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1.  Introduction
Restricting global warming to 1.5°C requires atmospheric carbon dioxide (CO2) removal of 100–1,000 giga-
tonnes (Gt) until 2,100 as a supplement to the rapid emission reduction (Rogelj et al., 2018). It has been proposed 
that gigatonne-scale CO2 removal (CDR) can be realized by using a portfolio of methods, but they generally 
lack technological readiness (Nemet et al., 2018). Ocean iron fertilization (OIF) is a widely considered method 
within the marine CDR portfolio. OIF aims to stimulate CO2 fixation by marine phytoplankton through the addi-
tion of dissolved iron (DFe) to nutrient-rich (nitrate, phosphate) but iron-limited surface ocean regions, mainly 
in the Southern Ocean or in low iron regions of the Pacific Ocean. The rationale for CDR is that a significant 
proportion of the additional CO2 fixed in phytoplankton biomass will then sink into the deep ocean, where the 
carbon (C) could be sequestered for centuries to millennia (Martin, 1990). Indeed, paleo-oceanographic evidence 
suggests that changes in iron delivery to the surface ocean via dust and the associated enhancement of deep ocean 
CO2 sequestration could explain around 25% of the 80 ppmv glacial-interglacial atmospheric CO2 transitions 
(Martínez-García et al., 2014).

Research into OIF commenced in the 1980's and was largely informed by 13 mesoscale iron fertilization exper-
iments (Yoon et al., 2018), which aimed to answer fundamental questions in climate science (Martin, 1990). 
Today, OIF is arguably the most thoroughly assessed open ocean CDR method, having undergone scrutiny by 
transdisciplinary international research efforts. The early enthusiasm for OIF faded with increasing understand-
ing of the complexity of the method and growing concerns around environmental side-effects (Buesseler, 2012; 
de Baar et al., 2005; Gattuso et al., 2018; Rohr, 2019; Strong et al., 2009). However, despite justified skepti-
cism, OIF is still considered as a potential addition to the CDR portfolio needed to achieve net zero goals (Fuss 
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et al., 2018) and there is renewed interest in large-scale scientific assessment of this CDR method (Buesseler 
et al., 2023; Emerson, 2019; NASEM, 2021; Oeste et al., 2017; Yoon et al., 2018).

Simulations with biogeochemical model project that continuous basin-scale or globally-applied OIF could 
sequester around 2–4 Gt CO2 year −1 (Aumont & Bopp, 2006; Fu & Wang, 2022; Oschlies et al., 2010; Tagliabue 
et  al.,  2023; Zahariev et  al.,  2008). However, OIF would likely not be achievable at such a large scale due 
to environmental concerns, associated legal constraints and hence difficulties in obtaining social license (Cox 
et al., 2021; Strong et al., 2009). Indeed, the same modeling studies have highlighted negative side-effects of large 
scale and continuous Southern Ocean OIF deployments, such as so-called “nutrient robbing” by OIF upstream 
(i.e., poleward in the Southern Ocean) from low-latitude regions, water column deoxygenation, and the formation 
of more potent greenhouse gasses in oxygen-depleted waters (Aumont & Bopp, 2006; Fu & Wang, 2022; Oschlies 
et al., 2010; Tagliabue et al., 2023; Zahariev et al., 2008). Furthermore, the outcomes of some model simulations 
have suggested that targeting particular regions or seasons could optimize the CDR efficiency of OIF (Arrigo 
& Tagliabue, 2005; Fu & Wang, 2022; Gnanadesikan & Marinov, 2008; Gnanadesikan et al., 2003; Sarmiento 
et al., 2010). For example, Sarmiento et al. (2010) simulated OIF at two sites in the Pacific and two sites in the 
Southern Ocean. They found substantially higher CDR efficiencies in the Southern Ocean, in particular in the 
Ross Sea (Sarmiento et al., 2010). Their findings suggest that OIF would more likely become a meaningful addi-
tion to the global CDR portfolio when deployed in locations of the Southern Ocean where its CDR efficiency 
(i.e., CDR per added iron) is highest and costs (i.e., costs per tonne (t) CO2 removed) are lowest. (Cost-)efficiency 
is among the most decisive factors influencing whether stakeholders (which may be countries or private enter-
prises) pursue real-world implementation of OIF (Bellamy & Geden, 2019; Rickels et al., 2012).

Our study builds on previous modeling research and aims to refine our understanding of Southern OIF by provid-
ing a spatially resolved (∼1° grid resolution) circumpolar analysis of CDR- and cost-efficiency south of 60°S. As 
such, we aim to further the debate on OIF by narrowing down where OIF is biogeochemically and economically 
feasible. The structure and goals of the study are illustrated and described in Figure 1. After the methods section, 
we begin by evaluating five requirements that largely determine whether OIF may be feasible in certain areas and 
how this requirement affects the efficiency of OIF (Section 3.1). Next, we present maps of CDR efficiency and 
OIF costs in the Southern Ocean south of 60°S (Section 3.2.) and discuss the variability of OIF (cost-)efficiency 
(Section 3.3.). Finally, we discuss the legal ramifications (Section 3.4.) and synthesize the key findings of this 
study (Section 4).

2.  Methods
2.1.  Justification for the Applied Methodology

Our approach differs from previous numerical assessments of OIF in that we do not employ a biogeochemical 
model for our research. Instead, we employ a range of observational, experimental, and computational data sources 
to assemble the necessary information and compile it in equations to derive estimates of OIF cost-efficiency. Our 
approach is therefore less comprehensive and internally consistent than a biogeochemical model as it omits a vari-
ety of processes and draws information from different sources. This “informed back-of-the-envelope approach” 
was chosen to achieve the goals of the study (Figure 1) mainly for two reasons. First, due to findings by Sarmiento 
et al. (2010) we focused our analysis on south of 60°S where Antarctic Bottom Water (AABW) formation is a 
predominant driver of OIF efficiency. Biogeochemical models have limited skill to reproduce AABW formation 
pathways (Heuzé, 2021), so that using them for a circumpolar localization of cost-efficient OIF regions would 
not have been robust. Second, we considered air-sea CO2 flux as a potential limitation of OIF efficiency due to 
the reasons described in Gnanadesikan and Marinov (2008). Models can be used to provide the necessary insights 
through forward tracking of CO2 deficient seawater (Bach et al., 2023), but the spatial resolution attempted here 
would have made this prohibitively expensive. We acknowledge the limitations of our approach as mentioned in 
the individual method descriptions below.

2.2.  Iron Limitation and Light Limitation South of 60°S

To determine the onset of iron-limitation for phytoplankton communities south of 60°S, we synthesized published 
shipboard iron-amendment experiments via literature analysis (Text S1 in Supporting Information S1). Growth 
rates (μ) of natural communities of iron-replete (+Fe) conditions were compared with μ in iron-deplete (−Fe) 
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communities. We calculated the fold change of growth rate and plotted μ+Fe/μ-Fe as a function of the in situ 
background (i.e., pre-treatment) DFe concentration from the batch of seawater which was incubated (Table S1 
in Supporting Information S1). The bioavailability of DFe was not considered as this was seldom reported in the 
literature.

