Luis H Gallardo 
  
Olivier Rahavandrainy 
  
ALL EVEN (UNITARY) PERFECT POLYNOMIALS OVER F 2 WITH ONLY MERSENNE PRIMES AS ODD DIVISORS

Keywords: Sum of divisors, polynomials, finite fields, characteristic 2. 2010 Mathematics Subject Classification. Primary: 11T55. Secondary: 11T06. DOI

We address an arithmetic problem in the ring F 2 [x]. We prove that the only (unitary) perfect polynomials over F 2 that are products of x, x + 1 and of Mersenne primes are precisely the nine (resp. nine "classes") known ones. This follows from a new result about the factorization of M 2h+1 + 1, for a Mersenne prime M and for a positive integer h.

Introduction

Let A ∈ F 2 [x] be a nonzero binary polynomial. Let σ(A) denote the sum of all divisors of A (including 1 and A). If σ(A) = A, then one says that A is a one-ring ( [START_REF] Canaday | The sum of the divisors of a polynomial[END_REF]) or in other words, A is perfect ( [START_REF] Beard | Perfect polynomials over GF (q)[END_REF]). In addition to polynomials of the form (x 2 +x) 2 n -1 , with some positive integer n, E. F. Canaday ([5]) discovered eleven non-splitting perfect polynomials (cf. Notation): T 1 , . . . , T 9 and C 1 , C 2 . The T j 's are divisible only by x, x + 1 and by irreducible polynomials of the form U a,b := x a (x + 1) b + 1, for some positive integers a, b. The last two C 1 and C 2 are divisible by x 4 + x + 1 which is not of the form U a,b . The parallel with the integer case is then natural to be considered. We know that all perfect numbers are of the form 2 m (2 m -1), where m is a prime number and 2 m -1 is a Mersenne prime number. So, we may consider the following notions. We say ( [START_REF] Gallardo | Even perfect polynomials over F 2 with four prime factors[END_REF]) that a binary polynomial is even if it has a linear factor. It is odd, otherwise. We ( [START_REF] Gallardo | On Mersenne polynomials over F 2[END_REF]) also define a Mersenne prime (polynomial) over F 2 as an irreducible polynomial of the above form U a,b . The name comes as an analogue of the integral Mersenne primes, taking x a (x + 1) b as an analogue of the prime power 2 a+b .

Note that the notion of Mersenne prime polynomial is only useful over F 2 , whereas one may consider the "parity" of a polynomial over any finite field.

Unitary perfect polynomials are defined and studied in several directions by J. T. B. Beard Jr. et al. ( [START_REF] Beard | Perfect polynomials revisited[END_REF], [START_REF] Beard | Unitary perfect polynomials over GF (q)[END_REF], [START_REF] Beard | Perfect polynomials over GF (q)[END_REF]). As over the integers, for A ∈ F 2 [x], a divisor D of A is unitary if gcd(D, A/D) = 1. Let σ * (A) denote the sum of all unitary divisors of A (including 1 and A). If σ * (A) = A, then A is unitary perfect.

We say that a (unitary) perfect polynomial is indecomposable if it is not a product of two coprime nonconstant (unitary) perfect polynomials.

Any unitary perfect polynomial is even (Lemma 3.4). The known ones, which are only divisible by Mersenne primes (as odd factors), belong to the equivalence classes (see Lemma 3.5) of B 1 , . . . , B 9 (see Notation). The other ones (which are divisible by non-Mersenne primes) belong to several different (perhaps, infinitely many) classes (see [START_REF] Beard | Unitary perfect polynomials over GF (q)[END_REF] and [START_REF] Rahavandrainy | Familles de polynômes unitairement parfaits sur F 2[END_REF]).

Since a few moments, we would like to continue this investigation (with more or less success). In particular, we want to find all non-splitting (unitary) perfect binary polynomials which are only divisible by x, x + 1 and by Mersenne primes. Some results are obtained ( [START_REF] Gallardo | On even (unitary) perfect polynomials over F 2[END_REF], Theorems 1.1 and 1.3) but they are not complete. The main obstacle is the fact that we cannot understand how M 2h+1 + 1 = (M + 1) σ(M 2h ) factors over F 2 , for a Mersenne prime M and a positive integer h. We have formulated ( [START_REF] Gallardo | On Mersenne polynomials over F 2[END_REF]) a conjecture about that (Conjecture 4.1). The further we make progress on that conjecture, the better we reach our goal. Conjecture 4.1 is already proved under some conditions on M and h ([10, Theorem 1.4]). In this paper, we continue working toward its proof with some new conditions on M and h, where the sets M and ∆ defined below intersect. We get Proposition 1.1 which in turn, allows us to obtain Theorems 1.1 and 1.2. The study of Mersenne primes have some interest. For example, we have established ( [START_REF] Gallardo | On Mersenne polynomials over F 2[END_REF]Theorem 1.3]) that if gcd(a, b) = 1, then U a,b = x a (x + 1) b + 1 has exactly the same number of irreducible divisors as the trinomial x a+b + x b + 1. In particular, they are both irreducible or both not irreducible. So, they would be useful in the domain of error-correcting codes. It is convenient to fix some notation.

