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LIMIT THEOREMS FOR BIRKHOFF SUMS AND LOCAL TIMES OF THE
PERIODIC LORENTZ GAS WITH INFINITE HORIZON

FRANÇOISE PÈNE

Abstract. This work is a contribution to the study of the ergodic and stochastic properties
of Zd-periodic dynamical systems preserving an infinite measure. We establish functional limit
theorems for natural Birkhoff sums related to local times of the Zd-periodic Lorentz gas with
infinite horizon, for both the collision map and the flow. In particular, our results apply to the
difference between the numbers of collisions in two different cells. Because of the Zd-periodicity
of the model we are interested in, these Birkhoff sums can be rewritten as additive functionals
of a Birkhoff sum of the Sinǎı billiard. For completness and in view of future studies, we state
a general result of convergence of additive functionals of Birkhoff sums of chaotic probability
preserving dynamical systems under general assumptions.

Introduction

Let d ∈ {1, 2}. We are interested in the stochastic behaviour of The Zd-periodic Lorentz
gas. We recall that this model has been introduced in [28] as a naive model to discribe the
behaviour of an electron moving in a weakly conductor metal. This model is a particular case
of chaotic billiard systems preserving an infinite measure.

Billiards. The billiard systems we are interested in model the displacement of a point particle
moving at unit speed in some domain Q, going straight inside the domain and enjoying elastic
collisions off the boundary of the domain. It is then natural to study both the dynamics
in continuous time described by the billiard flow, as well as the dynamics at collision times
described by the billiard map. Both for the billiard flow and billiard map, a state is a couple
(q, v⃗) made of a position q and a unit velocity vector v⃗ ∈ S1.
For the billiard flow, the positions q are taken in the domain and we identify, at collision times,
pre-collisional and post-collisional vectors. The flow Yt then maps a state of a particle at time
0 to the state of the same particle at time t. The flow (Yt)t preserves the Lebesgue measure on
the space of states. This measure is finite or infinite if the area of the billiard domain is so.
For the billiard map, the states are the couples of a position on the boundary of an obstacle
and of a unit post-collisional vector. The billiard map maps a state at a collision time to the
state at the next collision time. This map preserves an explicit measure absolutely continuous
with respect to the Lebesgue measure on the space of states. This measure is finite or infinite
if the length of the boundary of the billiard domain is so.

Zd-periodic Lorentz gas. The Z2-periodic Lorentz gas is the billiard system in a domain Q
obtained from R2 by removing a finite number of obstacles O1, ...,OI (with I ∈ N∗) and also
all their translates Oi + ℓ with ℓ ∈ Z2.
Analogously, the Z-periodic Lorentz gas is the billiard system in a domain Q obtained from
R× T by removing a finite number of obstacles O1, ...,OI and their translates by Z.
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2 FRANÇOISE PÈNE

In both cases, for d ∈ {1, 2}, the obstacles Oi + ℓ, i = 1, ..., I, ℓ ∈ Zd are assumed to be open,
convex, with boundary C3, non null curvature and with pairwise disjoint closures.

The horizon of the Zd-periodic Lorentz gas is said to be finite if every line touches at least
an obstacle, then the horizon is bounded, meaning that the distance of a trajectory between
two collisions is uniformly bounded. The horizon is said to be infinite if there exists at
least a line touching no obstacle. Whereas some results are now known to be true both in finite
and infinite horizon, some quantities have very different behaviours depending on the finiteness
or infiniteness of the horizon. Lots of questions, such as the one investigated in the present
article, are even more challenging in the infinite horizon case.

Figure 1. Beginning of a trajectory of the Z2-periodic Lorentz gas map, with
infinite horizon and with circular obstacles centered at points with integer coor-
dinates (here I = 1 and O1 is a disk).

We will write (Yt)t∈R for the Zd-periodic Lorentz gas flow, and T for the Zd-periodic gas map.
We write M and M for the set of states respectively for the flow and for the map. Finally,
we write m for the Lebesgue measure on M, and µ for the T -invariant measure absolutely
continuous with respect to the Lebesgue measure on M normalized so that the measure of the
set of states (q, v⃗) ∈ M with position q ∈ [0; 1[2 is equal to 1.

Main results: Limit Theorem for Birkhoff sums in the infinite horizon case. The goal
of the present article is to investigate the behaviour of ergodic sums for integrable observables of
the Zd-periodic Lorentz gas in infinite horizon. We assume that the horizon is d-dimensionally
infinite in the sense that there exist at least d non parallel unbounded lines touching no obstacle.
For any ℓ ∈ Zd, we write Cℓ and call ℓ-th cell the set of states with position belonging to⋃I

i=1 (Oi + ℓ). We will restrict our study to the case of observables depending only on the cell
label. We consider a couple (g, f) of such integrable observables of M such that the second
coordinate satisfies ∫

M

f dµ = 0 ,
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and some extra integrability assumptions. Let us notice that the Birkhoff sums of observables
depending only on the cell label are related to local time (also called occupation time) in the
cells. If g = 1C0 , then the Birkhoff sum

n−1∑
k=0

g ◦ T k

corresponds to the local time up to time n in the 0-cell (i.e. the time spent in the 0-cell until
the n-th collision). If e.g. f = 1Cb − 1Ca , then the Birkhoff sum

n−1∑
k=0

f ◦ T k

corresponds to the difference between the local time in the b-th cell and in the a-th cell.
We prove the convergence in distribution of families of the following quantities(∑n−1

k=0 g ◦ T k

An

,

∑n−1
k=0 f ◦ T k

√
An

)
n∈N∗

where An :=
∑n

k=1 a
−d
k with ak := max(1,

√
k log k). Observe that

An ∼ 2

√
n

log n
if d = 1 , and An ∼ log log n if d = 2 .

This question is related with the asymptotic behaviour of additive functional of a Birkhoff sum
of the Sinǎı billiard. Indeed, in the general case, let us consider the sequence (βℓ)ℓ∈Zd such that
f = βℓ on Cℓ. Then, on the set C0, the Birkhoff sum

∑n−1
k=0 f ◦ T k corresponds to

n−1∑
k=0

βSk
,

where Sk is the label of the cell CSk
containing T k(·) for a particle starting from the 0-cell.

As a consequence of a functional version of the above mentioned distributional convergence,
we also obtain analogous results for the Z2-periodic Lorentz gas flow. More precisely, denoting
Nt(ℓ) for the number of collisions in the ℓ-cell until time t (for the flow), we also prove the
convergence in distribution of families of random variables of the following form :(

Nt(0)

A⌊t⌋
,
Nt(b)−Nt(a)√

A⌊t⌋

)
t∈[0;+∞)

.

Link with the Sinǎı billiard and Central Limit Theorem for the position. Because
of the Zd-periodicity of the model, it is natural to consider the billiard dynamics obtained by
quotienting the positions by Zd. This quotient dynamics corresponds also to a billiard dynamics
in a domain Q = T2 \

⋃I
i=1 Ōi contained in the two dimensional torus T2 := R2/Z2.

This quotient billiard system is the Sinǎı billiard, which preserves a probability measure and
enjoys the following nice chaotic properties : ergodicity and mixing by Sinǎı in [49], exponen-
tial decorrelation of Hölder observables (both in finite horizon by Young in [54] and in infinite
horizon by Chernov in [8]), the standard Central Limit Theorem for Hölder observables (both
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Figure 2. The Sinǎı billiard map in the two-dimensional torus with one circular obstacle.

in finite horizon [6, 7, 54] and in infinite horizon [8]).
Conversely, a crucial fact is that the Zd-periodic Lorentz gas can be represented by a Zd-
extension of the Sinǎı billiard. This means that the Zd-periodic Lorentz gas T k can be repre-
sented by the couple made by the Sinǎı billiard T̄ k and by the cell label. This representation
corresponds to the decomposition of the dynamics at microscopic scale (Sinǎı billiard) and at
macroscopic scale (cell label).
This representation allows the study of the ergodic properties of the Zd-periodic Lorentz gas
via the stochastic properties of the corresponding Sinǎı billiard.
When the horizon is finite, then the displacement function (between two consecutive collision)
is a Hölder observable of the Sinǎı billiard, and so the above mentioned Central Limit Theorem
applies and ensures that the position qn in the Zd-periodic Lorentz gas at the n-th collision
time satisfies a standard Central Limit Theorem. This means that the following convergence
holds in distribution

(1)
qn√
n

distrib.−→ Z as n → +∞ ,

where Z is a centered Gaussian random variable with a variance given by an infinite sum.
When the horizon is infinite and not degenerate, in the sense that there exist at least d non
parallel unbounded lines touching no obstacle, then the displacement function is not Hölder,
and the above mentioned Central Limit Theorem does not hold; but a non-standard Central
Limit Theorem for the position qn has been proved by Szász and Varjú in [51]. More precisely,
they proved that