Potential light limitation of phytoplankton growth south of 60°S during summer (December-February) was calcu-
lated using the observation-based approach developed by Venables and Moore (2010). Satellite and Argo float 
data were used to calculate the mean irradiance in the surface mixed layer (IMLD) and compare this to the thresh-
old irradiance above which phytoplankton communities can grow (IMLD_min). Venables and Moore (2010) deter-
mined an IMLD_min of 3 mol photons m −2 d −1 for phytoplankton downstream of the Kerguelen Islands. To further 
constrain IMLD_min, we explored the literature (Text S2 in Supporting Information S1) for growth versus irradiance 
curves with Southern Ocean phytoplankton species (Table S2 in Supporting Information S1) and fitted a growth 
versus irradiance model (Eilers & Peeters, 1988) to the binned data to determine the irradiance that corresponds 
to the onset of irradiance saturation.

2.3.  Virtual Particle Tracking in a High-Resolution Physical Ocean Model

We used the output from MOM01 (Morrison et al., 2020), an ocean sea-ice model based on version 5 of the 
Modular Ocean Model code (Griffies, 2012) for several specific aspects addressed in this study. The model has 
1/10° horizontal resolution and 75 vertical levels extending over the full ocean depth, with a vertical resolution in 
the top 1,000 m ranging from 1.1 m at the surface to 94 m at 1,000 m depth. The atmospheric forcing is derived 
from version 2 of the Coordinated Ocean-ice Reference Experiments-Normal Year Forcing (CORE-NYF) reanal-
ysis (Large & Yeager, 2009). Sea surface salinity is restored to seasonally varying climatology on 60 day times-
cale with a piston velocity of 0.16 m day −1. The model does not include ice shelf cavities or tides, and glacial 
meltwater is input at the sea surface. The model was spun up for 80 years with repeated annual forcing, and then 
10 years of daily averaged output was saved for analysis.

Figure 1.  Outline and the two major goals of the ocean iron fertilization (OIF) analysis. Goal 1 is to assess the five requirements that should be met (or maximized) for 
OIF to be meaningful and/or (cost-)efficient. The value of this exercise is to localize areas in the Southern Ocean where OIF could be more or less effective. Goal 2 is to 
provide circumpolar maps of OIF (cost-)efficiency. Three of the five requirements in the focus here (pre-formed nutrients, iron limitation, light limitation) are used only 
to help constrain suitable OIF areas but these are not further considered for the analysis of OIF (cost-)efficiency, due to the reasons described in Sections 3.1.1–3.1.3. 
The other two of the five requirements (carbon storage in AABW, air-sea CO2 equilibration), are utilized also for estimating OIF (cost-)efficiency.
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We conducted a virtual particle tracking experiment using the Connectivity Modeling System Lagrangian code 
(CMS, Paris et al., 2013) with daily averaged three-dimensional velocity fields from the first year of MOM01 
output. In our simulation, 238,221 neutrally-buoyant virtual particles were seeded on 3 January at 0.5 m depth 
in each model horizontal grid box south of 60°S and advected forward in time for 1 year with the MOM01 
velocity fields. Particles were advected with a timestep of 90 min using a fourth order Runge-Kutta scheme to 
calculate particle advection, applied in both space and time and particles were reflected at topography or the 
sea surface. Particle trajectory positions were saved every 5 days and MOM01 temperature and salinity fields 
were saved along each particle trajectory. We note that the velocity fields used for advecting the particles do not 
explicitly include mixed layer convection or interior diffusive mixing processes, which affect the movement of 
tracers. This is a limitation of the chosen method; however, running online Eulerian tracer releases in the model 
is prohib itively expensive. We further discuss the potential implications of this limitation on the results of the 
particle tracking experiment in Section 3.1.4.

We utilized particle trajectories to estimate how far particles drift horizontally from the release location within 
1 month of simulation and for the calculations of air-sea CO2 exchange.

2.4.  Equilibration of OIF-Derived Seawater CO2 Deficit With Atmospheric CO2

There is a risk that OIF reduces CO2 concentrations in seawater, but the water parcel carrying this CO2 deficit 
subducts below the sea surface before CO2 equilibration with the atmosphere has been completed. In such a case, 
atmospheric CO2 removal is delayed potentially far into the future when the CO2-deficient water is re-exposed to 
the atmosphere (Bach et al., 2023; He & Tyka, 2023). To investigate this risk, we simulated a Lagrangian exper-
iment for the temporal evolution of a 35 μmol kg −1 deficit in dissolved inorganic carbon (DIC), which is typical 
of OIF experiments with shallow mixed layers of ∼40 m during summer (de Baar et al., 2005; Krishnamurthy 
et al., 2008). A detailed description of calculations for this bucket approach is provided in Text S3 and Figure S1 
in Supporting Information S1. Briefly, a water parcel carrying the CO2 deficit is represented by the trajectories 
of neutrally-buoyant virtual particles released in January from MOM01 (Section 2.3). The CO2-deficient water 
parcels spread horizontally (following the virtual particle trajectories) and can exchange CO2 with the atmosphere 
for as long as the particles are in the mixed layer. Hence, these CO2-deficient water parcels can be thought of as 
“buckets,” which are initially empty and can fill up with maximally 35 μmol/kg atmospheric CO2 until the bucket 
subducts below the mixed layer. The extent to which the bucket is full at the time of exiting the mixed layer (ƒEq) 
is the target variable of this calculation. Air-sea CO2 influx into the “buckets” is calculated along their trajectories 
using climatological data (Table S3 in Supporting Information S1). We compare the air-sea CO2 exchange in an 
unperturbed “no-OIF scenario” with the exchange in an “OIF scenario.” In the calculation, the no-OIF scenario 
is the expected biogeochemical state along the particle trajectory. The no-OIF scenario allows us to account for 
changes in air-sea gas exchange due to expected background changes in the carbonate system (i.e., variability in 
water mass mixing, sea-ice changes and biology). The OIF scenario is the alternate state along a particle trajec-
tory representing an initial DIC deficit of 35 μmol kg −1 following OIF and the subsequent change caused by CO2 
exchange with the atmosphere.

2.5.  Estimates of CDR Efficiency Using OIF

We refined an equation originally derived by Harrison  (2013) to estimate how much of the CO2 fixed by 
phytoplankton is transferred into AABW and can be considered as CDR in t C km −2 for time-scales of AABW 
re-ventilation to the atmosphere (i.e., likely >>100 years; England, 1995; Siegel et  al.,  2021). This equation 
is composed of five parts (I–V), introduced in the five following paragraphs and combined into one equation 
thereafter.

Part I estimates the particulate organic carbon (POC) build-up (t C km −2) within a patch of water after iron 
fertilization:

POC = 1.5 × MLD × C∕Fe ×
12

1, 000, 000
� (1)

Based on previous in situ experiments we assume that OIF increases DFe by 1.5 nM above background concen-
trations (de Baar et al., 2005) in a patch of 1 km 2 and a given mixed layer depth (MLD) in meters. POC in this 
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patch then depends on the carbon-to-iron molar elemental ratio (C/Fe) of phytoplankton organic matter, which 
we assumed to be 25,000 (de Baar et al., 2005; Twining et al., 2004) to reduce the risk of overestimating the CDR 
potential of OIF. Please note that we neglect the formation of dissolved organic carbon (DOC) here, but note that 
entrainment of DOC into AABW would make OIF more efficient and reduces costs.