Notation

• The set of integers (resp. of nonnegative integers, of positive integers) is denoted by Z (resp. N, N * ).

• For S, T ∈ F 2 [x] and for m ∈ N * , S m | T (resp. S m ∥T ) means that S divides T (resp. S m | T but S m+1 ∤ T ). We also denote by S the polynomial defined as S(x) = S(x + 1) and by val x (S) (resp. val x+1 (S)) the valuation of S, at x (resp. at x + 1).

• We put

M 1 = 1 + x(x + 1), M 2 = 1 + x(x + 1) 2 , M 3 = 1 + x(x + 1) 3 , T 1 = x 2 (x + 1)M 1 , T 3 = x 4 (x + 1) 3 M 3 , T 2 = T 1 , T 4 = T 3 , T 5 = x 4 (x + 1) 4 M 3 M 3 = T 5 , T 6 = x 6 (x + 1) 3 M 2 M 2 , T 7 = T 6 , T 8 = x 4 (x + 1) 6 M 2 M 2 M 3 , T 9 = T 8 , C 1 = x 2 (x + 1)M 2 1 (x 4 + x + 1), C 2 = C 1 . B 1 = x 3 (x + 1) 3 M 2 1 , B 2 = x 3 (x + 1) 2 M 1 , B 3 = x 5 (x + 1) 4 M 3 , B 4 = x 7 (x + 1) 4 M 2 M 2 , B 5 = x 5 (x + 1) 6 M 2 1 M 3 , B 6 = x 5 (x + 1) 5 M 3 M 3 , B 7 = x 7 (x + 1) 7 M 2 2 M 2 2 , B 8 = x 7 (x + 1) 6 M 2 1 M 2 M 2 , B 9 = x 7 (x + 1) 5 M 2 M 2 M 3 .
• The following sets play important roles:

M = {M 1 , M 2 , M 2 , M 3 , M 3 }, P = {T 1 , . . . , T 9 }, P u = {B 1 , . . . , B 9 } ∆ 1 = {p ∈ N * : p is a Mersenne prime}, ∆ 2 = {p ∈ N * :
p is prime and ord p (2) ≡ 0 mod 8}, where ord p (2) denotes the order of 2 in F p \ {0},

∆ = ∆ 1 ∪ ∆ 2 .
In particular, ∆ contains all Fermat primes greater than 5.

Throughout this paper, we always suppose that any (unitary) perfect polynomial is indecomposable. We have often used Maple software for computations. Our main results are the following. 

(i) (M ∈ {M 1 , M 3 , M 3 }) or (M ∈ {M 2 , M 2 } and h ≥ 2).
(ii) M ̸ ∈ M and 2h + 1 is divisible by a prime number p lying in ∆ \ {7}.

Theorem 1.1. Let A = x a (x + 1) b i∈I P h i i ∈ F 2 [
x] be such that each P i is a Mersenne prime and a, b, h i ∈ N * . Then A is perfect if and only if A ∈ P.

Theorem 1.2. Let

A = x a (x + 1) b i∈I P h i i ∈ F 2 [
x] be such that each P i is a Mersenne prime and a, b, h i ∈ N * . Then A is unitary perfect if and only if A = B 2 n , for some n ∈ N and B ∈ P u .

We first prove the two theorems before the proposition.

2. Proof of Theorem 1.1

Sufficiencies are obtained by direct computations. For the necessities, we shall apply Lemma 2.3 and Proposition 2.1. We fix:

A = x a (x + 1) b i∈I P h i i = A 1 A 2 ,
where a, b, h i ∈ N, P i is a Mersenne prime,

A 1 = x a (x + 1) b P i ∈M P h i i and A 2 = P j ̸ ∈M P h j j . Lemma 2.1. If A is perfect, then σ(x a ), σ((x + 1) b ) and each σ(P i h i ), with i ∈ I, are only divisible by x, x + 1 or by Mersenne primes. Proof. Since σ is multiplicative, σ(A) = σ(x a )σ((x + 1) b ) i∈I σ(P i h i ). Any divisor of σ(x a ), σ((x + 1) b ) and σ(P i h i ) divides σ(A) = A. □ Lemma 2.2 ([4], Lemma 2).
A polynomial S is perfect if and only if for any irreducible polynomial P and for any m 1 , m 2 ∈ N * , we have:

(P m 1 ∥S, P m 2 ∥σ(S)) ⇒ m 1 = m 2 .
Example 2.1 (useful for Proposition 2.1).

The polynomial

S 1 = x 13 (x + 1) 2 M 3 1 M 2 2 M 2 2 M 3 M 3 is not perfect because x 13 ∥S 1 and
x 7 ∥σ(S 1 ).