(2)
qn√

n log(n)

distrib.−→ Z ′ as n → +∞ ,

where Z ′ is a centered Gaussian random variable, with a very explicit variance expressed in
terms of the geometry of the obstacles.
Let us indicate that the degenerate infinite horizon case has been studied in [16]. In particu-
lar, when d = 2 and when there exists only one unbounded line touching no obstacle, then a
central limit theorem for qn has been established, with two different normalizations, standard
and non-standard. And, when d = 1 and when the only lines touching no obstacle are vertical
and so are bounded, then it is proved in [16] that (qn)n∈N∗ satisfies the standard central limit
theorem (1).
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Recurrent ergodicity. The recurrence property ensures that the trajectory of almost every
state belonging to some measurable set will return in this set. The recurrence property holds
true for any probability preserving dynamical system (Poincaré recurrence theorem). But this
is not true anymore for dynamical system preserving an infinite measure. So the recurrence
property is not automatic for the Zd-periodic Lorentz gas.
When d = 1, the recurrence of the Z-periodic Lorentz gas appears as a consequence of the
following convergence

lim
n→+∞

qn
n

= 0 almost everywhere.

which follows from the ergodicity of the Sinǎı billiard.
When d = 2, the recurrence of the Z2-periodic Lorentz gas has been proved first in the finite
horizon case using two different arguments : an argument based on a Central Limit type Theo-
rem (related to (1)) by Conze [10] (see also the work of Schmidt [46] for an analogous argument)
and an argument by Szász and Varjú in [50] based on some local limit theorem estimates. This
last argument was also adapted by Szász and Varjú in [51] to prove the recurrence of the Z2-
periodic Lorentz gas in the infinite horizon case. The ergodicity then follows as for the Sinǎı
billiard (see the work of Simanyi [48], and also [31]).
Due to the recurrent ergodicity of the periodic Lorentz gas, it follows from the Hopf ratio ergodic
theorem that, for any integrable observables, the following limits holds true Lebesgue-almost
everywhere

(3) lim
n→+∞

∑n−1
k=0 f ◦ T k∑n−1
k=0 g ◦ T k

=

∫
M
f dµ∫

M
g dµ

and lim
t→+∞

∫ t

0
F ◦ Ys ds∫ t

0
F ◦ Ys ds

=

∫
M F dm∫
M Gdm

,

as soon as the limits are well defined. This result implies that, if g : M → R is an integrable
function with non null integral such that (

∑n−1
k=0 g ◦ T k/An)n∈N converges in distribution to a

random variable Z, then (
∑n−1

k=0 f ◦ T k/An)n∈N converges in distribution to
∫
M f dµ∫
M g dµ

Z.

Limit theorems for the periodic Lorentz gas with finite horizon. Among the results
proved for the Zd-periodic Lorentz gas in finite horizon, let us mention mixing rate in infinite
measure [50, 33, 34, 17] including expansions of any order (both for the map [34] and for the flow
[17]). More precisely, for the flow, these results state that for any smooth enough observables
bounded and integrable,

(4)

∫
M

f.g ◦ T n dµ =
N∑
k=0

ck(f, g)

n
d
2
+k

+ o
(
n− d

2
−N
)

as n → +∞ ,

and

(5)

∫
M

F.G ◦ Yt dm =
N∑
k=0

Ck(F,G)

t
d
2
+k

+ o
(
t−

d
2
−N
)

as t → +∞ .

Limit theorems for Birkhoff sums both for integrable observables have been obtained in [18].
More precisely, it follows from [18] that for any integrable observables, the following families of
random variables converges in distribution as the parameter goes to infinity

(6)

(∑n−1
k=0 f ◦ T k

A′
n

)
n∈N∗

and

(∫ t

0
F ◦ Ys ds

A′
⌊t⌋

)
t∈[0;+∞)
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to some random variable times the integral of the observable, with

A′
n :=

n−1∑
k=1

k− d
2

which has order
√
n if d = 1 or log(n) if d = 2.

Furthermore, limit theorems for Birkhoff sums for smooth integrable observables with null
integral have been established in [40, 41] (let us indicate that analogous results for null integral
observables have been obtained in other contexts by Thomine in [52, 53]). These results state
the convergence in distribution of the following families of random variables as the parameter
goes to infinity :

(7)

(∑n−1
k=0 f ◦ T k√

A′
n

)
n∈N∗

and

∫ t

0
F ◦ Ys ds√

A′
⌊t⌋


t∈[0;+∞)

.

Further limit theorems have been established in this context, including quantitative recurrence
estimates (estimates for the tail probability of the first return time in the initial cell [18],
limit theorem for the return time in a small neighbourhood of the initial state or of its initial
position [36]), limit theorem for the self-intersections number [32, 42], study of differential
equations perturbed by the Lorentz gas [43, 44], etc.

Previous results for the periodic Lorentz gas with infinite horizon. In the present
article, we focus on the case when the horizon is d-dimensionally infinite. We recall that this
means that there exist d non parallel unbounded lines touching no obstacle. In this case, the
time between two consecutive collisions is not bounded anymore, and even worth it is not
square integrable with respect to the invariant probability measure µ̄ of the Sinǎı billiard map.
It is still possible to apply operator techniques as in the finite horizon case, but with a loss of
important nice properties, and the study requires much more delicate study.

Nevertheless some results have been established in this infinite horizon context, overcoming
these difficulties by creative ideas combined with additional technicality. A first specific result
is the non-standard Central Limit Theorem satisfied by the position at the n-th collision time
established in [51] and recalled in (2). This result was established together with a non-standard

local limit theorem for the cell label [51], leading to a mixing rate in (n log n)−
d
2 for the Lorentz

gas map of the following form :

(8)

∫
M

f.g ◦ T n dµ ∼ c0

∫
M
f dµ

∫
M
g dµ

(n log n)
d
2

as n → +∞ ,

for any smooth enough observables bounded and integrable f and g. Whereas a mixing expan-
sion of any order has been established in the finite horizon case (as recalled in (4)), this does
not seem reachable in the infinite horizon case because of the weak smoothness properties in t
of some operators family (Pt)t. Nevertheless, further mixing estimates, including an error term
and also different mixing rates for some null integral smooth observables have been established
in [38].
Among the recent results in infinite horizon, let us mention an estimate on the tail probability
of the first return time of the map T to the initial cell [38], a Local Large Deviation (LLD)
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estimate [29], and also a mixing rate for the flow of the following form

(9)

∫
M

F.G ◦ Yt dm ∼ C0

∫
M F dm

∫
M Gdm

(t log t)
d
2

as t → +∞ .

obtained in [39] for natural observables (such as indicator functions of balls). Going from (8)
to (9) is neither direct not easy. The proof of (9) required a coupled version of the above
mentioned LLD, combined with several new tricks such as a large deviation estimate on the
time of the n-th collision, a joint mixing local limit theorem, a new tightness-type criteria, etc.

About the technical difficulties in the infinite horizon case. We consider some tranfer
operator P related to the Sinǎı billiard map. We work with the Fourier-perturbed operators
family

(
Pt = P (ei⟨t,Ψ⟩·)

)
t∈Rd , where Ψ represents the cell change function. When the horizon is

finite, t 7→ Pt = P (ei⟨t,Ψ⟩·) is C∞ from R to L(B) for some nice Banach space B. This plays an
important role in the proof of the expansion of any order given by (4) and and (5), and also
in the proof of the convergence in distribution of normalizing Birkhoff sums or integrals (7) of
observables with null expectation. When the horizon is infinite, t 7→ Pt is only smooth (and
not even C2) from R to L(B → L1). This complicates seriously the use of this operator family,
especially when working with iterates or expansion this operator. For this reason, the general
study of [40] does not apply to this context and it is a challenge to adapt in the infinite horizon
case, for this result as for others, proofs valid in the finite horizon case. Nevertheless, we find
a way to implement the moment method used in [40] and to overcome these difficulties.

Outline. The present article is organized as follows. In Section 1 we present our main results
for the periodic Lorentz gas flow in infinite horizon. These results will appear as an application
of general results stated in a general framework in Section 2. In Section 3, we present a general
strategy to prove our general assumptions of Section 2 via Fourier type operator perturbation
techniques and we use this approach to prove our main results stated in Section 1. We prove
in Section 4 the general results of Section 2.