Part II estimates the fraction of the POC produced in the surface (Equation 1) reaching a depth (z ≥ 100 m 
(POCz)  as

POC𝑧𝑧 = POC ∗ e − ratio ∗
(

𝑧𝑧

100

)−𝑏𝑏

� (2)

where the export-ratio (e-ratio) is the fraction of primary production sinking below 100 m (between 0 and 1), and 
b is the flux attenuation (Martin et al., 1987). The e-ratio and b-values were empirically determined and were 
compiled from the literature and by using satellite primary production products for the Southern Ocean south of 
60°S (see Tables S4 and S5 for further details in Supporting Information S1 and Laurenceau-Cornec et al., 2023). 
The 122 e-ratios ranged from 0.005 to 0.96 with a median of 0.28 (Table S4 in Supporting Information S1). The 
31 b-values ranged from 0.25 to 1.97 with a median of 0.96 (Table S5 in Supporting Information S1). POCAABW is 
the specific case where POCz is calculated for the surface depth of AABW. This spatially variable depth horizon 
(Figure 4f) was chosen as the target depth because we consider POC sinking into AABW to be sequestered for 
relatively long timescales (discussed in Section 3.1.4). The depth of the upper interface of the AABW layer was 
defined here as the time-mean depth of the σ1 = 32.56 isopycnal surface in the MOM01 model.

Part III (ƒSeq) assesses how much of the OIF-derived POC that reaches the AABW surface layer (POCAABW) 
is matched with the influx of atmospheric CO2. The rationale for this metric is that not all CO2 consumed by 
phytoplankton during the OIF-induced bloom must be matched with atmospheric CO2 because much of it will 
be respired in and near the surface within weeks (Boyd et al., 2004). Thus, only the “sequestered” POC fraction 
(i.e., POCAABW) must be matched as this is the amount of POC accounted for as CDR (see below). ƒSeq was 
calculated  as

𝑓𝑓Seq = 𝑓𝑓Eq ÷
(

POCAABW

POC

)

� (3)

Here, ƒSeq ≥ 1 means that POCAABW is fully matched with atmospheric CO2 influx, while any value <1 suggests 
that air-sea CO2 has only been partially sequestered (by the fraction between 0 and 1).

Part IV describes how much of the reduction of radiative forcing through CDR is offset through the production 
of nitrous oxide (N2O), a greenhouse gas that can be produced following OIF, for example, via nitrification (Law 
& Ling, 2001):

N2Ooffset = 𝑓𝑓N2O × POC × e ×

(

1 −
(

𝑧𝑧AABW

100

)−𝑏𝑏
)

� (4)

Here, 𝐴𝐴 𝐴𝐴N2O
 is the N2O offset factor, which was determined to be 0.13 ± 0.06 (i.e., 13 ± 6% of the CDR generated 

by OIF needs to be discounted by the N2O feedback (Jin & Gruber, 2003)). The offset was chosen as it was specif-
ically estimated for a Southern OIF (Jin & Gruber, 2003). The dependency on POC sequestration assumes that 
this discount only needs to be subtracted if the POC is remineralized in a water mass that quickly re-exposes the 
N2O to the atmosphere. Thus, no discount occurs when POC reaches AABW where the forming N2O gas would 
be sequestered for longer timescales.

Part V (Otransport) is the CDR offset related to the combustion of fuels for transporting and distributing the iron to 
the Southern Ocean. It is based on the assumption that a suitable ship for OIF emits ∼1.7 t C d −1 (Harrison, 2013). 
Accounting for iron transport and distribution (see following section) yields a value of 0.01 t C km −2 of fertilized 
area (Harrison, 2013).

By combining parts I–V we yield the following equation to calculate CDR:

CDR = POCAABW × 𝑓𝑓Seq − N2Ooffset − Otransport� (5)

The equation was applied to determine spatially resolved CDR, as shown in Figure  5a. Please note that we 
converted CDR from t C km −2 to t CO2 km −2 by multiplication with 3.67.
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2.6.  Costs of OIF

To estimate OIF costs in $US t −1 CO2 sequestered in AABW, we first needed to determine operational costs. 
These were defined as the sum of costs for Fe fertilizers, transport, and distribution in the Southern Ocean.

One operational challenge for OIF is that relatively small amounts of Fe have to be distributed over large areas. 
Therefore, small vessels are more economical to distribute the Fe within the summer season as larger ships are not 
fast enough to distribute their load in summer. Following Harrison (2013), we consider a vessel with a payload of 
100 t and an optimal speed of 16.7 km hr −1. Such a vessel can fertilize 272 km 2 d −1 (fertarea) at operational costs 
(costsop) of 5,000 $US d −1 (Harrison, 2013). The vessel would need to sail to the fertilization location before 
and after the OIF operation and need to be restocked for 3 days (harbortime). The Fe fertilizer is iron (II) sulfate 
heptahydrate which costs 600 $US t −1 (costsFe) (Harrison, 2013). The fraction of iron by weight is 0.2 in iron (II) 
sulfate heptahydrate (Boyd et al., 2000) and the molecular weight (molweight) of iron is 55.845 g mol −1. Only 50% 
(i.e., a fraction of 0.5) of iron becomes bioavailable while the remaining 50% is scavenged and sinks out (Bowie 
et al., 2001). The vessel requires time (ferttime) to enrich the surface mixed layer by 1.5 nM (fertconc) depending 
on the vessel speed. For our calculation, we used a MLD of 32.8 m, which is the summer (December-February) 
average south of 60°S computed from Argo float climatology (Holte et al., 2017). Under the above circumstances, 
the fertilized volume (fertvolume) can be calculated as

fertvolume = fertarea × MLD� (6)

Which is 8.92 km 3 d −1 in our scenario. This would require a daily amount of iron fertilizer (Fefert) 7.48 t d −1 
calculated as

Fefert = fertvolume × fertconc ×
0.5 × molweight

0.2
∕1, 000� (7)

where 1,000 is to convert this to t d −1. Thus, the payload of the ship would be distributed in 27 days (ferttime) 
calculated as

ferttime =
payload

Fefert

� (8)

With harbor time (3 days) and sailing back and forth 1,800 km (distance from Tasmania to 60°S) to the OIF site 
(∼16 days), the entire cycle (cycletime) takes 46 days calculated as

cycle
time

= ferttime + habortime + sailing
time� (9)

The costs per fertilized km 2 (costsarea) are 51 $US km −2 calculated as

costsarea =
cycle

time
× costsop + (payload × costsFe)

ferttime × fertarea

� (10)

We further explored the range of operational costsarea within the framework of the above calculation by varying 
some crucial input assumptions (costsop, costsFe, fraction of inorganic particle sinking, Table S6 in Supporting 
Information S1). This sensitivity test revealed that costsarea ranged between 39 and 145 $US km −2 for optimistic 
to more pessimistic assumptions (Table S6 in Supporting Information S1). Finally, the costs of CDR per t of CO2 
sequestered in AABW (US t −1 CO2) were calculated as

Coststonne =
costsarea

CDR
.� (11)

For the spatial analysis of Coststonne, we use intermediate costsarea from Table S6 in Supporting Information S1 
(74 $US km −2).

2.7.  Variability of Carbon Export, CDR, and OIF Costs

We conducted Monte Carlo simulations to assess the variability in carbon export, CDR, and OIF costs. These 
simulations are constrained by the available data.

The amount of POC reaching any given depth (POCz) can be calculated using Equation 2. Here, e-ratios and b 
are the sources of variability. To assess the variability of POCz, we first generated 1,000 e-ratios mimicking their 
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positively skewed distribution that was found when plotting the 122 compiled values (Table S4 in Supporting 
Information S1) in a histogram. For this positively skewed distribution, we used a Q-Weibull code in R: q-Weibull 
(runif(1,000), shape = 1.7, scale = 0.4). Next, we generated 1,000 normally distributed b-values mimicking the 
distribution of the 31 empirically determined b-values (Table S5 in Supporting Information S1) as rnorm(1,000, 
mean = 1.006, sd = 0.385). The 1,000 e-ratios and b-values were randomly combined in Equation 2 to yield the 
distribution of carbon flux attenuation curves and the distribution of POCz at four different depth horizons.