Lemma 2.3 ([8], Theorem 1.1). If h i = 2 n i -1 for any i ∈ I, then A ∈ P.
We get from Theorem 8 in [START_REF] Canaday | The sum of the divisors of a polynomial[END_REF] and from Proposition 1.1.

Lemma 2.4.

(i) If h ∈ N * and if σ(x 2h
) is only divisible by Mersenne primes, then 2h ∈ {2, 4, 6} and all its divisors lie in M. More precisely, σ(

x 2 ) = M 1 = σ((x + 1) 2 ), σ(x 4 ) = M 3 , σ((x + 1) 4 ) = M 3 and σ(x 6 ) = M 2 M 2 = σ((x + 1) 6 ). (ii) Let M ∈ M and h ∈ N * be such that σ(M 2h ) is only divisible by Mersenne primes, then 2h = 2, M ∈ {M 2 , M 2 } and σ(M 2 ) ∈ {M 1 M 3 , M 1 M 3 }.
We dress from Lemma 2.4, the following table of all the forms of a, b, P i and h i which satisfy Lemma 2.1, if

P i ∈ M and if h i ̸ = 2 n i -1. Table 2.1. a σ(x a ) 3 • 2 n -1 (x + 1) 2 n -1 M 1 2 n 5 • 2 n -1 (x + 1) 2 n -1 M 3 2 n 7 • 2 n -1 (x + 1) 2 n -1 M 2 2 n M 2 2 n b σ((x + 1) b ) 3 • 2 m -1 x 2 m -1 M 1 2 m 5 • 2 m -1 x 2 m -1 M 3 2 m 7 • 2 m -1 x 2 m -1 M 2 2 m M 2 P i h i σ(P i h i ) M 2 3 • 2 n i -1 (1 + M 2 ) 2 n i -1 M 1 2 n i M 3 2 n i M 2 3 • 2 n i -1 (1 + M 2 ) 2 n i -1 M 1 2 n i M 3 2 n i Corollary 2.1. Suppose that A 1 is perfect. Then, neither M 2 nor M 2 divides σ(P i h i ) if P i ∈ M. Moreover, M 2 divides A 1 whenever M 2 divides A 1 and their exponents (in A 1 ) are equal. Proof. The first statement follows from Lemma 2.4-(ii). Now, if M 2 divides A 1 = σ(A 1 ), then M 2 divides σ(x a ) σ((x + 1) b ) P i ∈M σ(P h i i ). Hence, M 2 divides σ(x a )σ((x + 1) b ). Table 2.1 shows that a or b is of the form 7 • 2 n -1, where n ∈ N. So, M 2 divides σ(A 1 ) = A 1 . It suffices to consider two cases. If a = 7 • 2 n -1 and b = 7 • 2 m -1, then M 2 ℓ ∥A 1 and M 2 ℓ ∥A 1 , with ℓ = 2 n + 2 m . If a = 7 • 2 n -1 and (b = 3 • 2 m -1 or b = 5 • 2 m -1), then M 2 ℓ ∥A 1 and M 2 ℓ ∥A 1 , with ℓ = 2 n . □ Lemma 2.5. If P is a Mersenne prime divisor of σ(A 1 ), then P, P ∈ {M 1 , M 2 , M 3 }.
Proof. One has: σ(A 1 ) = σ(x a )σ((x + 1) b )

P i ∈M σ(P h i i ). If P divides σ(x a )σ((x + 1) b ), then P ∈ M, by Lemma 2.4-(i). If P divides σ(P h i i ) with P i ∈ M, then P i ∈ {M 2 , M 2 }, (h i = 2 or h i is of the form 3 • 2 n i -1) and P, P ∈ {M 1 , M 3 } (see Table 2.1). □ Lemma 2.6. If A is perfect, then A = A 1 .
Proof. We claim that A 2 = 1. Let P j ̸ ∈ M and Q i ∈ M. Then, P j divides neither σ(x a ), σ((x + 1) b ) nor σ(Q h i i ). Thus gcd(P

h j j , σ(A 1 )) = 1. Observe that P h j j divides σ(A 2 ) because P h j j divides A = σ(A) = σ(A 1 )σ(A 2 ). Hence, A 2 divides σ(A 2 ). So, A 2 is perfect and it is equal to 1, A being indecomposable. □ Proposition 2.1. If A 1 is perfect, then h j = 2 n j -1 for any P j ∈ M.
Proof. We refer to Table 2

.1. (i) Suppose that P j ̸ ∈ {M 2 , M 2 }. If h j is even, then σ(P h j j ) is divisible by a non- Mersenne prime. It contradicts Lemma 2.1. If hj = 2 n j u j -1 with u j ≥ 3 odd, then σ(P h j j ) = (1 +P j ) 2 n j -1 • (1+ P j + • • • + P u j -1 j ) 2 n j . Since 1+ P j + • • • + P u j -1 j = σ(P j u j -1
) is divisible by a non-Mersenne prime, we also get a contradiction to Lemma 2.1. (ii) If P j ∈ {M 2 , M 2 } and (h j is even or it is of the form 2 n j u j -1, with u j ≥ 3 odd and n j ≥ 1), then Corollary 2.1 implies that there exists ℓ ∈ N * such that M 2 ℓ ∥A 1 and

M 2 ℓ ∥A 1 . Recall that σ(M 2 2 ) = M 1 M 3 and σ(M 2 2 ) = M 1 M 3 .
We proceed as in the proof of Corollary 2.1. It suffices to distinguish four cases which give contradictions.

