ridge (KRR) [6], [7], [17] which have been proven
particularly effective for various microelectronics and radio-
frequency applications [4], [5], [8]. Indeed, kernel-machine
regressions provide an interesting alternative to the otherwise
more flexible ANNs, especially well suited for problems in
which a “relatively small” set of training data is available [15],
[16], [18]. Unlike ANNs, the linear model structure adopted
by kernel regression (i.e., the model unknowns appear linearly)
has the key advantage of heavily simplifying the training
phase, which reduces to the solution of a standard convex
optimization problem, thus leading to several advantages in
terms of training time and accuracy w.r.t. the number of
training samples [6], [10].

In this specific context, the present paper explores a new
methodology for uncertainty quantification in the field of
signal integrity. The inner boundaries of an eye-diagram are
approximated by a polygon. Several kernel machine regres-
sion algorithms are then used to build a surrogate model
capable of mimicking the impact of system uncertainties on
this polygon, resulting in a “stochastic map”. A particularly
challenging example was selected in order to demonstrate
the technique: a flexible differential digital link for smart
textiles. The implementation uses copper yarn and is subject
to various sources of uncertainties, including high tolerances
during manufacturing [19]. It is important to observe that
unlike previous approaches, which predicted the impact of
uncertainties on specific metrics derived from the eye diagram
(e.g., vertical opening, eye SNR, etc), stochastic time-domain
mapping fully models inner-eye geometry. Several metrics
may thus be computed in post-processing, the use of masks
is also possible. The aim is to allow a statistically meaningful
design leading to more robust systems. The approach is partic-
ularly interesting for cases where high tolerances are an issue
in the design flow. These include emerging technologies with
non-standard manufacturing processes, or low-cost products
for mass consumers where high tolerances are a result of
financial considerations. Note, however, that the stochastic
mapping approach is not application-oriented but general and
very adaptable.
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The paper is organized as follows. An example related to
wearable electronics, based on published data, is presented in
Section II. A description of how the eye-diagram is processed
follows in Section III. Section IV provides an in-depth de-
scription of the algorithms used to perform stochastic mapping.
Numerical results relative to the selected example are collected
in Section V and are followed by a brief Conclusion.

II. TEST CASE

In the past two decades significant progress has been made
in the field of wearable electronics and wearable comput-
ing. Fabrics integrating sensors, processors, energy harvesters,
lights and batteries, so called “smart textiles” or “e-textiles”,
have attracted the interest of various private and public ac-
tors [19]–[25]. The defense industry has a particular interest
for this field: providing the soldier on the modern battlefield
with apparel integrating sensor hubs, processors and various
interfaces has numerous advantages [21]. Civilian applications
also exist and are either health-oriented or focus on various
specialized garments designed for exploration, hazardous en-
vironments or extreme sports. In a more general context, e-
textiles may also be used in non-wearable applications (e.g.
smart bed-sheets) or even in applications which are not human-
oriented (geo-textiles) [24].

This new generation of electronics brings new challenges
in terms of signal and power integrity. While the main design
objective is always the transmitting electrical signals with
as little distortion as possible, the specific context of e-
textiles magnifies the impact of mechanical factors and forces
designers to carefully consider aspects such as environment
stability and service life [23]. Flexible data busses are char-
acterized by much higher manufacturing imperfections than
the ones in regular PCBs and suffer greater impact from
environment parameters such as temperature and humidity.
External mechanical action, both in terms of compression and
stretching is also an issue.

The results obtained in this paper are based on the serial link
shown in Fig. 1 which has been implemented and simulated in
LTSPICE [26]. It consists of a differential data communication
channel implemented by conductive copper wires weaved in
a textile structure [27]. The flexible interconnect is described
using the classic multiconductor transmission line theory and
the per unit length parameters computed from the electrical
and geometrical information of the structure [28], [29]. Note
that conductive fibers remain, as of 2023, the most popular
technological solution for interconnects in e-textiles [30]. The
link features a differential driver at the near end and its paired
receiver at the far end. In order to increase maximum data-
rates, a passive equalizer is inserted between the driver and
the line. It is assumed that the equalizer and buffers are
implemented either using conventional electronics or semi-
flexible substrates. They are affected by uncertainties, albeit
to a lesser extent. The center section of the interconnect
(identified by a transmission line segment with length L2 in the
scheme) accounts for a potentially altered geometry. This can
either take the form of compression due to external mechanical
action or to the very nature of the application (e.g. bending at

knees or elbows) or on the contrary stretching of the material.
Either situation alters the distance between the conductors on
a specific segment of the link. The circuit model accounts for
the resulting discontinuity.