1. Main results for the periodic Lorentz gas in infinite horizon

1.1. Limit theorem for Birkhoff sums for the map. Recall that the Zd-periodoc Lorentz
gas is the billiard system in the domain Q = R2 \

⋃
ℓ∈Zd

⋃I
i=1 (Oi + ℓ), where the obstacles are

given by Oi + ℓ with ℓ ∈ Zd and with i = 1, ..., I for some I ∈ N∗ (up to identifying Z1 with
Z × {0} when d = 1). We write Cℓ and call ℓ-cell the set of states (q, v⃗) ∈ M such that the

position q is in
⋃I

i=1Oi+ ℓ. We recall that we set µ for the only T -invariant measure equivalent
to the Lebesgue measure and so that µ (C0) = 1. The density of this measure at (q, v⃗) is given
by ⟨n⃗(q), v⃗⟩, where n⃗(q) is the normal vector to ∂Q at q. The measure µ is thus infinite and
invariant by translation.
We identify M̄ with C0. With this identification, the Sinǎı billiard map is identified with the
transformation T̄ defined on M̄ = C0 corresponding to T modulo Zd for the position. We also
consider Ψ̄ : M̄ → Zd to be the cell change function satisfying, for all x̄ ∈ M̄ = C0, T (x̄) ∈ CΨ̄(x̄).

Thus, for any x̄ ∈ M̄ = C0,
(
T̄ (x̄), Ψ̄(x̄)

)
is the unique element of M × Zd such that

T̄ (x̄) = (q̄1, v⃗1) and T (x̄) =
(
q̄1 + Ψ̄(x̄), v⃗1

)
.
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More generally, by Zd-periodicity,

∀x̄ = (q̄, v⃗) ∈ M̄, ∀ℓ ∈ Zd, T̄ (x̄) = (q̄1, v⃗1) ⇒ T ((q̄ + ℓ, v⃗)) =
(
q̄1 + ℓ+ Ψ̄(x̄), v⃗1

)
.

It then follows by a direct induction that, for all n ∈ Z,
∀x̄ = (q̄, v⃗) ∈ M̄, ∀ℓ ∈ Zd, T̄ n(x̄) = (q̄n, v⃗n) ⇒ T n((q̄ + ℓ, v⃗)) =

(
q̄n + ℓ+ S̄n(x̄), v⃗n

)
,

where S̄n :=
∑n−1

k=0 Ψ̄ ◦ T̄ k and S̄−n := −
∑n

k=1 Ψ̄ ◦ T̄−k for all n ∈ N∗. This means that the
dynamics of the Lorentz gas is totally determined by the joint dynamics of the Sinǎı billiard
and of the Birkhoff sum S̄n. In other words, (M,T, µ) can be represented as the Zd-extension of
(M̄, T̄ , µ̄) by Ψ̄, with µ̄ := µ|M̄ . We assume that the horizon is d-dimensionally infinite. Recall

that Szász and Varjú proved in [51] that (S̄n/an)n converges in distribution to a non degenerate
Gaussian distribution, with an := max(1,

√
n log n). Let us write Φ for the density function of

this limit Gaussian random variable. We recall that we set An :=
∑n

k=1 a
−d
k and that

An ∼ 2

√
n

log n
if d = 1 , and An ∼ log log n if d = 2 .

Theorem 1.1. Let f be a µ-integrable function constant on the cells Cℓ.

• If f = 1C0, then (
n−1∑
k=0

f ◦ T k/An

)
n∈N∗

converges in distribution (with respect to any probability measure absolutely continuous
with respect to the Lebesgue measure on M) to Φ(0)|Z|, where

– Z is a standard gaussian distribution if d = 1,
– Z is a random variable with standard exponential distribution if d = 2.

• If
∫
M
f dµ = 0 and

∫
M
(1 + d(0, ·)) 2+ε−d

2 |f | dµ < ∞ for some ε ∈ (0, 1/2), then(
n−1∑
k=0

f ◦ T k/
√

An

)
n∈N∗

converges in distribution (with respect to any probability measure absolutely continuous

with respect to the Lebesgue measure on M) to
√

σ2
fΦ(0)|Z|N where N is a standard

Gaussian random variable, independent of Z and where

σ2
f =

∑
k∈Z

∫
M

f.f ◦ T k dµ .

The first part of Theorem 1.1 will appear as a consequence of [51] via moment estimates, in
the spirit of [18] in the finite horizon case. As a consequence of the first part of Theorem 1.1
and of the recurrent ergodicity of (M,µ, T ), we get the following result.

Corollary 1.2 (Weak Law of Large Numbers for the infinite measure preserving dynamical
system (M,T, µ)). For any µ-integrable h : M → R, the sequence of random variables(

n−1∑
k=0

h ◦ T k/An

)
n∈N∗

converges in distribution to Φ(0)
∫
M
h dµ |Z|.
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Proof. We use the first part of Theorem 1.1. Since (M,µ, T ) is recurrent ergodic, the Hopf
ratio ergodic theorem states that the sequence of ergodic ratios(∑n−1

k=0 h ◦ T k∑n−1
k=0 f ◦ T k

)
n≥1

converges almost surely to
∫
M
h dµ/µ(C0) =

∫
M
h dµ. Due to the Slutzky lemma, this combined

with Theorem 1.1 implies that(∑n−1
k=0 h ◦ T k

An

)
n∈N∗

=

(∑n−1
k=0 h ◦ T k∑n−1
k=0 f ◦ T k

∑n−1
k=0 f ◦ T k

An

)
n∈N∗

converges in distribution to
∫
M
h dµΦ(0)

∫
M
f dµ |Z|. □

We recall that

∀x ∈ M̄, f (T n(x̄, 0)) =
(
T̄ n(x̄), S̄n(x̄)

)
.

Thus, the first part of Theorem 1.1 applied with the probability measure µ ensures the conver-
gence in distribution of (

A−1
n

n−1∑
k=0

1{Sk=0}

)
n∈N∗

to Φ(0)|Z|. Such results of convergence in distribution in the case where Sn is a random
walk have been established by Lévy in [27], and extended to Markov processes by Darling and
Kac [14, 1]. Let us indicate that the distribution of |Z| is a Mittag-Leffler distribution of index
1− d

2
, i.e.

E[|Z|N ] := N !
Γ
(
3−d
2

)N
Γ
(
1 +N 2−d

2

) .
Even in the case of the finite horizon, the second part of Theorem 1.1 (study of Birkhoff sums
of null integral) is more delicate to establish. Considering β such that f(x, ℓ) = βℓ, the second
part of Theorem 1.1 deals with the convergence in distribution of the following sequences of
random variables (

A
− 1

2
n

n−1∑
k=0

βSk

)
n∈N∗

when
∑

ℓ∈Z βℓ = 0. Such results have been established by Dobrushin in [15] in the case where

where Sn is a random walk. This has been extended to Markov processes by Kesten [26, 22, 24]
(see also [23, 4, 5]), and by Csáki, M. Csörgő, A. Földes and P. Révész in [11, 12, 13]. The first
results of this type in the context of dynamical systems have been proved by Thomine [52, 53],
and then by Thomine and the author in [40, 41]. For the Zd-periodic Lorentz gas with finite
horizon, the proof using the method of moment via spectral properties used in [40, 41] requires
a delicate care of cancellations in order to identify the main order terms in compositions of per-
turbed operators using their expansions (see [40]). When the horizon is infinite, taking care of
these cancellations becomes even more challenging since the perturbed operators do not admit
expansion as a family of operators, but only low order expansions as a family of linear maps
from B to L1, forbidding direct compositions of these expansions. This additional difficulty is
related to the fact that the cell change function Ψ̄ is not square integrable with respect to µ̄
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(whereas it is bounded and so finite-valued when the horizon of the Lorentz process is finite).

1.2. Functional limit theorem for the map and for the flow.

Theorem 1.3. Let f, g : M → R be two integrable functions, with f constant on each cell Cℓ.
Assume furthermore that

∫
M
(1 + d(0, ·)) 2+ε−d

2 |f | dµ < ∞ for some ε ∈ (0, 1
2
) and

∫
M
f dµ = 0,

then the following family of couple of processes

(10)

⌊nt⌋−1∑
k=0

g ◦ T k/An


t

,

⌊nt⌋−1∑
k=0

f ◦ T k/
√
An


t


n≥1

converges in distribution (with respect to any probability measure absolutely continuous with
respect to the Lebesgue measure on M) to ((

∫
M
g dµLt)t, (Bσ2

fLt
)t) (in (D([0;T ]))2 for all T > 0

if d = 1 and in (D([T0;T ]))
2 for all 0 < T0 < T if d = 2), where σ2

f is the quantity introduced in
Theorem 1.1, where B is a standard brownian motion independent of the process Lt and where

• if d = 1, Lt is the local time at 0 in the time interval [0; t] of the Brownian motion W

limit in distribution of (S̄⌊nt⌋/
√

n log(n))t as n → +∞,
• if d = 2, for all t > 0 Lt = L1 is a random variable with exponential distribution with
mean Φ(0).

.

Our proofs of Theorems 1.1 and 1.3 are given in Section 3. They rely on the general results
(in a general framework) stated in the Section 2.