• Case 1:

a = 7 • 2 n -1 and b = 7 • 2 m -1 One has ℓ = 2 n + 2 m and neither M 1 nor M 3 divides σ(x a ) σ((x + 1) b ). If h j is even, then h j = 2 = ℓ. So, n = m = 0, M 1 2 ∥σ(A 1 ) = A 1 . It contradicts the part (i) of our proof. If h j = 2 n j u j -1 with u j ≥ 3 odd and n j ≥ 1, then u j = 3 and M 1 2•2 n j ∥A 1 . • Case 2: a = 7 • 2 n -1 and b = 5 • 2 m -1 One has ℓ = 2 n and M 1 ∤ σ(x a )σ((x + 1) b ). If h j is even, then 2 n = ℓ = h j = 2. So, n = 1 and M 1 2 ∥A 1 . If h j = 2 n j u j -1
, with u j ≥ 3 odd and n j ≥ 1, then u j = 3 and

2 n = ℓ = h j = 3 • 2 n j -1. It is impossible. • Case 3: a = 7 • 2 n -1, b = 3 • 2 m -1 and h j is even As above, 2 n = ℓ = h j = 2, M 1 2 m divides σ((x + 1) b ) and M 1 2 n +2 m divides σ(A 1 ) = A 1 . So, n = 1 and M 1 2 m +2 ∥A 1 . Thus, the part (i) implies that m = 0. Hence, A 1 = S 1 = x 13 (x + 1) 2 M 3 1 M 2 2 M 2 2 M 3 M 3 which is not perfect (see Example 2.1). • Case 4: a = 7 • 2 n -1, b = 3 • 2 m -1, h j = 2 n j u j -1, u j ≥ 3 odd, n j ≥ 1 One has u j = 3 and 2 n = ℓ = h j = 3 • 2 n j -1. It is impossible. □ Lemma 2.6, Proposition 2.1 and Lemma 2.3 imply Corollary 2.2. If A is perfect, then A = A 1 ∈ P. 3. Proof of Theorem 1.2
As in Section 2, we fix:

A = x a (x + 1) b i∈I P h i i = A 1 A 2 ,
where a, b, h i ∈ N, P i is a Mersenne prime,

A 1 = x a (x + 1) b P i ∈M P h i i and A 2 = P j ̸ ∈M P h j j
Sufficiencies are obtained by direct computations. For the necessities, we shall apply Lemma 3.6 and Proposition 3.1.

Lemma 3.1.

If A is unitary perfect, then σ * (x a ), σ * ((x + 1) b ), σ * (P i h i ), for any i ∈ I, are only divisible by x, x + 1 or by Mersenne primes.

Proof. Since σ * is multiplicative, σ * (A) = σ * (x a )σ * ((x + 1) b ) i∈I σ * (P i h i ). Any divisor of σ * (x a ), σ * ((x + 1) b ), σ * (P i h i ) divides σ * (A) = A. □ Lemma 3.2 ([4], Lemma 2)
. A polynomial S is unitary perfect if and only if for any irreducible polynomial P and for any m 1 , m 2 ∈ N * , we have:

(P m 1 ∥S, P m 2 ∥σ * (S)) ⇒ m 1 = m 2 ).
Example 3.1 (useful for Proposition 3.1). The polynomial 

S 2 = x 14 (x+1) 7 M 1 2 M 2 3 M 2 3 M 3 M 3 is
a σ * (x a ) 3 • 2 n (x + 1) 2 n M 1 2 n 5 • 2 n (x + 1) 2 n M 3 2 n 7 • 2 n (x + 1) 2 n M 2 2 n M 2 2 n b σ * ((x + 1) b ) 3 • 2 m x 2 m M 1 2 m 5 • 2 m x 2 m M 3 2 m 7 • 2 m x 2 m M 2 2 m M 2 2 m P i h i σ * (P i h i ) M 2 3 • 2 n i (1 + M 2 ) 2 n i M 1 2 n i M 3 2 n i M 2 3 • 2 n i (1 + M 2 ) 2 n i M 1 2 n i M 3 2 n i
(i) If A is u.p, then A = A 1 . (ii) If A 1 is u.p, then h j = 2 n j for any P j ∈ M. (iii) If A is u.p, then A or A is of the form B 2 n , where B ∈ P u .
Proof. The proof of (i) is analogous to that of Lemma 2.6. The statement (iii) follows from (i), (ii) and Lemma 3.6. We only sketch the proof of (ii). Set h j = 2 n j u j , where u j is odd and n j ≥ 0.