A systematic assessment for the predominant drivers of variability in CDR was achieved using Equation 5. We first 
tested which of the components in Equation 5 has the highest capacity to induce variability in CDR. Therefore, we 
varied each component individually for 1,000 hypothetical cases within their data constraint ranges while keeping 
the other components constant at their mean values. The parameters individually varied were (a) The C/Fe ratio 
in phytoplankton with a mean of 25,000 (mol:mol) and a range from 15,000 to 50,000 based on measurements by 
Twining et al. (2004); (b) POCAABW based on variability in e-ratio and b as explained in the previous paragraph; (c) 

𝐴𝐴 𝐴𝐴N2O
 with a mean of 0.13 (factorial offset) and a range from 0.07 to 0.21, based on estimates by Jin and Gruber (2003); 

Otransport with a mean offset of 0.044 tonne CO2 km −2 and a range from 0.022 to 0.066, assuming 0.5–1.5 times more 
or less fuel-efficient transport, for example, via technological improvements or the use of less efficient fuels. For C/
Fe, 𝐴𝐴 𝐴𝐴N2O

 and Otransport, values varied randomly (1,000 cases) within the entire ranges introduced above using a “runif” 
function in R (e.g., C/Fe = runif(1,000, 15,000, 50,000)). Last, all ranges were combined in one calculation to esti-
mate the variability in CDR when all data-constraint ranges in C/Fe, POCAABW, 𝐴𝐴 𝐴𝐴N2O

 and Otransport are considered at 
the same time. Please note that each Monte Carlo simulation was performed for four scenarios: with high (a) and 
low (0.5) ƒSeq and for shallow (200 m) and deep (1,000 m) surface depth of AABW. These four scenarios shall be 
illustrative of the different (and non-random) boundary conditions for air-sea CO2 influx (Section 3.4) and AABW 
surface layer depth on the Antarctic shelves and off the shelves in the open Southern Ocean.

Finally, we estimated variability in CDR costs with Equation 11. Therefore, operational costs (Section 2.6) were 
varied across the range determined in the sensitivity analysis, that is, randomly with 1,000 cases between 39 and 
145 $US km −2 (Table S6 in Supporting Information S1). This variability in operational cost was then combined 
in Equation 11 with the variability in CDR costs from the scenario where variability in C/Fe, POCAABW, 𝐴𝐴 𝐴𝐴N2O

 and 
Otransport is considered at the same time.

2.8.  Assessment of Legal Constraints

Different international treaties, including those of the Antarctic Treaty System, could affect the implementation 
of OIF in the Southern Ocean south of 60°S. We reviewed these treaties using international legal analysis to 
reveal those that explicitly or implicitly consider OIF. The regions for which these treaties apply were subse-
quently mapped to illustrate where in the Southern Ocean legal challenges can be expected.

3.  Results and Discussion
3.1.  Five Requirements for the (Cost-)Efficiency of OIF in the Southern Ocean

In the following five Sections 3.1.1–3.1.5, we discuss five requirements that should be met to make OIF feasible 
and/or more (cost-)efficient. We outline why these requirements are important and assess where in the Southern 
Ocean they are likely to be met. Each section concludes with whether each requirement is considered for the 
(cost-)efficiency analysis. Please note that the selection of requirements is meant to cover predominant factors 
influencing OIF feasibility and (cost-)efficiency, based on our presently available knowledge. However, there 
may be other factors which are currently unknown or not specifically considered here.

3.1.1.  Requirement 1: Nutrient Supply From the Lower Overturning Circulation Cell

So-called “nutrient robbing” has been discussed as a biogeochemical side-effect reducing the efficiency of OIF 
(The Royal Society, 2009). Nutrient robbing means that CO2 sequestration stimulated by OIF enables biological 
drawdown of nutrients such as nitrate (N) and phosphate (P), which are no longer available to fuel CO2 sequestra-
tion downstream of the OIF site (Aumont & Bopp, 2006; Gnanadesikan et al., 2003; Hauck et al., 2018; Oschlies 
et al., 2010; Sarmiento & Orr, 1991; Tagliabue et al., 2023).

In the Southern Ocean, the reduction of OIF-efficiency due to nutrient robbing can be minimized by restricting 
the application of OIF to locations south of the Southern Ocean Biogeochemical Divide (SOBD), which is the 
boundary between the upper and the lower overturning circulation cells in the surface ocean (Marinov et al., 2006; 
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Sarmiento et al., 2010; Figure 2a). Upwelled nutrients north of the SOBD support downstream primary produc-
tion north of 30°S (Hauck et al., 2018; Marinov et al., 2006; Palter et al., 2010; Primeau et al., 2013). Thus, 
CO2 sequestration through the OIF north of the SOBD in the Southern Ocean would be reduced due to reduc-
tions in CO2 sequestration outside the Southern Ocean at a later point in time (Gnanadesikan & Marinov, 2008; 
Oschlies et al., 2010; Primeau et al., 2013; Sarmiento et al., 2010). In contrast, nutrient robbing is reduced when 
OIF is operated south of the SOBD (Sarmiento et al., 2010). Here, upwelled nutrients move (net)southward so 
that the fraction of nutrients that remains unutilized by phytoplankton becomes entrained in Dense Shelf Water 
(DSW), the precursor of AABW (Figure 2a). These unutilized nutrients, also known as preformed nutrients (Ito 
& Follows, 2005), are trapped in the deep ocean circulation cell and therefore not available to fuel downstream 
primary production, simply because they are not exposed to sunlight outside the Southern Ocean. (Please note 
that this simplified scheme of an isolated lower overturning circulation cell neglects exchange of water and nutri-
ents with the upper overturning cells, which has to the best of our knowledge not been quantified so far.)

The location of the SOBD has not been well constrained, possibly because the lower-resolution biogeochemi-
cal models used to derive and validate the conceptual framework of the SOBD (Marinov et al., 2006; Primeau 
et al., 2013) often have limited skill to correctly reproduce AABW formation pathways (Heuzé, 2021). To narrow 
this knowledge gap, Xie et al.  (2022) utilized a 1/10° physical model (ACCESS-OM2-01) with good skill at 
reproducing AABW formation via DSW pathways (Moorman et al., 2020; Morrison et al., 2020) to constrain the 
geographical location of the SOBD. In this accompanying study, we found that the SOBD constitutes a circumpo-
lar ring relatively close to Antarctica (Figure 2b), shaped by several oceanographic features. Regions south of the 
SOBD consist mostly of the continental shelves and extend slightly off the shelves in Eastern Antarctica where 
no in situ OIF experiment has been conducted so far (Figure 2b). The results by Xie et al. (2022) suggest that OIF 
should be conducted in the blue areas mapped in Figure 2b. Here, nutrient robbing and the associated reduction 
of (cost-)efficiency would be minimized. Thus, we assume no reduction of OIF (cost-)efficiency in our analysis 
(Section 3.2.) because OIF would be conducted south of the SOBD.