Fig. 1. System under test: digital link for wearable applications. The nominal
values of the equalizer and of the line lengths are: Re = 70Ω, Ce = 3.2 pF
L1 + L2 + L3 = 33 cm,

NRZ encoding is used at a data rate of 2 Gbps. At this
stage of the investigation, the driver and the receiver are
modeled using compact, linear models, very similar to the ones
implemented in IBIS-AMI simulations. Specifically, an equiv-
alent Norton-based voltage controlled circuital representation
of the differential drivers and receivers is used, according to
the method developed in [31]. This representation enables
the accurate simulation of coupled channels including both
differential- and common mode signals. The driver and the
receiver currents are defined as a function of the pertinent
output and input port voltages, respectively, via a constant con-
ductance matrix. The dynamic behavior of the devices is rep-
resented by a dynamic linear time-invariant submodel. Time-
varying current source terms are instead used to represent the
switching activity of the driver in terms of a time varying
analog waveform. Device parameters are representative of the
application at hand and the involved data rate. For a detailed
presentation of the buffer models see equation (2) and Fig. 2
in [31] and the explanations therein.

However, the methodology described in this paper can be
used as is with non-linear buffer models. For applications
where such models are required for increased accuracy, they
may readily be used [31]–[33]. It is important to note that
the geometrical specifications of the interconnect, including
the fabrication tolerances, are based on the experimental work
published in [19]. The selected structure is labelled as GSSG-
1 (see Fig. 3 in the previously referenced paper) and consists
in a differential pair between two ground conductors.

Without loss of generality, in our application, 11 uniformly
distributed uncertain parameters are considered. The distance
between the signal lines is 411µm ± 7.3%. The distance
between each signal line and the adjacent ground line is
481µm ± 6.7%. Conductor diameter is 228µm ± 11.1%.
The total length of the link is 33 cm ± 1cm (mainly due to
sizing). The section under mechanical stress varies in length
from 2 to 5 cm and the compression [stretching] factor is 25%
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[10%]. Tolerances of 1% are assumed for the elements of the
equalizer. Each eye diagram is computed for 4000 bits.

Fig. 2. Example eye diagram obtained for the data link of Fig. 1 for a given
set of uncertain parameters. The plot also collects the information about the
location of the polygonal edges associated to inner eye aperture, where the
eye vertical apertures are labelled through the pairs from 1 to 7 and the eye
width is indicated via the label pair number 8.

III. EYE APERTURE AND DATA LINK QUALITY

Throughout this paper, the performance of the communica-
tion via the data link is quantitatively assessed using the eye
aperture on the receiver side, as obtained by observing the
differential voltage response vd(t).

It is common practice to use the eye-diagram when design-
ing high-speed interconnect systems. Associating eye-diagram
analysis to uncertainty quantification and stochastic analysis
has been investigated in recent years [34], [35]. In addition,
thorough theoretical research has consolidated eye computa-
tion and processing, as well as jitter analysis making them
highly reliable, standard tools [36], [37]. Machine learning
techniques, such as the ones used in the paper, have also been
used in the past in relation to eye-diagram analysis [5], [38],
[39]. The novelty of the present work comes from the way
in which machine learning is used, from the meta-modelling
strategy itself. Instead of focusing on specific parameters de-
rived from the eye-diagram and computed as scalar quantities
(eye-height, horizontal opening etc), the clean inner eye is
literally mapped by a polygonal representation. The meta-
modelling process focuses on the vertices of the polygon. With
this approach, most of the metrics commonly used in data-link
design can be readily computed a posteriori, in a stochastic
framework.