-Suppose that P j ̸ ∈ {M 2 , M 2 }. If u j ≥ 3, then σ(P

u j -1 j
) and thus σ * (P h j j ) are divisible by a non-Mersenne prime. It contradicts Lemma 2.1.

-If P j ∈ {M 2 , M 2 } and if u j ≥ 3, then u j = 3 and (a or b is of the form 7

• 2 n ). Recall that σ * (M 2 3 ) = (1 + M 2 )M 1 M 3 and σ * (M 2 3 ) = (1 + M 2 )M 1 M 3 .
We consider two cases. The first gives non unitary perfect polynomials whereas the second leads to a contradiction.

• Case 1:

a = 7 • 2 n and b = 7 • 2 m , with n, m ≥ 0 One has M 2 ℓ ∥A 1 and M 2 ℓ ∥A 1 , with ℓ = 2 n + 2 m . Neither M 1 nor M 3 divides σ(x a ) σ((x + 1) b ). Thus, 3 • 2 n j = h j = ℓ = 2 n + 2 m . So, (n = m + 1 and n j = m) or (m = n + 1 and n j = n). Therefore, (M 1 2 ) 2 n j , M 3 2 n j and M 3 2 n j divide σ * (M h j 2 )σ * (M 2 h j ) and they divide σ * (A 1 ) = A 1 . Thus, A 1 = S 2 2 m or A 1 = S 2 2 n
where We mainly prove it by contradiction (to Corollary 4.1). Lemma 4.1 states that σ(M 2h ) is square-free, for any h ∈ N * . Recall that we set

S 2 = x 14 (x + 1) 7 M 1 2 M 2 3 M 2 3 M 3 M 3 . In both cases, A 1 is not unitary perfect because S 2 is not u.p (Example 3.1). • Case 2: a = 7 • 2 n and (b = 5 • 2 m or b = 3 • 2 m ), with n, m ≥ 0 One has ℓ = 2 n . So, we get the contradiction: 3 • 2 n j = h j = ℓ = 2 n . □ 4 
M = x a (x + 1) b + 1, U 2h = σ(σ(M 2h )) and (4.1) σ(M 2h ) = j∈J P j , P j = 1 + x a j (x + 1) b j irreducible, P i ̸ = P j if i ̸ = j.
By Lemma 4.3, if there exists a prime divisor p of 2h + 1 such that σ(M p-1 ) is divisible by a non-Mersenne prime, then σ(M 2h ) is also divisible by a non-Mersenne. Therefore, it suffices to consider that 2h + 1 = p is a prime number, except for p = 3 with M ∈ {M 2 , M 2 } (see Section 4.3). The lemma below generalizes Lemma 4.10 in [START_REF] Gallardo | On Mersenne polynomials over F 2[END_REF] (with an analogous proof).

Lemma 4.3. If k is a divisor (prime or not) of 2h + 1, then σ(M k-1 ) divides σ(M 2h ).
We sometimes apply Lemmas 4.4 and 4.5 without explicit mentions.

Lemma 4.4. Let S ∈ F 2 [x] be such that s = deg(S) ≥ 1 and l, t, r, r 1 , . . . , r k ∈ N be such that r 1 > • • • > r k , t ≤ k, r 1 -r t ≤ l ≤ r ≤ s. Then (i) α l [(x r 1 + • • • + x r k )S] = α l (S) + α l-(r 1 -r 2 ) (S) + • • • + α l-(r 1 -rt) (S).
(ii) α l (σ(S)) = α l (S) if any divisor of S has degree at least r + 1.

Proof. The equality in (i) (resp. in (ii)) follows from the definition of α l (resp. from the fact: σ(S) = S + T , where deg(T ) ≤ deg(S) -r -1). □ (ii) The polynomial U 2h splits (over F 2 ) and it is a square.

(iii) The polynomial σ(M 2h ) is reducible.

Proof. (i) See [10, Corollary 4.9]. For (ii), Assumption (4.1) implies that

U 2h = σ(σ(M 2h )) = σ( j∈J P j ).
Hence, U 2h = j∈J x a j (x + 1) b j = x u (x + 1) v , where u and v are both even.