As an immediate consequence of Theorem 1.3 combined with the classical random time
change result (see e.g. [2, Chapter 14]), we obtain the following result valid for the periodic
Lorentz gas flow. Recall that we write M for the set of states of the Lorentz gas flow, and m
for the Lebesgue measure on M. We denote Nt(ℓ) for the number of collisions of the flow in
the cell Cℓ up to time t.

Theorem 1.4. Let

(11) c̄ :=
πArea(Q)∑I

i=1 |∂Oi|
.

For any real valued sequence (βℓ)ℓ∈Zd such that
∑

ℓ∈Zd(1 + |ℓ|) 2+ε−d
2 |βℓ| for some ε > 0 and∑

ℓ∈Zd βℓ = 0, the family of processes

(12)

(A−1
n Nnt(0),A

− 1
2

n

∑
ℓ∈Zd

βℓNnt(ℓ)

)
t


n≥1

converges in distribution (with respect to any probability measure absolutely continuous with
respect to m) to

((c̄d−2L′
t)t, (B(σ2c̄d−2L′

t
)t)

(in (D([0;T ]))2 for all T > 0 if d = 1 and in (D([T0;T ]))
2 for all 0 < T0 < T if d = 2), where

σ2 is the quantity σ2
f introduced in Theorem 1.1 for the function f such that f|Cℓ ≡ βℓ for all
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ℓ ∈ Zd, or equivalently, with

σ2 :=
∑
k∈Z

∑
a,b∈Zd

βaβbµ̄
(
S̄k = b− a

)
=
∑
k∈Z

∑
a,b∈Zd

βaβb

(
µ̄
(
S̄k = b− a

)
− µ̄

(
S̄k = b

)
− µ̄

(
S̄k = −a

)
+ µ̄

(
S̄k = 0

))
,

where B is a standard brownian motion independent of the process L′
t where

• if d = 1, L′
t is the local time at 0 in the time interval [0; t] of the Brownian motion W ′

limit in distribution, as n → +∞, of ((q′nt/
√

n log(n))t)n where q′nt is the first coordinate
of the position of Ynt(·), i.e. the first coordinate of the position at time nt of the particle,

• if d = 2, for all t > 0 L′
t = L′

1 is a random variable with exponential distribution with
mean Φ(0).

.

Proof of Theorem 1.4. Recall that the Sinǎı billiard flow (at unit speed) endowed with the

Lebesgue measurem can naturally be represented by the suspension flow over (M̄, T̄ , 2
∑I

i=1 |∂Oi|µ̄)
with roof function τ , the time before the next collision. Indeed, this representation consists
in identifying each y ∈ M with the unique couple (x, s) such that x ∈ M , s ∈ [0; τ(x)) and
y = Ys(x) (x corresponds to the state at the previous collision time and s to the time spent
since this previous collision time). This representation ensures in particular that

2
I∑

i=1

|∂Oi|Eµ̄[τ ] = m
(
Y[0;τ(·)](M̄)

)
= 2πArea

(
Q ∩ [0; 1[2

)
= 2πArea(Q) .

Thus we have proved that Eµ̄[τ ] = c̄.
Writing Tn for the time of the n-th collision, we conclude by applying Theorem 1.3 to g = 1C0
and to f =

∑
ℓ∈Zd βℓ1Cℓ that(A−1

n NT⌊nt⌋(0),A
− 1

2
n

∑
ℓ∈Zd

βℓNT⌊nt⌋(ℓ)

)
t


n∈N

converges in distribution with respect e.g. to the conditional probability measurem(.|Y[0;min τ ](C0))
to (

Lt, Bσ2
fLt

)
t
.

We observe that Nnt(ℓ) = NTnnt
(ℓ), where we set nnt for the number of collisions of the billiard

flow (or equivalently for the Zd-periodic Lorentz gas flow) in the time interval [0;nt]. Since
the Sinǎı billiard system is ergodic, it follows from the Birkhoff ergodic theorem that nnt/n is
almost surely equivalent to t/c̄ as n → +∞. Combining this with the change time argument
of [2, Chapter 14], we conclude that the joint process (12) converges in distribution to the joint
process (

Lt/c̄, Bσ2
fLt/c̄

)
t
.
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We recall that (Snt/an)n∈N∗ converges to a Brownian motion W . Furthermore, for every x =
(q0, v⃗0) ∈ M with representant x̄ = (q̄0, v⃗0) ∈ M̄ , setting T (q0, v⃗0) = (q1, v⃗1) and T̄ (x̄) = (q̄1, v⃗1)
its representant in M̄ , we observe that the displacement q1 − q0 is cohomologous to Ψ̄(x̄):

q1 − q0 = Ψ̄(q̄0, v⃗0) + q̄1 − q̄0 .

Thus (q⌊nt⌋/an)n∈N∗ converges also in distribution to W . Hence, (q′T⌊nt⌋
/an)n∈N∗ converges in

distribution to W . And, using the same random time change argument as above, we conclude
that (q′nt/an)n∈N∗ converges in distribution to (W ′

t = Wt/c̄)t. In particular, when d = 1, the
local time L′

t of W
′ at 0 is equal to c̄Lt/c̄. Indeed, Lt (resp. L′

t) is the value at 0 of the density
of the image measure of the Lebesgue measure on [0; t] by s 7→ Ws (resp. by s 7→ W ′

s) and so,
writing Lt(x) (resp. L′

t(x)) for the local time of W (resp. W ′) at time t and at position x, we
have ∫

R
h(x)L′

t(x) dx =

∫
[0;t]

h(W ′
s) ds =

∫
[0;t]

h(Ws/c̄) ds

= c̄

∫
[0;t/c̄]

h(Wu) du = c̄

∫
R
h(y)Lt/c̄(y) dy ,

which implies that L′
t(x) = c̄Lt/c̄(x) and so that Lt/c̄ = L′

t/c̄. When d = 2, then L′
t = Lt/c̄ = Lt.

This ends the proof of the corollary. □

Corollary 1.5. Assume the assumptions of Theorem 1.4. Let G : M → R be an integrable
function with respect to the Lebesgue measure m on M (velocity vectors v⃗ ∈ S1 being identified
with an angle in R/Z). Then the family of processes

(13)

(A−1
n

∫ nt

0

G ◦ Ys ds,A
− 1

2
n

∑
ℓ∈Zd

βℓNnt(ℓ)

)
t


n

converges in distribution (with respect to any probability measure absolutely continuous with
respect to the Lebesgue measure on Q× S1) to( ∫

M
Gdm

2πArea(Q)
L̃t, B(σ2/c̄)L̃t

)
t

in the same sense as in Theorem 1.4, with σ2 the quantity appearing in Theorem 1.4 and where

• if d = 1, L̃t is the local time at 0 in the time interval [0; t] of the Brownian motion W ′

limit in distribution, as n → +∞, of ((q′nt/
√

n log(n))t)n where q′nt is the first coordinate
of the position of Ynt(·),

• if d = 2, for all t > 0, L̃t = L̃1 is a random variable with exponential distribution with

mean Φ̃(0), where Φ̃ is the density function of the Gaussian random variable W ′
1 limit

of (q′n/
√
n log(n))n∈N∗, where q′n is the position of Yn.

In particular, if G = 1(Q∩[0;1[2)×S1, then (13) converges in distribution to(
L̃t, B(σ2/c̄)L̃t

)
t
.
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Proof. To prove this corollary, we set L̃t = c̄d−1L′
t where L′

t has been defined in Theorem 1.4
and prove the convergence of (13) to

(14)

(
c̄d−2

2
∑I

i=1 |∂Oi|

∫
M

GdmL′
t, Bσ2c̄d−2L′

t

)
t

and conclude by noticing that σ2c̄d−2L′
t = (σ2/c̄)L̃t and by using (11) which ensures that

c̄d−2

2
∑I

i=1 |∂Oi|
=

c̄d−1

2πArea(Q̄)
.

Let us prove that L̃t satisfies the properties announced in Corollary 1.5. When d = 1, we

observe that L̃t = L′
t. When d = 2, we observe that W ′

1 = W1/c̄ and so that

Φ̃(0) =
(
2π
√

det(V ar(W ′
1))
)−1

= c̄
(
2π
√

det(V ar(W ′
1))
)−1

= c̄Φ(0) .

And so, when d = 1,

L̃t = c̄Lt = c̄L1 = L̃1

has exponential distribution of mean c̄Φ(0) = Φ̃(0).

To prove the convergence of (13) to (14), a first possibility is to adapt the proof of Theo-

rem 1.3, by considering the function g defined on M by g(x) :=
∫ τ(x)

0
G(Ys(x)) ds where τ(x)

is the time before the next collision for a point particle starting with state x, and by noticing
that ∫

M

g dµ =

∫
M Gdm

2
∑I

i=1 |∂Oi|
.