3.1.2.  Requirement 2: Prevailing Iron Limitation

The first step in OIF is the stimulation of phytoplankton C-fixation by the fertilization of the surface ocean with 
iron. The fertilization can only have a stimulatory effect when iron is limiting C-fixation. Results synthesized here 
show that phytoplankton are not limited by DFe when concentrations are >0.5 nM. Signs of iron-limitation (i.e., 
reduced growth) start to become apparent between >0.25 and 0.5 nM, while pronounced reduction of growth is 
widespread between 0 and 0.25 nM (Figure 3a), highly consistent with DFe thresholds calculated during a mesos-
cale OIF study using fluorometry (Boyd & Abraham, 2001). Comparing these thresholds to in situ DFe concen-
trations suggests generally limiting DFe concentrations in Western Antarctica (Figure 3b), consistent with recent 
findings (Huang et al., 2022). Data coverage in Eastern Antarctica is sparse, although the few observations in the 
Davis Sea imply less limiting DFe conditions (Figure 3b). Regions with sufficient temporal coverage such as the 
Ross Sea indicate iron-limited conditions from December to February (Figure S4 in Supporting Information S1). 
The results of the analysis suggest that OIF would generally stimulate primary production in summer, although 
natural DFe available early in the growth season may require the postponement of purposeful iron additions until 
the natural pool has been used up (Arrigo & Tagliabue, 2005). We conclude that iron limitation generally prevails 
south of 60°S during summer (and is currently increasing; Ryan-Keogh et al., 2023) and therefore not further 
consider this aspect in the analysis of (cost-)efficiency.

3.1.3.  Requirement 3: Absence of Phytoplankton Light Limitation

Low light availability is often considered another potential factor limiting or co-limiting phytoplankton growth 
in the Southern Ocean even during summer (Venables & Moore, 2010). In cell cultures, light becomes limited 
for several Southern Ocean phytoplankton species (on average) at 1.5 mol photons m −2 d −1 (Figure 3c). This 
value is lower than the threshold for phytoplankton growth (3 mol photons m −2 d −1) determined by Venables 
and Moore (2010) further north in the Southern Ocean. The mean mixed layer irradiance (IMLD) during summer 
(December-February) was generally well above both of these thresholds, although there are noticeable gaps in 
the IMLD coverage due to limited float observations near the shelves of Antarctica (Figure 3d). Accordingly, light 
should generally not limit phytoplankton growth during summer south of 60°S (Figure 3d), which is in line with 
regional case studies including mesoscale experiments (Boyd et al., 2000). This trend suggests that OIF stimu-
lates primary production south of 60°S during summer when iron is (mildly) limiting phytoplankton growth. As 
such, we do not consider light limitation for the analysis of OIF (cost-)efficiency.
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Figure 2.  Physical conditions influencing the ocean iron fertilization in the Southern Ocean. (a) Schematic overview of zonal mean major water mass movements 
showing an upwelling of Upper and Lower Circumpolar Deep Water (UCDW, LCDW), formation of Dense Shelf Water, as well as sinking and northward flow of 
Antarctic Bottom Water (AABW). The green downward arrows indicate carbon flux attenuation during sinking. Dashed arrows indicate the formation of intermediate 
and mode waters. The boundary separating the upper and lower overturning cells at the surface marks the Southern Ocean Biogeochemical Divide (SOBD). (b) Map 
showing the geographical location of the SOBD assessed by virtual particle tracking in a 1/10° physical ocean model ACCESS-OM2-01 (Xie et al., 2022). The southern 
boundary of the Antarctic Circumpolar Current as well as the Subantarctic Front is also indicated. Points indicate locations of previous meso-scale iron fertilization 
experiments: 1 = SOIREE, 2 = EisenEX, 3 = SOFeX-N, 4 = SOFeX-S, 5 = EIFEX, 6 = SAGE, 7 = LOHAFEX (Yoon et al., 2018).
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3.1.4.  Requirement 4: Longer-Term Carbon Storage

The second step in OIF, after the stimulation of CO2-fixation through fertilization, is the transfer of POC into 
a water mass that keeps it away from the atmosphere for as long as possible (Robinson et  al.,  2014). Water 
masses with such storage potential tend to be in the deep ocean although there are important exceptions (Siegel 
et al., 2021). There is currently no international legal or political framework that determines how carbon-storage 
duration (durability) is factored into the formulation of a carbon price, but it is likely that high durability leads 
to much higher pricing (Ruseva et al., 2020). Hence, carbon transfer into upwelling CDW (low durability) is 
less favorable than sequestration in AABW (high durability), which is why we focus on the latter in our study 
(Figure 2a; England, 1995; Robinson et al., 2014; Siegel et al., 2021).

Gravitational sinking of organic particles into the deep ocean is the main pathway considered for the transfer 
of OIF-derived POC into a water mass enabling high durability (Boyd et al., 2000; Smetacek et al., 2012). In 
a Monte Carlo approach, we generated 1,000 plausible scenarios for the fraction of primary production reach-
ing any given depth (Figure 4a). This fraction converges toward a narrow range with increasing depth, mostly 
between 1% and 5% below 1,000 m (Figures 4b–4e). The depth of the upper interface of the AABW is generally 
between 1,000 and 4,500 m off the Antarctic continental shelf (Figure 4f). Based on the median e-ratio (0.28) 

Figure 3.  Phytoplankton iron and light limitation in the Southern Ocean. (a) The change in growth rates in DFe-enriched treatments relative to growth rates in the 
controls (μ+Fe/μ−Fe) is shown as a function of in situ DFe at the locations where the incubated water was collected. The horizontal lines represent the μ+Fe/μ−Fe averages 
within the defined limitation ranges. (b) Map showing non-limiting (gray triangles), mildly-limiting (blue circles), and limiting (red squares) in situ DFe concentrations 
during summer (DJF). DFe data was from Tagliabue et al. (2012). (c) Growth versus irradiance curves from experiments with Southern Ocean diatoms (gray squares) 
and the haptophyte Phaeocystis antarctica (red circles). The larger black triangles show averages of all data within a bin (bins separated with vertical dashed lines). The 
black vertical line at 1.5 mol photons m −2 d −1 is the irradiance at which the onset of saturation occurs, while the blue vertical line indicates the 3 mol photons m −2 d −1 
threshold for phytoplankton growth determined further north in the Southern Ocean from in situ data (Venables & Moore, 2010). (d) Map showing that the mean mixed 
layer irradiance (IMLD) is almost everywhere above 1.5 and even 3 mol photons m −2 d −1 during summer.
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Figure 4.  Gravitational ocean iron fertilization (OIF)-mediated particulate organic carbon export. (a) Fraction of primary production reaching depth. Shown are 1,000 
profiles based on the Monte Carlo approach. The density color code indicates with what probability the profiles occur in the space of the plot. (b–e) Probabilities of 
remaining primary production at distinct depth horizons based on the 1,000 profiles. (f) Depth of the upper interface of the Antarctic Bottom Water (AABW) layer. (g) 
Remaining primary production at the depth of the AABW layer, calculated using the median export-ratio (0.28) and median b-value (0.96). Panel (h) the same as in 
panel (g) but with a narrower scaling to better illustrate differences in the offshore locations.

Figure 5.  Timescales of air-sea CO2 exchange estimates. (a) Fraction of CO2 equilibration (ƒEq) for an initial 35 μmol kg −1 CO2 deficit before virtual particles (as 
equivalents of water masses) leave the surface mixed layer (and therefore contact with the atmosphere). (b) ƒSeq, which indicates if there is sufficient air-sea CO2 
exchange to match the amount of particulate organic carbon sequestered in AABW. The magenta contours in A and B show the 60% sea ice concentration at the time of 
particle release (3 January). Sea ice concentrations >60% impeded our analysis so that these regions could not be assessed.
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and b-value (0.96) (Equation 2), we estimate the percentage of primary production reaching AABW in offshore 
environments to range between 0.7% and 2.7%, except for some areas near the shelf break (Figure 4g). This range 
suggests (a) a limited potential to transfer OIF-derived POC from surface water into AABW in offshore regions 
via sinking, and (b) a ∼four-fold range for sinking POC flux reaching AABW depending on where within the 
offshore regions OIF is applied.