(iii) If σ(M 2h ) = Q is irreducible, then U 2h = 1 + Q is not a square. □ Lemma 4.5. One has α l (σ(M 2h )) = α l (M 2h ) if l ≤ a + b -1 and α l (σ(M 2h )) = α l (M 2h + M 2h-1 ) if a + b ≤ l ≤ 2(a + b) -1. Proof. Since σ(M 2h ) = M 2h + M 2h-1 + T , with deg(T ) ≤ (a + b)(2h -2) = 2h(a + b) -2(a + b), Lemma 4.4-(ii) implies that α l (σ(M 2h )) = α l (M 2h ) if l ≤ a + b -1 and α l (σ(M 2h )) = α l (M 2h + M 2h-1 ) if a + b ≤ l ≤ 2(a + b) -1. □ Lemma 4.6. Denote by N 2 (m) the number of irreducible polynomials over F 2 , of degree m ≥ 1. Then (i) N 2 (m) ≥ 2 m -2(2 m/2 -1) m , (ii) φ(m) < N 2 (m) if m ≥ 4
, where φ is the Euler totient function,

(iii) For each m ≥ 4, there exists an irreducible polynomial of degree m, which is not a Mersenne prime.

Proof. (i) See [START_REF] Lidl | Finite Fields, Encyclopedia of Mathematics and its applications[END_REF], Exercise 3.27, p. 142.

(ii) If m ∈ {4, 5}, then direct computations give φ(4) = 2, N 2 (4) = 3 and φ(5) = 4, N 2 (5) = 6. Now, suppose that m ≥ 6. Consider the function f (x) = 2 x -2(2 x/2 -1) -x 2 , for x ≥ 6. The derivative of f is a positive function. So, f (x) ≥ f (6) > 0 and Let q = 2 r -1 be a Mersenne prime number. Then, any irreducible polynomial P of degree r is primitive. In particular, each root β of P is a primitive element of the field F 2 r , so that β is of order q in F 2 r \ {0}. Lemma 4.9. Let P i = 1+x a i (x+1) b i be a prime divisor of σ(M p-1 ), where 2 a i +b i -1 = p i is a prime number. Then, p i = p and σ(M p-1 ) is divisible by any irreducible polynomial of degree a i + b i . Furthermore, at least one of those divisors is not a Mersenne prime if a i + b i ≥ 4.

x < 2 x -2(2 x/2 -1) x . Thus, φ(m) ≤ m < 2 m -2(2 m/2 -1) m ≤ N 2 (m).
Proof. The polynomial P i is primitive. If α is a root of P i , then (M p + 1)(α) = 0 and M (α) = α r for some 1 ≤ r ≤ p i -1. Thus, 1 = M (α) p = α rp , with ord(α) = p i . So, p i divides rp and p i = p. Any irreducible polynomial S of degree a i + b i is primitive. Let β be a root of S. One has ord(β) = p i = p, S(β) = 0 and M (β) = β s , for some 1 ≤ s ≤ p i -1. Thus, M (β) p = β ps = 1 and S divides M p + 1 = x a (x + 1) b σ(M p-1 ). The third statement follows from Lemma 4.6-(iii).

□ Corollary 4.2. For any

i ∈ J, a i + b i ≤ 3 or 2 a i +b i -1 is not prime. Lemma 4.10. Let P, Q ∈ F 2 [x] be such that deg(P ) = r, 2 r -1 is prime, P ∤ Q(Q+1) but P | Q p + 1. Then 2 r -1 = p. Proof. The polynomial P is primitive. If β is a root of P , then ord(β) = 2 r -1. Moreover, Q(β) ̸ ∈ {0, 1} because P ∤ Q(Q + 1). Thus, Q(β) = β t for some 1 ≤ t ≤ 2 r -2. Hence, 1 = Q(β) p = β tp . So, 2 r -1 divides tp and 2 r -1 = p.
□ Corollary 4.3. Let r ∈ N * be such that 2 r -1 is a prime distinct from p. Then, no irreducible polynomial of degree r divides σ(M p-1 ).

Proof. If P is a prime divisor of σ(M p-1 ) with deg(P ) = r, then P divides M p + 1 and by taking Q = M in the above lemma, we get a contradiction. □

In the following lemma and two corollaries, we suppose that p is a Mersenne prime of the form 2 m -1 (with m prime). Lemma 4.11. Let P, Q ∈ F 2 [x] be such that P is irreducible of degree m and P ∤

Q(Q + 1). Then, P divides Q p + 1. Proof. The polynomial P is primitive. If β is a root of P , then ord(β) = 2 m -1 = p, Q(β) ̸ ∈ {0, 1} because P ∤ Q(Q + 1). Thus, Q(β) = β t for some 1 ≤ t ≤ p -1. Hence, Q(β) p = β tp = 1. So, P divides Q p + 1.
□ Corollary 4.4. Any irreducible polynomial P ̸ = M (Mersenne or not), of degree m, divides σ(M p-1 ).