It should be noted that the methodology described in the
present paper may be used regardless of the way in which
the eye pattern is obtained. Post processing the image of
the eye is one option, using sampled recorded responses is
another. The former alternative usually relies on both in-house
or commercial solutions enabling the fast simulation of a very
large number of bits (on the order of millions) [31], [36]. The
latter is usually preferred when the problem has a dominant

nonlinear nature, usually due to the buffers. In this case,
a classic transient simulation is carried out by means of a
circuit solver like SPICE where transceivers are replaced by
physics-based transistor-level models or by faster behavioral
nonlinear surrogates, yielding a sampled transient response of
the pertinent variable of interest (e.g., vd(t)) [33]. The inherent
limitation in this case is the CPU time required to run SPICE
and usually this is feasible when a relatively limited number
of bits is considered, at most on the order of tens or hundreds
of thousands.

A possible implementation of a compact routine allowing to
compute the polygonal shape of the aperture and parameters
such as the eye area is detailed in the appendix. This pseudo-
code is made available in order to provide readers with a
fully documented and self contained set of tools for both the
computation of the inner eye, as described in this section and
the surrogate modeling, as described in the next section.

Figure 2 shows an example eye diagram which can be ob-
tained for the considered test case, together with its inscribed
inner polygon (see the dark thick line) obtained with the
proposed procedure. The diagram is generated from the data
link response computed for a given sample of the uncertain
parameters. The blue circles in the figure are the minimum
and the maximum vertical positions of the clean inner eye
area observed at a given set of points in the normalized unit
interval. The green circles, instead, represent the jitter and can
be used to define the horizontal eye aperture arising from the
zero-crossing points, leading to the left and right vertices of
the inner polygon.

It is important to point out that the optimal number of
vertices of the inner polygon shown in Fig. 2 depends on
the shape of the eye and thus is strongly related to the
specific application at hand. In this paper, the points have been
selected to guarantee a good accuracy of the approximated
eye area. If needed, an automatic procedure can be devised,
based on a heuristic step-by-step greedy algorithm. Basically
the number of points along the abscissa, which represent
the horizontal coordinates of the vertices, would gradually
be increased in the range [0,1] of the unit interval until the
variation of the resulting eye area becomes negligible. A
relative threshold mechanism can be set. Also, one should
avoid vertical probing in the area affected by time-domain
jitter (e.g., the UI points 0.1 or 0.9 in the example eye). As
already mentioned, horizontal probing is used to model this
type of uncertainty.

IV. SURROGATE MODELS

A. Problem Statement

Let us consider the problem of approximating the variability
of the vertices of a polygon approximating a generic eye
diagram collected in the vector y = [y1, . . . , yD]T ∈ Y
with Y ⊆ RD as a function of a set of parameters of
the link collected in the vector x = [x1, . . . , xp]

T ∈ X
with X ⊆ Rp. For the example eye of Fig. 2, the entries
of vector y (i.e., D) correspond to positive and negative
vertical positions of the blue circles calculated at 7 time points
[0.2, 0.3, . . . , 0.8]T defined in a normalized unit interval, and
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the horizontal position of the green circles associated to the
jitter, respectively. The overall number of output components is
D = 16, while the number of input parameters p = 11. Within
the machine learning framework, the modeling problem stated
above can be reformulated as the problem of building a generic
vector-valued surrogate model M : X → Y , starting from the
information available on the training set D = {(xl,yl)}Ll=1,
where L represents the total number of training pairs, such
that xl ∈ X corresponds to the l-th configuration of the
input parameters and yl = [y

(1)
l , . . . , y

(D)
l ]T ∈ Y is the

corresponding output vector.

B. Scalar-Output SVM and LS-SVM Regressions

The above vector-valued learning scenario can be rein-
terpreted as the problem of learning D independent scalar
regressions (i..e, one for each output component), each of them
considering the training set D(i) = {(xl, y

(i)
l )}Ll=1, such that

D = ∪D
i=1D(i), in which y

(i)
l is i-th component of the output

vector associated to the l-th input configuration xl. This allows
to reformulate the overall vector-valued learning problem in
terms of D independent scalar-output regressions, which can
be suitably tackled with standard kernel machine approaches,
such as the SVM and LS-SVM regressions [4].