An alternative proof consists in rewriting (13) as follows :(∫ nt

0
G ◦ Ys ds

Nnt(0)

Nnt(0)

An

,A
− 1

2
n

∑
ℓ∈Zd

βℓNnt(ℓ)

)
t


n

.

Since the Zd-periodic Lorentz gas is recurrent ergodic, the the Hopf ergodic theorem which
ensures that

lim
t→+∞

∫ t

0
G ◦ Ys ds

Nt(0)
= lim

t→+∞

∫ t

0
G ◦ Ys ds∫ t

0
1Y[0;1](C0) ◦ Ys ds

=

∫
M Gdm∫

M 1Y[0;1](C0) dm

=

∫
M Gdm

2
∑I

i=1 |∂Oi|
m− a.e. .

It follows from Theorem 1.3 combined with the above almost sure convergence and with the
Slutsky lemma that (13) converges in distribution to (14). □
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2. General results

We recall that, considering βℓ such that f(x, ℓ) = βℓ, on the set M̄ = C0, the Birkhoff
sums (in infinite measure)

∑n−1
k=0 f ◦ T k considered in Theorem 1.1 can be rewritten as the

additive functional
∑n−1

k=0 βS̄k
of the Birkhoff sums (S̄n)n with respect to the Sinǎı billiard

system (M̄, T̄ , µ̄). We keep this formulation in the present section and state limit theorems
for additive functionals of Birkhoff sums of a probability preserving dynamical systems under
general assumptions expressed in terms of operators. We will see in Section 3 how these
assumptions can be proved using Fourier-perturbations of the transfer operator and how this
result can be used to prove Theorem 1.1.

2.1. General assumptions.

Hypothesis 2.1. Let d ∈ {1, 2} and α ∈ [d; 2]. Let (∆, F, ν) be a probability preserving
dynamical system with transfer operator P . Let Ψ : ∆ → Zd. For any a ∈ Zd and any
non-negative integer n, we set Sn :=

∑n−1
k=0 Ψ ◦ F k and we set Qn,a for the operator given by

Qn,a := P n(1{Sn=a}·) .

Let (an)n≥0 be a (1/α)-regularly varying sequence such that An :=
∑n

k=0 a
−d
n → +∞ as n →

+∞. Let (B, ∥ · ∥B) be a Banach space preserved by the operators Qn,a such that

(15) 1∆ ∈ B ↪→ L1(ν) ,

where the notation ↪→ means a continuous inclusion. We assume furthermore that

(16) ∥Qn,0∥B = O(a−d
n )

and that there exists Φ(0) > 0 such that 1

(17) Qn,0 = Φ(0)a−d
n Eν [·] + o(a−d

n ) in L(B → L1(ν)) .

In [40], to study Birkhoff sums of the periodic Lorentz gas with finite horizon, we used the
following condition

Qn,a = Φ(a/an)a
−d
n Eν [·] + o(a−d

n ) in L(B) .
A crucial difference between this condition and the assumptions of the present article is that (17)
is much weaker since it holds in L(B → L1(ν)) instead of L(B). In practice, this weaker
condition comes from the fact that the family of perturbed operators t 7→ Pt ∈ L(B) behind
(see Section 3) is not continuous, but that t 7→ Pt ∈ L(B → L1(ν)) is continuous.
To study additive functionals

∑n−1
k=0 βSk

with
∑

a∈Zd βa = 0, we will reinforce the previous
assumption as follows.

Hypothesis 2.2. Assume Hypothesis 2.1 and that

(18) sup
a∈Zd

∥Qk,a∥B = O(a−d
n ) ,

and that, for all κ ∈ [0; 1],

(19)
∥∥Q′

k,a,b := Qk,b −Qk,a

∥∥
B = O

(
|b− a|κa−d−κ

k

)
,

1Φ(0) will appear to be the value at 0 of the density function Φ of the limit in distribution of (Sn/an)n (see
Section 3).
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and

(20)
∥∥Q′′

k,a,b := Qk,b−a −Qk,b −Qk,−a +Qk,0

∥∥
B = O

(
(|a||b|)κa−d−2κ

k

)
,

uniformly in a, b ∈ Zd.

2.2. Limit theorem for additive functionals of Birkhoff sums.

Theorem 2.3. Assume Hypothesis 2.1. Then
(∑n−1

k=0 1{Sk=0}/An

)
n≥1

converges in distribu-

tion (and in the sense of moments), with respect to ν, to Φ(0)Y, where Y is a Mittag-Leffler
distribution of index α−d

α
, i.e.

E[YN ] := N !
Γ(1 + α−d

α
)N

Γ(1 +N α−d
α

)
.

If furthermore
∑

ℓ∈Zd |1+ |ℓ||η|βℓ| < ∞ with η := α+ε−d
2

for some ε ∈ (0, 1/2) and
∑

ℓ∈Zd βℓ = 0,

and if Hypothesis 2.2 holds true, then
(∑n−1

k=0 βSk
/
√
An

)
n≥1

converges in distribution (and in

the sense of moments), with respect to ν, to
√

σ2
βΦ(0)YN where N is a standard Gaussian

random variable, independent of Y and where

σ2
β :=

∑
k∈Z

∑
a,b∈Zd

βaβbν
(
S|k| = b− a

)
(21)

=
∑
k∈Z

∑
a,b∈Zd

βaβb

(
ν
(
S|k| = b− a

)
− ν

(
S|k| = b

)
− ν

(
S|k| = −a

)
+ ν

(
S|k| = 0

))
.(22)

Let us notice that, if the dynamical system (∆, F, ν) is invertible, then −S−k has the same
distribution with respect to ν as Sk, and so the quantity σ2

β defined in Theorem 2.3 coincide

with the quantity σ2 of Theorem 1.4.

Remark 2.4. The summability assumption of βℓ appearing in Theorem 2.3 is to our knowledge
the optimal one even in the case of additive observables of random walks with i.i.d. increments.

Remark 2.5. It follows from our assumptions that, if β is not identically null, only the second
sum (22) defining σ2

β is absolutely convergent in k, a, b. Indeed, (20) with κ = η ensures that

ν(Sk = b− a)− ν(Sk = b)− ν(Sk = −a) + ν(Sk = 0) = Eν [Q
′′
k,a,b(1)]

is summable in (k, a, b) ∈ N × Zd × Zd, whereas ν(Sk = 0) = Eν [Qk,0(1)] ∼ Φ(0)a−d
k is not

summable. The summability of (22) combined with the fact that

∀k ≥ 0,
∑

a,b∈Zd

βaβbν(Sk = b− a) =
∑

a,b∈Zd

βaβbEν [Q
′′
k,a,b(1)]

implies the absolute convergence in k of the sum appearing in the right hand side of (21).

2.3. Joint Limit theorem for additive functional of Birkhoff sums.

Theorem 2.6. Assume Assumptions 2.1 and 2.2. Let η := α+ε−d
2

for some ε ∈ (0, 1/2). Let

(β
(0)
a )a∈Zd and (β

(1)
a )a∈Zd be two families of real numbers such that

∑
a∈Zd(1 + |a|)η|β(j)

a | < ∞
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and
∑

a∈Zd β
(1)
a = 0. Then the following family of couples of processes

(23)

⌊nt⌋−1∑
k=0

β
(0)
Sk

/An


t

,

⌊nt⌋−1∑
k=0

β
(1)
Sk

/
√
An


t


n≥1

converges in distribution, with respect to ν, to ((
∑

a∈Zd β
(0)
a Lt)t, (σβ(1)BLt)t), (in (D([0;T ]))2 for

all T > 0 if d = 1 and in (D([T0;T ]))
2 for all 0 < T0 < T if d = 2), where σ2

β(1) is defined

in Formula (21) of Theorem 2.3 taking β = β(1), where B is a standard Brownian motion
independent of the process (Lt)t which is the following process

• if α > d = 1, Lt is the local time at 0 in the time interval [0; t] of a symmetric α-stable
process W with independent increments, independent of B, such that W1 has density
probability Φ with Φ(0) satisfying (17),

• if α = d, Lt = 1{t>0}L1, where L1 is a random variable with exponential distribution
with mean Φ(0).

3. Proof of Theorems 1.1 and 1.3 via Fourier perturbations

A strategy to prove Hypotheses 2.1 and 2.2 consists in proceding as follows:

• We first define the Fourier-perturbed operator Pt of the transfer operator P associated
to Ψ as follows:

Pt(h) := P (ei⟨t,Ψ⟩) .

• Using the fact that P (g.h ◦ T ) = hP (g), we notice that the k-th iterate P k
t of this

operator is given by the following formula :

P k
t (h) = P n(ei⟨t,Sk⟩) .