The potential for downward POC transfer to AABW via gravitational sinking is substantially higher on the 
Antarctic continental shelves. Here, DSW, the denser precursor feeding into AABW, is formed by surface cooling 
and brine rejection during sea-ice formation (Ohshima et al., 2013; Williams et al., 2010). DSW occupies rela-
tively shallow depths that can extend to just below the surface mixed layer (Morrison et al., 2020). This means 
that most, if not all, of the POC that escapes remineralization in surface waters can potentially reach DSW in these 
continental shelf regions (Figure 4h). As such, DSW serves as a link that physically transports POC from the 
(near-)surface into AABW, thereby increasing the efficiency of durable CDR (Figure 2a). The problem, however, 
is that the sub-surface flow of DSW from formation regions to the shelf break is spatially localized on the shelf 
and occurs in episodic events on timescales of days (Morrison et al., 2020). Thus, OIF-derived POC would have 
to be entrained into these localized pathways for this shortcut into the deep ocean to work. The exact location 
where POC sinks is challenging to predict because it takes from days to several weeks following the iron fertili-
zation until downward POC export commences (Boyd et al., 2000; Buesseler et al., 2005; Smetacek et al., 2012). 
We estimated the regional potential for horizontal displacements of POC for a 1-month period using the virtual 
particle release experiment and found that neutrally buoyant POC would generally travel <150 km total distance 
in 1 month in the Weddell and Ross Gyres and on the continental shelves except for larger distances in coastal 
currents (Figure S3 in Supporting Information S1). These horizontal displacements of POC that occur from the 
time of fertilization until the onset of POC export must be anticipated for the site selection of the Fe-addition. 
Hence, OIF on the shelves requires a profound understanding of deep-water formation mechanisms and pathways.

The calculation of gravitational POC transfer efficiency from the surface into the AABW is based on mean 
export-ratios and b-values published for the Southern Ocean (Tables S4 and S5 in Supporting Information S1), 
with large variability based on a wide range of observations (Figure 4). Consistent with observations, mesoscale 
OIF experiments in the Southern Ocean have found variable responses of downward POC export to fertiliza-
tion. Some observations suggest a comparable export to naturally-occurring blooms (Buesseler et  al.,  2005), 
while another study reports extremely efficient export (Smetacek et al., 2012). Two studies found no noticeable 
increase in export, although this was arguably because observations stopped before the export commenced (Boyd 
et al., 2000; Smetacek et al., 2012). POC transfer efficiency has frequently been shown to be controlled by the 
pelagic community structure (Assmy et al., 2013; Boyd & Newton, 1995; Guidi et al., 2009; Wassmann, 1998). 
Hence, it could be argued that targeting “transfer-efficient” communities for OIF, or even seeding them alongside 
OIF operations, could optimize e-ratios and b-values and lead to more POC sequestration than Figure 4 suggests. 
For example, fertilizing phytoplankton communities with abundant Phaeocystis antarctica may increase carbon 
sequestration compared to fertilized diatom communities due to Phaeocystis' inherently higher Carbon to nutri-
ent ratio (Arrigo et al., 1999). However, our ability to predict the POC transfer efficiency based on the plankton 
community composition is poor (Burd et al., 2016), suggesting that such optimization is unlikely to be success-
ful with our current level of understanding (and the seeding of phytoplankton communities seems unlikely to 
receive social license and/or legal allowance). Furthermore, phytoplankton communities that result in high 
transfer-efficiencies may not prevail in a target region during the short period in summer where conditions enable 
OIF (Arrigo & Tagliabue, 2005). In light of these limitations, it seems justifiable to base our estimates of POC 
transfer to AABW on a wide range of observations and thus to accept that the CDR efficiency of OIF is currently 
rather unpredictable within the estimated bounds. Due to these arguments, the transfer efficiency of OIF-derived 
POC into AABW has a profound influence on the analysis of (cost-)efficiency.

3.1.5.  Requirement 5: Air-Sea CO2 Equilibration

The third step in OIF, after C-fixation and carbon export to deep waters, is the transfer of atmospheric CO2 
into the ocean (Gnanadesikan & Marinov, 2008). We employed a “bucket” approach to estimate what fraction 
of a water parcel with a seawater CO2 deficit (induced by OIF) would be replenished with atmospheric CO2 
before the water parcel was subducted (i.e., ƒEq as defined in Section 2.3). The approach has some strengths and 
weaknesses  which need to be highlighted before discussing the outcome of the calculations. Strengths are (a) 
comparing the OIF with the no-OIF scenario accounts for “expected” background changes in DIC from ocean 
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processes including vertical transport, eddy mixing and storm mixing that are reflected in observations. This 
leads to a more realistic representation of air-sea CO2 exchange, since natural variability is considered in the 
calculation. (b) Using Lagrangian particles to trace water parcels enables us to link ƒEq with the origin of the OIF 
patch. This provides a gridded data set which is crucial for the spatially resolved OIF (cost-)efficiency analysis, 
the key novelty of the study (Sections 3.3 and 3.4). (c) Lagrangian particle tracking is computationally relatively 
inexpensive, enabling the use of high-resolution model output. This is critical for improved representation of 
deep-water formation (Heuzé, 2021). Weaknesses are (a) the approach neglects patch dilution, which reduces 
air-sea pCO2 gradients in the fertilized patch but increases the surface area for CO2 exchange with the atmosphere. 
These are opposing effects on air-sea CO2 exchange and we are unable to quantify their relative influence. (b) 
Patch dilution can also increase productivity (Lehahn et al., 2017) so that an initial DIC deficit of 35 μmol/kg 
may increase over time. This is not accounted for in our calculations. (c) The assumption that influx is terminated 
upon the subduction of a water parcel (Figure 1) is simplistic since a parcel could resurface after its subduction 
and CO2 influx could continue. (d) The simulation assumes an initial DIC deficit in the surface mixed-layer and 
would not be applicable for potential OIF-induced DIC deficits generated below the mixed-layer. Despite these 
weaknesses, our approach seems to provide a useful overview of where in the Southern Ocean limitations on OIF 
set by air-sea CO2 exchange could become problematic. As described in the next paragraph, air-sea CO2 exchange 
was estimated to only limit OIF (cost-)efficiency in a few AABW formation regions on the shelves. This is qual-
itatively similar to previous findings (Arrigo & Tagliabue, 2005; Gnanadesikan & Marinov, 2008) and provides 
some confidence that our estimates are reasonable.

The calculations suggest that ƒEq is generally >50% off the continental shelves (Figure 5a). Figure 5b shows that 
this degree of re-equilibration with atmospheric CO2 is several-fold more than needed to equilibrate the amount 
of CO2 sequestered in AABW off the shelves (i.e., ƒSeq ≥ 1, or ≥100% as shown in Figure 5b). Accordingly, 
air-sea CO2 influx is unlikely to constrain the efficiency of OIF in the open Southern Ocean, at least in areas 
where the limited extent of sea ice allows this type of analytical approach.