Specifically, each training set D(i) = {(xl, y
(i)
l )}Ll=1 can be

used together with the SVM and LS-SVM regression to train
the corresponding surrogate model [15], [16], such that:

M(i)
SVM/LS-SVM (x) =

L∑
l=1

β
(i)
l k(i)(xl,x) + b(i), (1)

where β(i)
l and b(i) are the regression coefficients and bias term

estimated during the model training and k(i)(·, ·) : Rp×p → R
is a scalar kernel function associated to the i-th output com-
ponent.

Several kernel functions k(·, ·) have been proposed in the
literature. Hereafter in this paper, we will adopt the Gaussian
radial basis function (RBF) kernel, which writes [15]:

k(xi,x) = exp

(
−∥xi − x∥2

2σ2

)
(2)

where σ2 is the kernel hyper-parameter.
The SVM and the LS-SVM regression share the same dual

space representation in (1). However, for the SVM regression
the coefficients β

(i)
l and the bias terms b

(i)
l are estimated by

minimizing the ε-insensitive loss function computed between
the model predictions and training outputs, while for the
LS-SVM regression the above unknowns are estimated as
the ones minimizing a squared loss function [15], [16]. A
Tikhonov regularizer and its corresponding hyperpameter are
used by both methods to suppress over fitting and to improve
their generalization on the test set, by minimizing the model
variance and thus its sensitivity to the training set [40].

Concerning the training algorithms, the SVM regression is
built by numerically solving a quadratic optimization prob-
lem [15], and thanks to the ε-insensitive norm, it can lead to
a sparse solution in which some of the coefficients β

(i)
l = 0.

On the other hand, the training of the LS-SVM regression can
be done in a closed-form as the solution of a linear system of
equations. Concerning the model hyperparameters, the SVM
regression with Gaussian RBF kernel requires the tuning of 3
hyperparameters: the shape factor σ in (2), the width of the
ε-insensitive zone and the regularizer hyperparameters. On the
other hand, the LS-SVM regression with Gaussian RBF kernel
requires the tuning of 2 hyperparameters: the shape factor σ
in (2) and the regularizer hyperparameters. For each regression
the above hyperparameters are tuned via cross-validation [40].
The Statistics and Machine Learning Toolbox and the LS-
SVMLab Toolbox version 1.8 [41] have been used for the
SVM and the LS-SVM regression, respectively.

It is important to remark that this type of modeling scheme
for vector-valued problem, based on single-output regressions,
requires the training and tuning of the hyperparameters of D
regression models, thus compromising its efficiency in regres-
sion problems with a large number of output components [42].

C. Vector-Valued KRR

An alternative modeling approach consists of applying a
vector-valued formulation of the kernel ridge regression (KRR)
which allows to directly account for the vector-valued nature
of the regression problem at hand [6], [7], [17]. Specifically,
the vector-valued KRR can be directly adopted to train a
single vector-valued surrogate model MKRR : X → Y ,
which according to the represented theorem for vector-valued
regression problems presented in [44], writes:

MKRR(x) =

L∑
l=1

K(x,xl)cl, (3)

where MKRR(x) = [M(1)
KRR(x), . . . ,M

(D)
KRR(x)]

T is a
vector collecting the model prediction for any x ∈ X ,
K(·, ·) : Rp×p → RD×D is a multi-output kernel matrix and
cl = [c1,l, . . . , cD,l]

T ∈ RD are column vectors collecting the
regression unknowns.

A separable structure consisting of the product of scalar
kernel function is considered for the matrix kernel function
K(x,x′) [17], such that:

[K(x,x′)][d,d′] = kx(x,x
′)ko(d, d

′), (4)

where kx and ko are scalar kernels acting independently on
the input space (i.e., kx : X × X → R) and on the output
dimensions (i.e., ko : {1, . . . , D}×{1, . . . , D} → R). Without
loss of generality, the Gaussian RBF kernel in (2) will be used
hereafter for the kernel kx and ko, respectively.