Proof. We may apply Lemma 4.11, with Q = M , because P does not divide Proof. For (i), (iii) and (iv), use [START_REF] Gallardo | Characterization of Sporadic perfect polynomials over F 2[END_REF], Lemmas 5.9, 5.10, 5.15 and 5.17 Proof. The polynomial U 2 is a square, so 0 = α 1 (U 2 ) = α 1 (B) + 1 and thus α 1 (B) = 1. Lemma 4.19-(iii) implies that 0 = α 3 (σ(M 2 )) = α 3 (B) + α 2 (B) + α 1 (B). Therefore, α 3 (U 2 ) = α 3 (B) + α 2 (B) = α 1 (B) = 1. □ Remark 4.1. Our method fails for p = 7. Indeed, for many M , one has α 3 (U 6 ) = α 5 (U 6 ) = 0. So, we do not reach a contradiction. We should find a large enough odd integer l such that, α l (U 6 ) = 0. But, this does not appear always possible.

x a (x + 1) b M = M (M +1) = Q(Q+1). So, P is odd and it divides M p +1 = (M +1) σ(M p-1 ) = x a (x + 1) b σ(M p-1 ). □ Corollary 

Proposition 1 . 1 .

 11 Let h ∈ N * and let M ∈ F 2 [x] be a Mersenne prime. Then in the following cases, σ(M 2h ) is divisible by a non-Mersenne prime:

Lemma 3 . 4 .Definition 3 . 1 .Lemma 3 . 5 .

 343135 Let C ∈ F 2 [x] \ {0, 1} be u.p. Then C is even, C and C 2 r are also u.p, for any r ∈ N.Proof. If D is a divisor of C, then D divides C and D 2 r divides C 2 r . Thus, σ * (C) = σ * (C) = C and σ * (C 2 r ) = (σ * (C)) 2 r = C 2r . It remains to prove that C is even. Consider an irreducible divisor P of C and k ∈ N * such that P k ∥C. The polynomial 1 + P is even and divides 1 + P k = σ * (P k ). So, 1 + P divides σ * (C) = C. □ We denote by ∼ the relation on F 2 [x] defined as: S ∼ T if there exists ℓ ∈ Z such that S = T 2 ℓ . ([3], Section 2) The relation ∼ is an equivalence relation on F 2 [x]. Each equivalence class contains a unique polynomial B which is not a square, with val x (B) ≤ val x+1 (B).

Lemma 3 . 6 (

 36 [START_REF] Gallardo | On even (unitary) perfect polynomials over F 2[END_REF], Theorem 1.3). If h i = 2 n i for any i ∈ I, then A (or A) is of the form B 2 n , where B ∈ P u . Proposition 3.1.

.

  Proof of Proposition 1.1 That proposition partially solves Conjecture 4.1. ([10], Conjecture 1.1) Let h ∈ N * and let M ∈ F 2 [x] be a Mersenne prime. Then, σ(M 2h ) is always divisible by a non-Mersenne prime, except for M ∈ {M 2 , M 3 } and h = 1.

4. 1 .

 1 Useful facts. For S ∈ F 2 [x]\{0, 1}, of degree s, we denote by α l (S) the coefficient of x s-l in S, 0 ≤ l ≤ s. One has: α 0 (S) = 1. Lemma 4.1 ([10], Lemmas 4.6 and 4.8). The polynomial σ(M 2h ) is square-free and M ̸ = M 1 .Lemma 4.2 ([10], Theorem 1.4). Let h ∈ N * be such that p = 2h + 1 is prime and let M be a Mersenne prime such that M ̸ ∈ {M 2 , M 2 } and ω(σ(M 2h )) = 2. Then, σ(M 2h ) is divisible by a non-Mersenne prime.

Corollary 4. 1 .

 1 (i) The integers u = j∈J a j and v = j∈J b j are both even.

( 4 . 7 .

 47 iii) We remark that if 1 + x c (x + 1) d is a Mersenne prime, then gcd(c, d) = 1. So, gcd(c, c + d) = 1. Therefore, the set M m of Mersenne primes of degree m is a subset of {x c (x + 1) m-c + 1 : 1 ≤ c ≤ m, gcd(c, m) = 1}. Thus, #M m ≤ #{c : 1 ≤ c ≤ m, gcd(c, m) = 1} = φ(m).Hence, there exist at least N 2 (m) -φ(m) irreducible non-Mersenne polynomials, with N 2 (m) -φ(m) ≥ 1, by (ii).□ Lemma For any j ∈ J, ord p (2) divides a j + b j = deg(P j ). Proof. Set d = gcd i∈J (a i + b i ). By Lemma 4.13 in [10], p divides 2 d -1. Thus, ord p (2) divides d. □ Lemma 4.8. ([11], Chap. 2 and 3)

4 . 5 . 4 . 2 .Lemma 4 . 12 .