In contrast, air-sea CO2 influx can limit OIF efficiency in some parts of the Antarctic shelf, most noticeably in 
the Ross Sea where ƒSeq < 1 near the coast (Figure 5b). This result is broadly consistent with a regional model 
that also identified air-sea CO2 influx as a potential limitation of OIF in the area (Arrigo & Tagliabue, 2005). 
On other shelf areas, there are only some scattered locations around Eastern Antarctica and at the tip of the 
Antarctic Peninsula where air-sea CO2 influx is not sufficient to match the amount of POC sequestered in AABW 
(Figure 4b). The reasons for the insufficiency in these regions are twofold. First, the identified shelf regions are 
relatively efficient in transferring POC from the surface to AABW because AABW (or DSW as its precursor) 
can be present at shallow depths (Figure 4f). Thus, relatively high amounts of POC are sequestered in AABW 
(Figure 4g) so that more atmospheric CO2 influx is needed to match the amount of sequestered POC. Second, 
AABW can form in the identified regions shortly after the simulated OIF operation in January so that water 
parcels have short residence times in the surface, thereby restricting the time for air-sea CO2 influx. Due to these 
constraining factors, air-sea CO2 influx is considered in the analysis of (cost-)efficiency.

3.2.  Spatial Patterns of CDR (Cost-)Efficiency

The spatial analysis of CDR (t CO2  km −2) and associated costs (US$ t −1 CO2) reveals pronounced regional 
differences in both parameters (Figure 6). The most favorable conditions are found on or very close to Antarctic 
shelves where AABW or its precursors are relatively shallow (Figures 2a and 3f). In the Ross Sea, for example, 
>2 t CO2 km −2 can be sequestered at a cost much below 100 US$ t −1 CO2 −1. However, limited air-sea CO2 influx 
can still reduce CDR and increase the costs in the Ross Sea near the coast (Figure 6). Similarly, (cost-)efficient 
conditions can be found at the tip of the Antarctic Peninsula, Prydz Bay, and a few smaller spots on the coast of 
Eastern Antarctica (Figure 6). In contrast, CDR declines and costs rise sharply further offshore in the open South-
ern Ocean. Here, CDR are largely below 0 t CO2 km −2 (gray areas in Figure 6a) because the emissions associated 
with iron delivery and N2O-related offsets are higher than CDR.

There are several limitations in the spatial analysis of CDR (cost-)efficiency. First, relatively large data gaps 
are present throughout the study region due to the influence of sea-ice on the analysis of air-sea CO2 transfer 
(Figure 5). Thus, particularly (cost-)efficient or inefficient regions may have been missed. Second, one require-
ment for our analysis is that OIF would be restricted to the south of the SOBD to limit offsets in (cost-)efficiency 
due to nutrient robbing (Section 3.1.1). However, our spatial analysis partially extends to regions north of the 
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SOBD (compare Figures 2b and 6). Here, CDR efficiency would further decline (costs would increase) when 
accounting for the reduction of downstream productivity due to nutrient robbing. We have not factored this offset 
into Equation 5 because the complicated global ocean teleconnections between nutrient drawdown in the South-
ern Ocean and nutrient availability outside the Southern Ocean make it difficult to constrain (Hauck et al., 2018). 
Third, our cost-calculation does not account for purchasing or chartering a ship but considers a “ship of opportu-
nity scenario” that has multiple tasks and can carry out OIF opportunistically during the Southern Ocean produc-
tivity season. Likewise, costs to gain legal permission for OIF or to measure, report, or verify CDR were also not 
considered in the calculations as we are unable to constrain them. Assuming these factors would double the oper-
ational costs (Equation 10), it would double the costs per tonne CO2 at any given location in Figure 6b. Fourth, 
we defined that POC sequestration in upwelling Southern Ocean water masses like CDW would have no value 
because these re-expose respired CO2 to the surface within decades (Robinson et al., 2014; Siegel et al., 2021; 
Tamsitt et al., 2017). Instead, we defined that POC sequestration in AABW has maximum value as it locks POC 
in the deep-ocean for much longer timescales (Siegel et al., 2021). This categorization was necessary because 
we were unable to link sequestration timescale to every depth and location where OIF-derived organic carbon 
is potentially respired. In reality, however, longer-term POC storage is certainly more valuable than short-term 
storage, but short-term storage is not worthless (Ruseva et al., 2020). Concepts to rate the amount of sequestered 
carbon with its sequestration longevity (e.g., “ton-year accounting”; Chay et al., 2022) may make short-term CDR 
more valuable off the shelves than the maps shown in Figure 6 suggest. Thus, it needs to be kept in mind that our 
analysis of (cost-)efficiency leads to results that are valid under the assumptions made here but could be modified 
when a more sophisticated carbon accounting methodology is applied.

3.3.  Variability in OIF (Cost-)Efficiency

We used a Monte Carlo approach to estimate the likelihood distributions for longer-term CDR (defined above as 
POC transfer into AABW) for two different AABW depths (200 and 1,000 m) and for complete or incomplete 
CO2 equilibration (ƒSeq = 0.5 or 1). These two conditions encompass the most relevant parameter range for an 
on-the-shelf (200 m, 0.5) and off-the-shelf (1,000 m, 1) scenario (Figure 7).

Simulated variability in either 𝐴𝐴 𝐴𝐴N2O
 or Otransport had a small influence on CDR variability in all of the scenarios 

(Figures 7a and 7b). Simulated variability in C/Fe had a larger influence on CDR variability but only for the 
200 m scenario (Figures 7a and 7b). Simulated variability in POCAABW had by far the largest influence on CDR 
variability in all scenarios considered here (hence constraining the factors that control export flux attenuation 
offers the greatest potential for improving the predictability of CDR as has been discussed in Section 3.1.4). 
Unsurprisingly, CDR variability is highest when simulating variability in all four components (𝐴𝐴 𝐴𝐴N2O

 , Otransport, C/
Fe, and POCAABW) simultaneously. The variability in costs is shown as histograms in Figures 7c and 7d. Here, 
turquoise and red histograms show cost distributions for an AABW surface depth of 200 and 1,000 m respec-
tively. The simulations shown in Figure 7c assume that ƒSeq = 1, that is, that all CO2 sequestered from seawater is 

Figure 6.  The magnitude of CDR and associated costs. (a) CDR achieved south of 60°S as calculated using Equation 5 using median e-ratio and b-value to calculate 
flux attenuation. (b) Costs per t CO2 sequestered. Values were calculated by dividing an intermediate costsarea estimate for ocean iron Fertilization (74 $US km −2, Table 
S6 in Supporting Information S1) by CDR from (a) as in Equation 11.
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matched with the influx of atmospheric CO2. In this case, there is a 98% probability that costs will be between 0 
and 100 US$ t −1 CO2 −1 when AABW is only 200 m deep. However, the probability of being in this price range 
is only 27% when AABW is at 1,000 m, and there is a 58% chance that the costs are negative, meaning that OIF 
generated more CO2 equivalents through shipping emissions and N2O generation than it sequestered (Figure 7c). 
Cost distributions become less favorable under the assumption that only half of the CO2 sequestered from seawa-
ter is matched by atmospheric CO2 influx (i.e., ƒSeq = 0.5; Figure 7d), a scenario that can occur in some shelf 
regions (Figure 5b). Here, costs are only between 0 and 100 US$ t −1 CO2 −1 in 86% (AABW at 200 m) and 12% 
(AABW at 1,000 m) of the cases. Negative costs still hardly occur for the 200 m AABW scenario (0.6% of cases) 
but predominate for the 1,000 m AABW scenario (80% of cases).