For the considered model structure, the regression coeffi-
cients collected in the vectors cl can be estimated in a closed-
form via the solution of a discrete-time Sylvester equation
(additional mathematical details are provided in [6]), which
writes:

KxCB+ λC = Y, (5)
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where λ is the hyperparameter associated to the Tikhonov reg-
ularizer, Kx is a L×L Gram matrix computed from the input
samples {xl}Ll=1 (i.e., [Kx]ij = kx(xi,xj)), B is a D × D
Gram matrix computed on the output dimensions {1, . . . , D}
(i.e., [B]ij = ko(di, dj)), C = [c1, . . . , cL]

T ∈ RL×D is a
matrix collecting the model unknowns and Y = [y1, . . . ,yl]

T

is a L×D matrix associated to the training output.
Thanks to the properties of the Kronecker product, the

above matrix equation can be vectorized and reformulated
in terms of a standard linear system with (LD) equations in
(LD) unknowns [43] with a computational cost proportional
to O(L3D3) for a plain inversion or to O(KL2D2), where
K is the number of iteration, for a conjugate gradient descent
algorithm [6]. On the other hand, this paper will use a more
efficient implementation based on a diagonalization procedure,
inspired by [45], for which the computational cost for the
model training reduces from O(L3D3) to O(L3+D3+L2D+
LD2), thus leading to beneficial effect on the training time
when the product (LD) is large (additional details can be
found in [46]).

Different from modeling strategies based on scalar-output
regressions in Sec. IV-B, the training of the proposed im-
plementation of the vector-valued KRR requires the tuning
of 3 hyperparameters only. Such tuning is done via a 3-
fold cross validation. Moreover, the vector-valued formulation
allows to learn possible correlations in both the input and
output dimensions, thus improving the model reliability and
robustness to noise.

V. NUMERICAL RESULTS

The simulation setup described in Sec. III was used to
generate the training and test sets used to construct and
assess the accuracy of a surrogate models constructed via the
SVM, LS-SVM and vector-valued KRR regressions presented
in Sec. IV. These training and test sets were generated by
randomly varying the considered 11 parameters defining the
link, according to the range of variation discussed in Sec. II,
via a latin hypercube sampling (LHS) scheme [47]. For each
set of parameters, the received differential voltage vd(t) was
recorded and the eye aperture was computed according to the
procedure in Sec. III. All performance figures in the present
section were computed using 5000 test samples, i.e. 5000
different responses of the received voltage vd along with its
corresponding eye plot and inner polygon. Also in this case,
the input configurations of the test were generated by randomly
varying the considered 11 parameters of the link according to
the range of variation discussed in Sec. II via a LHS scheme.

Table I provides a quantitative picture of the accuracy of
the considered three surrogate modeling approaches for an
increasing number of training samples L from 60 to 300 (see
first column). Both the eye apertures in mV , computed at the
different location pairs labeled from one to seven in Fig. 2,
and the eye width in ps corresponding to the eighth pair in the
same figure are considered (second column). The remaining
columns collect the average absolute errors computed as
the mean absolute deviation of the eye apertures in mV
and eye width in ps predicted by the considered surrogate

TABLE I
ABSOLUTE AVERAGE ERROR COMPUTED FROM THE PREDICTIONS OF THE

SURROGATE MODELS BUILT VIA THE REGRESSION TECHNIQUES
PRESENTED IN SEC. IV FOR AN INCREASING NUMBER TRAINING SAMPLE

(I.E., L = 60, 150, AND 300) ON A TEST SET WITH 5000 EYE
REALIZATIONS.