 4542412 The polynomial M 1 (resp. M 2 , M 2 ) divides σ(M p-1 ) if and only if (M ̸ = M 1 and p = 3) (resp. M ̸ = M 2 and p = 7, M ̸ = M 2 and p = 7). Proof. Apply Corollary 4.4 with m ∈ {2, 3}. □ In order to carry on the proof (of Proposition 1.1), we distinguish three cases. Case I: M ∈ {M 1 , M 3 , M 3 }. Lemma 4.1 implies that M ̸ = M 1 . It suffices to suppose that M = M 3 . We refer to Section 5.2 in [9]. Put D = M 1 M 2 M 2 . By [9, Lemma 5.4], we have to consider four situations: (i) gcd(σ(M 2h ), D) = 1, (ii) σ(M 2h ) = M 1 B, with gcd(B, D) = 1, (iii) σ(M 2h ) = M 2 M 2 B, with gcd(B, D) = 1, (iv) σ(M 2h ) = DB, with gcd(B, D) = 1, where any irreducible divisor of B has degree exceeding 5. The following lemma contradicts the fact that U 2h is a square. One has α 3 (U 2h ) = 1 or α 5 (U 2h ) = 1.

α 1 (□Corollary 4 . 9 .

 149 . (ii) Since σ(M 2h ) = (x 2 + x + 1)B and U 2h = (x 2 + x)σ(B), we obtain (by Lemmas41 (M 2h ) = α 1 (σ(M 2h )) = α 1 (B) + 1, α 3 (U 2h ) = α 3 (σ(B)) + α 2 (σ(B)) = α 3 (B) + α 2 (B), 0 = α 3 (M 2h ) = α 3 (σ(M 2h )) = α 3 (B) + α 2 (B) + α 1 (B). Thus, α 3 (U 2h ) = α 3 (B) + α 2 (B) = α 1 (B) = 1. □ Lemma 4.20. Some coefficients of U 2 and B satisfy:α 1 (U 2 ) = α 1 (B) + 1, α 2 (U 2 ) = α 2 (B) + α 1 (B), α 3 (U 2 ) = α 3 (B) + α 2 (B). Proof. Corollary 4.8 implies that U 2 = σ(σ(M 2 )) = σ((1 + x + x 2 )B) = σ(1 + x + x 2 )σ(B) = (x 2 + x)σ(B).Any irreducible divisor of B has degree more than 3. Hence,α l (σ(B)) = α l (B), for 1 ≤ l ≤ 3. U 2 ) = α 1 (σ(B)) + 1 = α 1 (B) + 1, α 2 (U 2 ) = α 2 (σ(B)) + α 1 (σ(B)) = α 2 (B) + α 1 (B), α 3 (U 2 ) = α 3 (σ(B)) + α 2 (σ(B)) = α 3 (B) + α 2 (B). The coefficient α 3 (U 2 ) equals 1.

Table 3 .

 3 1. 

	The following table, obtained from Lemmas 2.1, 2.4 and 3.3, are useful to prove
	Proposition 3.1.

not unitary perfect since x 14 ∥S 2 and x 10 ∥σ * (S 2 ). Similar arguments give Proposition 3.1 which finishes our proof. Lemma 3.3. Let S ∈ F 2 [x] be an irreducible polynomial. Then, for any n, u ∈ N with u odd, σ * (S 2 n u ) = (1 + S) 2 n (σ(S u-1 )) 2 n .
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Lemma 4.14. For p ∈ {5, 7}, some non-Mersenne prime divides σ(M p-1 ).

Proof. Here, h ∈ {2, 3}. By direct computations, U 4 = x 3 (x + 1) 6 (x 3 + x + 1) and U 6 = x 8 (x + 1) 4 (x 3 + x + 1) 2 which do not split (despite that U 6 is a square). □ 4.3.2. II-2: 2h + 1 = 3 w , for some w ≥ 2. In this case, 9 divides 2h + 1 and σ(M 8 ) divides σ(M 2h ) (by Lemma 4.3). But, σ(M 8 ) = (x 2 + x + 1)(x 4 + x 3 + 1)(x 6 + x + 1)(x 12 + x 8 + x 7 + x 4 + 1), where x 6 + x + 1 = 1 + x(x + 1)M 3 is not a Mersenne prime.

II-3:

2h + 1 is (divisible by) a prime p ̸ ∈ {3, 5, 7}. We may write p = 2h + 1 with h ≥ 4.

Lemma 4.15.

). Hence, we get (ii) and (iii). □ Corollary 4.6. The coefficient α 3 (U 2h ) equals 1.

Proof. The previous lemma implies that We shall prove that α 3 (U 2 ) = 1 (Corollary 4.9), a contradiction to the fact that U 2 is a square. Corollary 4.5 gives Lemma 4.18. (i) The trinomial 1 + x + x 2 divides σ(M 2 ). (ii) No irreducible polynomial of degree r ≥ 3 such that 2 r -1 is prime, divides σ(M 2 ). Proof. We directly get (i) and (ii). For (iii), σ(M 2 ) = 1 + M + M 2 = x 2a (x + 1) 2b + x a (x + 1) b + 1. Moreover, 2a + 2b -3 > a + b because a + b ≥ 4 and x 2a (x + 1) 2b is a square. So, α 3 (σ(M 2 )) = α 3 (x 2a (x + 1) 2b ) = 0. □