• Using the orthonality of the trigonometric monomials combined with the previous for-
mula, we write

Qk,a = P k
(
1{Sk=a}

)
= P k

(
1

(2π)d

∫
[−π;π]d

ei⟨t,Sk−a⟩
)

dt

=
1

(2π)d

∫
[−π;π]d

e−i⟨t,a⟩P k
t (·) dt .(24)

• We establish nice properties for Pt as the one listed in the assumptions of the next
result.

Proposition 3.1. Assume that B is a Banach space satisfying (15) and that there exist two
constants b ∈ (0, π) and α0 > 0 such that :

(25) ∀t ∈ [−b, b]d, P k
t = λk

tΠt +O(e−α0k) and sup
b<|u|∞<π

∥P k
u ∥B = O(e−α0k) ,

with (λk
t/ak

)k≥0 converging to the characteristic function φ of an α-stable distribution, with

Πt = Eν [·] + o(1) in L(B → L1(ν)) as t → 0, and with

(26) sup
t∈[−b;b]d

∥Πt∥B < ∞ and

∫
R
(1 + |t|2)

(
sup
k≥1

|λk
t/ak

|1{|t|<bak}

)
dt < ∞ .



BIRKHOFF SUMS AND LOCAL TIMES OF THE PERIODIC LORENTZ GAS IN INFINITE HORIZON 17

Then Hypotheses 2.2 (and so 2.1) hold true with Φ(0) the value at 0 of the density function Φ
of the α-stable distribution with characteristic function φ.

Proof of Proposition 3.1. It follows from (24) and from our assumptions that

Qk,0 =
1

(2π)d

∫
[−π;π]d

P k
t dt

=
a−d
k

(2π)d

∫
[−bak;bak]d

λk
t/ak

Πt/ak dt+O(e−α0k)

= Φ(0)a−d
k + o

(
a−d
k

)
,

in L(B → L1(ν)), via the dominated convergence theorem since limn→+∞ λn
t/an

Πt/an = φ(t)Eν [·]
in L(B → L1(ν)) and since Φ(0) = 1

(2π)d

∫
R φ(t) dt (the domination comes from (26)). Thus (17)

holds true.

Furthermore, for all η ∈ [0; 2] and a ∈ Zd, in L(B),∫
[−π;π]d

|t|η
∥∥P k

t

∥∥
B dt = a−d−η

k

∫
[−bak;bak]d

|t|η
∣∣λk

t/ak

∣∣ ∥∥Πt/ak

∥∥
B dt+O

(
e−α0k

)
= O

(
a−d−η
k

)
,(27)

where we used (25) and (26).
Using the expression (24) of Qk,a combined with (27) with η = 0, we obtain (16) and (18). Fix
κ ∈ [0; 1]. Then

Q′
k,a,b = Qk,b −Qk,a =

1

(2π)d

∫
[−π;π]d

(ei⟨t,b⟩ − ei⟨t,a⟩)P k
t (·) dt

=
1

(2π)d

∫
[−π;π]d

O(⟨t, b− a⟩)κP k
t (·) dt

= O
(
|b− a|κa−d−κ

k

)
in L(B) ,

where we used again (27) combined with the bound |eix − eiy| ≤ min(2, |x− y|) ≤ 21−κ|x− y|κ,
and so we have proved (19). For (20), in the same way, we obtain

Q′′
k,a,b = Qk,b−a −Qk,b −Qk,−a +Qk,0

=
1

(2π)d

∫
[−π;π]d

(ei⟨t,b−a⟩ − ei⟨t,b⟩ − e−i⟨t,a⟩ + 1)P k
t (·) dt

=
1

(2π)d

∫
[−π;π]d

(ei⟨t,b⟩ − 1)(e−i⟨t,a⟩ − 1)P k
t (·) dt

=
1

(2π)d

∫
[−π;π]d

O(⟨t, b⟩⟨t, a⟩)κP k
t (·) dt

= O
(
(|a||b|)κa−d−2κ

k

)
in L(B) ,(28)

and so (20). □

Proof of Theorems 1.1 and 1.3. Let us write βℓ for the constant to which f is equal on the ℓ-cell
Cℓ. The integrability assumption means that

∑
ℓ∈Z |βℓ| < ∞. Due to [55], since µ is equivalent

to the Lebesgue measure on M , it is enough to prove the results with respect to the measure
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µC0 (the restriction of µ to C0). Thus, we consider this reference measure and establish the
convergence of every moment with respect to this probability measure. We observe that, with
the identification of M̄ to C0, µC0 is identified with µ̄ and f ◦ T k is identified with βS̄k

.

As in [51, 38], we use the two Young towers [54, 8]. We write (∆̂, F̂ , ν̂) for the hyperbolic
tower which is an extension of (M̄, T̄ , µ̄), and write (∆, F, ν) for the expanding tower obtained

by quotienting (∆̂, F̂ , ν̂) along stable curves. We write π̄ : ∆̂ → M̄ and π : ∆̂ → ∆ for

the two measurable maps such that π̄∗ν̂ = µ, π∗ν̂ = ν, T̄ ◦ π̄ = π̄ ◦ F̂ and F ◦ π = π ◦ F̂ .
Since Ψ̄ is constant on stable curves, there exists a function Ψ : ∆ → Zd such that Ψ ◦ π =
Ψ̄ ◦ π̄. Setting Sn :=

∑n−1
k=0 Ψ ◦ F k, it follows that Sn ◦ π = S̄n ◦ π̄. For the first part of

Theorem 1.1, we take βℓ = 1{ℓ=0}. We will conclude by Theorem 2.3. To prove the assumptions
of Theorem 2.3, we show that the criterion given in Proposition 3.1 is satisfied here with our
choice of an, with α = 2 and with Φ the characteristic function of the Gaussian limit distribution
of (S̄n/an)n. The assumptions of Proposition 3.1 have been proved in [51] with the use of the
Banach spaces introduced in [54] combined with the use of the Nagaev-Guivarch perturbation
method [30, 19, 20] via the Keller and Liverani theorem [25] (see also [35] for a general reference
on this method). The fact that (λk

t/ak
)k≥1 converges pointwise to the characteristic function of

a Gaussian random variable follows from the existence of a positive symmetric matrix A such
that 1 − λt ∼ ⟨At, t⟩| log |t|| as t → 0 (this was proved in [51]). For the second part of (26),

one can e.g. use the fact that |λk
t/ak

|1{|t|<bak} ≤ e−c0 min(|t|2−ε,|t|2+ε)) for |t| small enough. Thus
Proposition 3.1 holds true and Theorems 2.3 and 2.6 apply. Finally, we identify the formulas
of the asymptotic variances σ2

f and σ2
β by noticing that∑

a,b∈Z2

βaβbν(S|k| = b− a) =

∫
M

f.f ◦ T |k| dµ =

∫
M

f.f ◦ T k dµ .

For Theorem 1.3, we deduce the result for general g using the fact that (M,T, µ) is recurrent er-
godic, together with the Hopf ergodic ratio theorem. Indeed, with the notations of Theorem 1.3,
Theorem 2.6 ensures that

(29)

⌊nt⌋−1∑
k=0

1{Sk=0}/An


t

,

⌊nt⌋−1∑
k=0

f ◦ T k/
√
An


t


n≥1

converges in distribution, with respect to µ̄, to ((Lt)t, (Bσ2
fLt

)t), with L as in Theorem 2.6 and

σ2
f as in Theorem 1.1. But, it follows from the Hopf ratio ergodic theorem that

lim
n→+∞

∑m
k=0 g ◦ T k∑m
k=0 1{Sk=0}

=

∫
M

g dµ µ-almost everywhere .