Methods SVM LS-SVM Vector-Valued
KRR

L pairs Ave
Error

Ave
Error

Ave
Error

1u-1d (mV ) 6.21 6.18 5.97

2u-2d (mV ) 7.49 7.25 6.73

3u-3d (mV ) 6.65 6.68 6.91

60 4u-4d (mV ) 7.49 7.17 7.29

5u-5d (mV ) 10.13 6.80 6.68

6u-6d (mV ) 4.03 3.83 3.79

7u-7d (mV ) 4.25 4.07 4.03

8r - 8l (ps) 3.62 3.22 3.34

1u-1d (mV ) 4.73 4.61 4.52

2u-2d (mV ) 4.16 4.27 4.20

3u-3d (mV ) 4.93 4.92 4.99

150 4u-4d (mV ) 9.99 4.86 4.75

5u-5d (mV ) 4.22 3.78 3.79

6u-6d (mV ) 3.06 2.72 2.73

7u-7d (mV ) 2.72 2.66 2.65

8r - 8l (ps) 2.67 2.63 2.67

1u-1d (mV ) 3.50 3.44 3.51

2u-2d (mV ) 3.25 3.19 3.13

3u-3d (mV ) 3.75 3.71 3.72

300 4u-4d (mV ) 4.05 3.96 4.03

5u-5d (mV ) 3.08 2.96 2.99

6u-6d (mV ) 2.38 2.40 2.33

7u-7d (mV ) 2.32 2.31 2.20

8r - 8l (ps) 2.23 2.15 2.12

models, and the corresponding ones obtained from the 5000
reference eye realizations in the test set. Bold text is used
to highlight the lowest errors among the different modeling
methods. This comparison clearly highlights the capability
of all the considered surrogate models to learn the actual
information provided by the training set. Among them, in most
of the considered modeling scenarios, the vector-valued KRR
shows an improved accuracy compared to the SVM and LS-
SVM regression, thanks to its capability of learning possible
correlation among the output components.

Moreover, as shown in Fig. 3, the vector-valued KRR
approach also offers a faster training time with respect to the
other plain scalar-output kernel regressions, since its training
CPU time seems to be less affected by the number of training
samples (i.e., L). It is important to remark that the CPU times
reported in Fig. 3 refer to the training time only, and do not
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Fig. 3. Comparison of the training time of the proposed regression techniques
for an increasing number of training samples. The CPU times do not include
the computational cost for the generation of the training set.

include the computational cost relative to the generation of the
training set.

The generation of 300 training samples required approxi-
mately 11 hours. This expensive data-collection phase must
be carried out once. After the model training, its evaluation
on the 5000 test samples required few seconds, while the
corresponding SPICE simulations required 4 days.

Figure 4 shows all the possible eye apertures computed
for the test samples (see gray cloud) superimposed by the
best, median and worst profiles of the inner area computed
using the reference responses (top panel, black lines) and,
respectively, the proposed vector-valued KRR surrogate model
(bottom panel, blue lines). The median curve corresponds to
the 50% threshold between all the larger and the smaller eye
apertures. This additional and less conventional performance
figure stresses the flexibility of the proposed approach in
possibly providing the information of the probability (e.g., in
terms of a quantiles) associated to a given eye aperture.

Similarly, Fig. 5 plots three possible eye apertures defined
by their corresponding polygons associated to three sets of
uncertain parameters. The figure compares the prediction
obtained using the proposed vector-valued KRR model trained
with 300 training samples with the reference profiles, thus
highlighting the very good accuracy of the proposed surrogate
modeling approach.

As an additional and final validation, the eye quality is
assessed by a single scalar quantity such as the eye aperture
computed from the proposed polygonal approximation of the
inner eye area. For the same test case, Fig. 6 compares the
probability density functions (PDFs) computed from the same
5000-sample test set, used as reference, with the corresponding
ones obtained from the surrogate model built via the LS-
SVM regression, the SVM regression and the proposed vector-
valued KRR by using L = 300 samples. The three panels
show the PDFs associated to the eye area (left panel), eye
height computed in the region of the fourth polygonal edge
pairs of Fig. 2, i.e., (4u)− (4d) (central panel) and eye width,

Fig. 4. Data link analysis carried out by computing the best, the worst (dashed
and solid thin lines) and the median (thick) inner eye aperture. The above eye
apertures are superimposed to the complete set of eye diagrams obtained for
the test set (light gray cloud). The blue and the green clouds of circles play the
same role of the corresponding colored circles in Fig. 2. Top panel: reference;
bottom panel: vector-valued KRR.

again defined between pairs (8r)− (8l) (right panel). The eye
area is computed as briefly outlined in the fourth item of the
procedure described in the appendix. The above comparison
highlights a good agreement among the PDFs predicted by the
proposed surrogate models and the ones computed from 5000
test samples, especially on the tails of the distributions.