An important takeaway from the assessment of variability is that CDR is negative in the majority of cases when 
AABW is deeper than 1,000 m. Thus, although there is still a chance that CDR is (cost-)efficient under circum-
stances where, the likelihood for this is low (Section 3.1.4). Accordingly, there is a high risk of failed OIF over 
large parts of the open Southern Ocean where the AABW is deeper than 1,000 m (Figure 4f). The variability of 
OIF (cost-)efficiency is also considerable when AABW occurs at 200 m depth (possible in some shelf regions, 
Figure 4f). However, costs are in most cases between only 0–100 US$ t −1 CO2 −1. Any costs within this range are 
low compared to other CDR methods (Fuss et al., 2018) and are therefore potentially attractive from an economic 
standpoint. Nevertheless, the unpredictability of costs, even within this low range, remains a challenge since 
carbon markets may demand more predictable CDR and costs.

3.4.  Environmental and Legal Ramifications

For OIF to move forward, CDR benefits (as well as environmental side-effects not considered in this study) 
would need to be re-evaluated within at least four partially overlapping layers of international and domestic law 

Figure 7.  Variability in the (cost-)efficiency of ocean iron fertilization (OIF). (a) Results from the Monte Carlo simulations (n = 1,000) where individual components 
of Equation 5 were varied within their data-constrained ranges to assess their influence on CDR variability. Boxplots show the median, 25% and 75% percentiles 
(boxes), minimum/maximum (whiskers), and outliers (dots). Turquoise and red boxes are scenarios where the Antarctic Bottom Water (AABW) surface layer is at 200 
and 1,000 m, respectively. ƒSeq was set to 1 in these calculations, meaning that air-sea CO2 influx puts no constraints on the CDR. Panel (b) same as in panel (a) but 
assuming ƒSeq = 0.5. (c) Histogram of OIF costs in scenarios where the AABW surface layer is at 200 m (red) or 1,000 m (turquoise), respectively and ƒSeq = 1. (d) 
Same as in (c) but with ƒSeq = 0.5.
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(Figure 8). The 1991 Madrid Protocol to the Antarctic Treaty (covering the 
area south of 60°S) commits to “comprehensive protection of the Antarc-
tic environment and dependent and associated ecosystems”. The Ross Sea, 
which we identify as a cost-efficient region for OIF (Figure 6), is the location 
of a marine protected area formed under the Commission for the Conserva-
tion of Antarctic Marine Living Resources (CCAMLR), so it may be very 
difficult for OIF to proceed there. More concrete rules apply to member 
states of the 1972 London Convention (LC) on Marine Pollution (currently 
87) and the 1996 London Protocol (LP) (currently 53). Both of these treaties 
regulate ocean dumping of waste in the ocean. If OIF activities are only for 
“legitimate scientific research” they are not considered “dumping.” However, 
once OIF activities upscale beyond legitimate scientific research, the position 
under the two treaties diverges. The LC would likely allow its member states 
to issue a permit for OIF, while OIF would likely be prohibited for member 
states in the LP. The environmental and legal ramifications underscore the 
wide-ranging challenges of OIF, which go far beyond resolving open ques-
tions in physical, chemical, and biological oceanography.

4.  Conclusions
The analysis presented here considers different biogeochemical varia-
bles that affect the CDR efficiency of OIF. These variables were assessed 
consecutively and finally synthesized into spatially resolved costs per tonne 

CO2 removed. The focus on (cost-)efficiency was motivated by the notion that the implementation of different 
CDR methods is more likely driven by their (cost-)efficiency than their maximum CDR capacity in the Earth 
system (Bellamy & Geden, 2019; Rickels et al., 2012). The approach chosen here to evaluate spatially resolved 
(cost-)efficiency in the Southern Ocean has several limitations and required assumptions on how future carbon 
accounting may function. For example, there may be other biogeochemical factors not considered here (e.g., 
DOC) that could modify the (cost-)efficiency. However, the framework allows updating and can thus be adapted 
and improved over time.

The analysis of variability in (cost-)efficiency underlines that one key challenge for OIF remains the predictabil-
ity of CDR, consistent with conclusions made from the first era of OIF in situ experiments during the 1990s and 
early 2000s (Boyd et al., 2007; de Baar et al., 2005; Yoon et al., 2018). OIF will only become a credible method 
if the amounts of CDR can be accounted for accurately and with a precision that satisfies widely agreed account-
ing criteria which have yet to be developed (Arcusa & Sprenkle-Hyppolite, 2022). It is questionable whether the 
level of variability assessed here, spanning several orders of magnitude (Figure 6), will satisfy future accounting 
standards. Thus, progressing OIF requires drastically improved understanding of the factors modulating CDR 
(i.e., primarily flux attenuation, see Section 3.1.4) or requires the ability to precisely determine these factors 
empirically for individual OIF deployments.

Our multi-facetted analysis is timely as there is renewed interest in OIF for large-scale CDR operations. A recent 
review by the National Academy of Sciences Engineering and Medicine (NASEM) concluded that substantially 
more research is needed to fully assess OIF and called for 290 million US$ within 10 years (NASEM, 2021). 
Indeed, there are already emerging efforts to explore new ideas for OIF implementation and establish OIF field 
research (Buesseler et al., 2023; Emerson, 2019; Oeste et al., 2017; Yoon et al., 2018). Although our informed 
back-of-the-envelope approach is less internally consistent than biogeochemical modeling, it enabled criti-
cally important guidance for these emerging efforts by mapping (cost-)efficiency for OIF south of 60°S. Such 
insights are currently difficult to obtain from biogeochemical models due to computational constraints and their 
limitations in reproducing AABW pathways (Section  2.1). We found relatively pronounced gradients in OIF 
(cost-)efficiency, suggesting that any iron fertilizer would require precise injection to maximize OIF efficiency. 
This finding argues against recent suggestions to distribute iron through atmospheric transport (Emerson, 2019; 
Oeste et al., 2017) since it seems unlikely that high precision would be achievable by such means.

Buesseler et al. (2023) and Yoon et al. (2018) have proposed potential OIF locations in the Southern Ocean based 
on nutrient conditions and considered much of the Southern Ocean area for future OIF research, including the 

Figure 8.  Legal constraints on ocean iron fertilization in the Southern Ocean. 
The map shows four layers of international or domestic law around Antarctica 
and Sub-Antarctic islands. Each layer is shaded in red with an overlapping law 
leading to a darker red color. The London Convention and London Protocol 
apply globally. National law applies within the exclusive economic zones of 
states, including the sub-Antarctic islands. Commission for the Conservation 
of Antarctic Marine Living Resources governs marine living resources in 
sectors around Antarctica. The Antarctic Treaty applies south of 60°S.
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open Southern Ocean. Our findings on (cost-)efficiency provide little incentive to further explore OIF in the open 
Southern Ocean south of 60°S. (Cost-)efficient OIF in these regions would require that OIF predictably generates 
very efficient POC transfer to great depth, as has been observed only in one study so far (Smetacek et al., 2012). 
(But note that even efficient POC transfer would not solve the problem of “nutrient robbing” north of the bioge-
ochemical divide discussed in Section 3.1.1). Although we find such highly (cost-)efficient cases for open ocean 
regions also within the variability determined here, they are the exception rather than the rule (Figure 7). In 
contrast, our analysis provides an argument to further explore the concept of OIF in some Antarctic shelf regions. 
However, even if future research confirmed a high (cost-)efficiency on Antarctic shelves, up-scaling beyond 
scientific research seems unlikely in the near future due to international treaties (Section 3.4) and public percep-
tions (Cox et al., 2021). Thus, the benefit of shelf OIF with its potentially high (cost-)efficiency would have to be 
carefully evaluated against its environmental implications.

Data Availability Statement
The Lagrangian particle trajectory output used in this analysis and the derived data can be found as Bach 
et al. (2021) under the DOI: https://doi.org/10.5281/zenodo.5576833.
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