Thus, we conclude that

(30)

(∑⌊nt⌋−1
k=0 g ◦ T k∑m
k=0 1{Sk=0}

∑m
k=0 1{Sk=0}

An

)
t

,

⌊nt⌋−1∑
k=0

f ◦ T k/
√
An


t


n≥1

converges in distribution, with respect to µ̄, to
(∫

M
g dµ(Lt)t, (Bσ2

fLt
)t

)
. □
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4. Proofs of Theorems 2.3 and 2.6

4.1. Proof of Theorem 2.3. Let (βℓ)ℓ∈Zd be a summable sequence of real numbers. We start
by writing

Eν

(n−1∑
k=0

βSk

)N
 =

n−1∑
k1,...,kN=0

Eν

[
N∏
j=1

βSkj

]

=
∑

0≤k1≤...≤kN≤n−1

c(k1,...,kN )

∑
a1,...,aN∈Zd

Eν

[
N∏
j=1

(
βaj1{Skj

=aj}

)]
,(31)

where we denote by c(k1,...,kN ) the number of N -tuples (k′
1, ..., k

′
N) ∈ {0, ..., n − 1}N such that

there exists a permutation σ ∈ SN such that k′
i = kσ(i) for all i = 1, ..., N . We observe that

Eν

[
N∏
j=1

(
βaj1{Skj

=aj}

)]
= Eν

[
N∏
j=1

(
βaj1{Skj

−Skj−1
=aj−aj−1}

)]

= Eν

[
N∏
j=1

(
βaj1{Skj−kj−1

=aj−aj−1} ◦ F kj−1

)]
,

with the conventions k0 = 0 and a0 = 0. We recall that P is the transfer operator of F with
respect to ν, which means that

Eν [P (g).h] = Eν [g.h ◦ T ] .
Using the fact that Eν [·] = Eν [P

kN (·)], we obtain

Eν

[
N∏
j=1

(
βaj1{Skj

=aj}

)]
= Eν

[
P kN

(
N∏
j=1

(
βaj1{Skj−kj−1

=aj−aj−1} ◦ F kj−1

))]
.(32)

Since P k(f.g ◦ F k) = gP k(f), we observe that, for any j = 1, ..., N , for any k1 ≤ ... ≤ kj and
any b1, ..., bj ∈ Zd,

P kj

(
j∏

i=1

1{Ski−ki−1
=bi} ◦ F ki−1

)
= P kj−kj−1

(
1{Skj−kj−1

=bj}P
kj−1

(
j−1∏
i=1

(
1{Ski−ki−1

=bi} ◦ F ki−1

)))

= Qkj−kj−1,bj

(
j−1∏
i=1

(
1{Ski−ki−1

=bi} ◦ F ki−1

))
.(33)

Starting from from (32) and applying iteratively (33) N times, we obtain

Eν

[
N∏
j=1

(
βaj1{Skj

=aj}

)]
= Eν

[
βaNQkN−kN−1,aN−aN−1

(· · · (βa2Qk2−k1,a2−a1(βa1Qk1,a1(1))) · · · )
]
.

(34)

For the first part of Theorem 2.3, we apply (31) with βℓ = 1{ℓ=0} with (34). In that case,
applying repeatedly (17), combined with (16) and (15), the right hand side of (34) becomes

Eν

[
QkN−kN−1,0(...(Qk1,0(1)))

]
= (Φ(0))N

N∏
j=1

a−d
kj−kj−1

+
N∑
j=1

o(a−d
kj−kj−1

))
∏
i ̸=j

O(a−d
ki−ki−1

) .
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This leads to

Eν

(n−1∑
k=0

1{Sk=0}

)N
 = o(AN

n ) +N ! (Φ(0))N
∑

1<k1<...<kN≤n−1

N∏
j=1

a−d
kj−kj−1

= o(AN
n ) +N !AN

n

[
(Φ(0))N

Γ(1 + 2−d
2
)N

Γ(1 +N 2−d
2
)
+ o(1)

]
,

using [40, Lemma 2.7] for the last estimate. This ends the proof of the first part of Theorem 2.3.

Now let us prove the second part. We assume from now on that
∑

a∈Zd βa = 0 and that∑
a∈Zd(1 + |a|η)|βa| < ∞ with η := α−d+ε

2
for some ε ∈ (0; 1

2
). Recall that it follows from (31)

combined with (34) that

Eν

(n−1∑
k=0

βSk

)N
 =

∑
0≤k1≤...≤kN≤n−1

c(k1,...,kN )

∑
a1,...,aN∈Zd

Eν

[
βaNQkN−kN−1,aN−aN−1

(· · · (βa2Qk2−k1,a2−a1(βa1Qk1,a1(1))) · · · )
]
.(35)

In Formula (35), we decompose each Qk,a in Q
(0)
k,a +Q

(1)
k,a, with Q

(0)
k,a := Qk,0 and Q

(1)
k,a := Q′

k,a :=
Q′

k,0,a = Qk,a −Qk,0. Thus

Eν

(n−1∑
k=0

βSk

)N
 =

∑
ε1,...,εN∈{0,1}

H(n,N)
ε1,...,εN

,(36)

with

H(n,N)
ε1,...,εN

=
∑

0≤k1≤...≤kN≤n−1

c(k1,...,kN )H
n,N
k,ε

setting k = (k1, ..., kN), ε = (ε1, ..., εN) ∈ {0, 1}N and

Hn,N
k,ε :=

∑
a1,...,aN∈Zd

Eν

[
βaNQ

(εN )
kN−kN−1,aN−aN−1

(· · · (βa2Q
(ε1)
k2−k1,a2−a1

(βa1Qk1,a1(1))) · · · )
]

=
∑

aN∈Zd

Eν

βaN

 ∑
aN−1∈Zd

βaN−1
Q

(εN )
kN−kN−1,aN−aN−1

· · ·

∑
a1∈Zd

βa1Q
(ε2)
k2−k1,a2−a1

(
Q

(ε1)
k1,a1

(1)
) · · ·

 .

Observe that H
(n,N)
ε1,...,εN = 0 if at least one of the following conditions is satisfied :

• if εN = 0, since then the only quantity depending on aN in Hn,N
k,ε is βaN and since∑

aN∈Zd βaN = 0;
• or, if there exists j0 = 1, ..., N−1 such that εj0 = εj0+1 = 0, since then the only quantity

depending on aj0 in Hn,N
k,ε is βaj0

and since
∑

aj0∈Zd βaj0
= 0.

Thus, we restrict our study to the case of the ε′js for which the j0’s such that εj0 = 0 are
isolated and do not include N . Let such an ε = (ε1, ..., εN). Observe that there are at most
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N/2 indices j’s such that εj = 0. We set, by convention, εN+1 = ε0 = 0. We will prove that

(37) H(n,N)
ε1,...,εN

= o
(
A

N
2
n

)
unless #{j : εj = 0} =

N

2
,

i.e. H
(n,N)
ε1,...,εN = o

(
A

N
2
n

)
unless N is even and (ε1, ..., εN) = (0, 1, ..., 0, 1). For reader’s conve-

nience, we first give a short proof of this estimate in a particular case. A proof of this estimate in

the general case
∑

a∈Zd |a|
α−d+ε

2 |βa| < ∞ with η = α−d+ε
2

, with ε ∈ (0; 1
2
) is given in Section 4.2.

• A short proof of (37) in a particular case. Assume in this item only that α < d+1 and∑
a∈Zd(1 + |a|)2η̄|βa| < ∞ with α− d < η̄ < 1. It follows from Hypothesis 2.2 that

Q
(εj)
kj−kj−1,aj−aj−1

= O
(
|aj − aj−1|εj η̄a

−d−εj η̄
kj−kj−1

)
= O

(
((1 + |aj|)(1 + |aj−1|))εj η̄a

−d−εj η̄
kj−kj−1

)
,

and so that∣∣H(n,N)
ε1,...,εN

∣∣ = O

(∑
a∈Zd

(1 + |a|)2η̄|βa|

)N N∏
j=1

n−1∑
kj=0

a
−d−εj η̄
kj


= O

(
A#{j:εj=0}

n

)
,

where we used the fact that
∑

a∈Zd(1+|a|)2η̄|βa| < ∞ combined with
∑

k≥0 a
−d−η̄
k < +∞,

since d+ η̄ > α and since (an)n is 1
α
-regularly varying. This concludes the proof of (37)

when α < d+ 1 and
∑

a∈Zd(1 + |a|)2η̄|βa| < ∞ with α− d < η̄ < 1..

In particular, Formula (37) ensures that

(38) Eν

(n−1∑
k=0

βSk

)N
 = o

(
A

N
2
n

)
if N is odd ,

and that

(39) Eν

(n−1∑
k=0

βSk

)N
 = H

(n,N)
0,1,...,0,1 + o

(
A

N
2
n

)
if N is even .

Assume from now on that N is even, then

H
(n,N)
0,1,...,0,1 =

∑
0≤k1≤...≤kN≤n−1

c(k1,...,kN )

∑
a1,...,aN∈Zd

(
N∏
j=1

βaj

)
×

Eν [Q
′
kN−kN−1,aN−aN−1

(QkN−1−kN−2,0(...(Q
′
k2−k1,a2−a1

(Qk1,0(1)))...))] .