VI. CONCLUSIONS

The main novelty of the present paper is the stochastic time-
domain mapping approach. For a given eye pattern, the inner
eye is mapped using a suitable polygonal approximation. After
an initial training stage, a parametric surrogate model is built,
predicting the effect of system uncertainties on the shape of
this polygon. This allows designers to effectively compute
the metric of their choice or use eye-masks in a stochastic
context. The procedure was demonstrated in the case of a
flexible data link for wearable applications, with uncertain
electrical and geometrical parameters, using machine learning
regression to build the surrogate model. Data was collected
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Fig. 5. Eye aperture computed for three sets of uncertain data link parameters.
The eye opening polygons obtained by the proposed vector-valued KRR model
are compared to the reference ones.

by simulating the link in a differential configuration operating
at 2 Gbps. Three types of regressions were used, showing
that for the problem at hand, a vector formulation of the
so-called kernel ridge regression is the preferable choice. A
nice additional feature is that the latter naturally embeds the
possible correlation which exists among the vertices of the eye
polygon. This also has a beneficial effect in terms of training
time, model reliability and robustness.

Stochastic mapping takes variability analysis one step fur-
ther. It is of particular interest for applications where ei-
ther the level of uncertainties or their impact is particularly
high. These include flexible or structural electronics, ultra-low
power systems, systems designed to operate in various hostile
environments, but also very-low cost applications where high
tolerances are a consequence of financial considerations.

APPENDIX

The proposed algorithm for the computation of the eye
aperture through a polynomial approximation is described
below. The procedure is outlined, including the essential steps
using a metalanguage description and a MATLAB-like code. It
is assumed that the sampled response of vd(t) is stored in the
vector vd. It collects the values of the received differential
voltage at the time samples stored in vector t. Also, due
to the differential communication scheme, a zero-threshold
(threshold=0 in the code) is assumed for computing the
state (i.e., bit) transitions.

The main steps of the algorithm are:
1) the estimated crossing times are store in vector tz and

are determined via linear interpolation:
>> vd = vd-threshold;
>> iz = find(diff(sign(vd)));
>> a = (vd(iz)-vd(iz-1))./(t(iz)-t(iz-1));
>> tz = (-vd(iz)+a.*t(iz))./a;

2) the time axis and the crossing times are wrapped into
the unit interval defined by the bit time (TBIT); also,
the jitter width (JITW) is computed by considering

the largest and the smallest wrapped (i.e., normalized)
transition times:
>> tzoffset = mod(tz(1),TBIT);
>> tzw = mod(tz-tzoffset,TBIT);
>> JLEFT = TBIT-min(tzw(tzw>TBIT/2));
>> JRIGHT = max(tzw(tzw<TBIT/2));
>> JITW = JLEFT+JRIGHT;

3) within the unit interval, a number of sampling
points is set (e.g., POINTS=[0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8]) and the minimum and
the maximum values of the received signal observed
at these sampling points are computed, vd(t =
(POINTS(kk)+(n-1))*TBIT). In the above nota-
tion, the index kk varies from one to the max number
of items in vector POINTS, and n ranges from one to
the maximum number of bits composing the bitstream.
The procedure in this step is suitably modified to avoid
probing the differential signal in the jitter region. It is
important to point out that the above mentioned max and
min values define, for a given point in the unit interval,
the position of the vertical eye height (e.g., see the blue
circles in Fig. 2). Also, the green circles in on the left
and on the right side of the eye correspond, in the x-axis,
to JRIGHT/TBIT and 1-JLEFT/TBIT, respectively;

4) based on the inner polygonal shape built in the previous
steps, different eye parameters (such as the eye width,
height and area) can be readily computed. Among the
previous parameters, the area can be computed via
embedded functions such as polyarea in MATLAB
or via the superposition of the 2D basic shapes (i.e.,
triangles or trapezoids) defined by the different vertices
of the inner eye polygon like the one shown if Fig. 2.
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