Hence

H
(n,N)
0,1,...,0,1 =

∑
0≤k1≤...≤kN≤n−1

c(k1,...,kN )Eν [Q̄kN−kN−1
(QkN−1−kN−2,0(...(Q̄k2−k1(Qk1,0(1)))...))] ,(40)

with

Q̄k :=
∑

a,b∈Zd

βaβbQ
′
k,b−a =

∑
a,b∈Zd

βaβbQk,b−a =
∑

a,b∈Zd

βaβbQ
′′
k,a,b ,(41)
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where we used the fact that
∑

a∈Zd βa = 0 and the notation Q′′
k,a,b = Qk,b−a−Qk,b−Qk,−a+Qk,0

introduced in (20). Combining (20) with κ = η = α+ε−d
2

with (41), since
∑

a∈Zd(1 + |a|)η|βa| <
∞, we infer that

(42) Q̄k = O
(
a−α−ε
k

)
in L(B) ,

since d + 2η = α + ε, which ensures the summability of ∥Q̄k∥B. The study of (40) leads us
to the question of estimating Eν [Q̄k′(Qk,0(h))]. Unfortunately we cannot compose directly (20)
and (17) since this last estimate is in L(B → L1(ν)) and not in L(B). But, proceeding in two
steps, we will prove that

(43) Eν [Q̄k′(Qk,0(h))]− Φ(0)a−d
k Eν

[
Q̄k′(1)

]
Eν [h] = O

(
a−α−ε′

k′ ∥h∥B
)
o(a−d

k ) ,

where ε′ ∈ (0, 1
2
) is small enough so that

(44)
(α− d+ 2ε′)(α + ε′)

α + 2ε′
≤ α− d+ ε = 2η .

First, dominating separately both terms, it follows from (20) with κ = η′ = α+2ε′−d
2

∈ (0, 1)
and from (15) and (16) that

Eν [Q
′′
k′,a,b(Qk,0(h))]− Φ(0)a−d

k Eν

[
Q′′

k′,a,b(1)
]
Eν [h] = O

(
|a|η′|b|η′a−α−2ε′

k′ a−d
k ∥h∥B

)
,(45)

since −d− 2η′ = −α− 2ε′. Second, it follows from the definition of Q′′
k′,a,b and of Qk,a that

Eν [Q
′′
k′,a,b(h0)] = Eν

[
P k′

(
(1{Sk′=b−a} − 1{Sk′=b} − 1{Sk′=−a} + 1{Sk′=0}).h0

)]
.

Since Eν [P
k′(h)] = Eν [h], it follows that

Eν [Q
′′
k′,a,b(h0)] = Eν

[
(1{Sk′=b−a} − 1{Sk′=b} − 1{Sk′=−a} + 1{Sk′=0}).h0

]
= O

(
∥h0∥L1(ν)

)
.

This combined with (17) ensures that

Eν [Q
′′
k′,a,b(Qk,0(h))]− Φ(0)a−d

k Eν

[
Q′′

k′,a,b(1)
]
Eν [h]

= Eν

[
Q′′

k′,a,b(Qk,0(h)− Φ(0)a−d
k Eν [h])

]
= O

(∥∥Qk,0(h)− Φ(0)a−d
k Eν [h]

∥∥
L1(ν)

)
= O(∥h∥B)o(a−d

k ) .(46)

Thus, combining (45) and (46), we obtain that

Eν [Q
′′
k′,a,b(Qk,0(h))]− Φ(0)a−d

k Eν

[
Q′′

k′,a,b(1)
]
Eν [h]

=
(
O(|a|η′ |b|η′a−α−2ε′

k′ a−d
k ∥h∥B)

) α+ε′
α+2ε′ (O(∥h∥B)o(a−d

k )
) ε′

α+2ε′

= O(|a|
η′(α+ε′)
α+2ε′ |b|

η′(α+ε′)
α+2ε′ a−α−ε′

k′ ∥h∥B)o(a−d
k ) .

After summation over a, b ∈ Zd, we obtain (43), since η′(α+ε′)
α+2ε′

≤ η (due to (44)) and since∑
a∈Zd(1 + |a|η)|βa| < ∞.
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Using (43) inductively in (40) (combined with the fact that ∥Qk,0∥B = O(a−d
k ) and that

∥Q̄k∥B is summable which follows from (42)), we conclude that, when N is even

H
(n,N)
0,1,...,0,1 =

∑
0≤k1≤...≤kN

c(k1,...,kN )

N/2∏
j=1

(
Φ(0)

(
a−d
k2j−1−k2j−2

Eν [Q̄k2j−k2j−1
(1)]

))

+O

( n∑
k=1

a−d
k

)N/2−1 n∑
k=1

o(a−d
k )

 .

Recall that
σ2
β =

∑
k∈Z

Eν

[
Q̄|k|(1)

]
= Eν

[
Q̄0(1)

]
+ 2

∑
k≥1

Eν

[
Q̄k(1)

]
.

Therefore, proceeding exactly as in [40, p. 1918-1919], we obtain that

H
(n,N)
0,1,...,0,1 =

Γ(1 + α−d
α

)N/2

Γ(1 + N
2

α−d
α

)

N !

2N/2

(
Φ(0)σ2

βAn

)N/2
+ o

(
AN/2

n

)
= AN/2

n E
[(√

σ2
βΦ(0)YN

)N]
+ o

(
AN/2

n

)
.

This, combined with (38) and (39), ends the proof of the convergence of every moments. We
conclude the convergence in distribution by the Carleman criterion [47]. This ends the proof
of Theorem 2.3.

4.2. Proof of (37) in the general case. We assume here that
∑

a∈Zd(1+ |a|η)|βa| < ∞ with

η := α−d+ε
2

for some ε ∈ (0, 1/2).

In Formula (35), we decompose Qk,b−a using the operators Q′′
k,a,b and Q′

k,c := Q′
k,0,c = Qk,c −

Qk,0 as follows

Qk,b−a = Q′′
k,a,b +Qk,b +Qk,−a −Qk,0 = Q′′

k,a,b +Q′
k,b +Q′

k,−a +Qk,0 .

In (35), we replace each Qkj−kj−1,aj−aj−1
by this decomposition, we develop and obtain

Eν

(n−1∑
k=0

βSk

)N
 =

∑
ε1,...,εN

D(n,N)
ε1,...,εN

,(47)

summing a priori over (ε1, ..., εN) ∈ ({0, 1}2)N such that ε1 ∈ {(0, 0), (0, 1)} the following
quantity

D(n,N)
ε1,...,εN

=
∑

0≤k1≤...≤kN≤n−1

c(k1,...,kN )

∑
a1,...,aN∈Zd

(
N∏
j=1

βaj

)
×

× Eν [Q̃
(εN )
kN−kN−1,aN−1,aN

...Q̃
(ε2)
k2−k1,a1,a2

Q̃
(ε1)
k1,a0,a1

(1)] ,

with a0 = 0 and where we set

Q̃
(0,0)
k,a,b = Qk,0, Q̃

(1,0)
k,a,b = Q′

k,−a, Q̃
(0,1)
k,a,b = Q′

k,b, Q̃
(1,1)
k,a,b = Q′′

k,a,b .

We assume that ε1 ∈ {(0, 0), (0, 1)} since

Q̃
(1,0)
k,a0,a1

= Q′
k,0 = 0 and Q̃

(1,1)
k,a0,a1

= Q′′
k,0,a1

= 0 .
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We will restrict the sum over ε1, ..., εN . Let us write εj = (εj,1, εj,2). We observe that, since∑
aj∈Zd βaj = 0, D

(n,N)
ε1,...,εN = 0 if there exists j = 1, ..., N such that εj,2 + εj+1,1 = 0 (with

convention εN+1,1 = 0). Thus we restrict the sum in (47) to the sum over the ε1, ..., εN such
that for all j = 1, ..., N , such that εj,2 + εj+1,1 ≥ 1. We call admissible any such sequence
ε := (ε1, ..., εN). Let ε := (ε1, ..., εN) be an admissible sequence.

• We observe that #{j : εj = (0, 0)} ≤ N/2.
• The contribution to (47) of an admissible sequence ε = (ε1, ..., εN) is

D(n,N)
ε1,...,εN

= O

 ∑
a1,...,aN∈Zd

N∏
j=1

|βaj |
n∑

kj=0

∥Q̃(εj)
kj ,aj−1,aj

∥B

 .

• We observe that there exists u0 > 0 such that

(48)
n∑

k=0

a−d
k = An ,

n∑
k=0

a−d−2η
k = O(1) ,

n∑
k=0

a−d−η
k = O

(
A

1−u0
2

n

)
.

Indeed d+2η = α+ε > α. For the last estimate, we use the fact that (ak)k is
1
α
-regularly

varying, and infer that (
∑n

k=0 a
−d−η
k )2 is either bounded or 2 − 2d+2η

α
-regularly varying

whereas (An)n is (1 − d
α
)-regularly varying and diverges to infinity (and 2 − 2d+2η

α
=

1− d+ε
α

< 1− d
α
).

• If, for all j = 1, ..., N , εj,2 + εj+1,1 = 1, then, it follows from Hypothesis 2.2 that

D(n,N)
ε1,...,εN

= O
(
d(n,N)
ε1,...,εN

)
,

with

(49) d(n,N)
ε1,...,εN

:=
∑

a1,...,aN∈Zd

N∏
j=1

|βaj | |aj|η(εj,2+εj+1,1)

n∑
kj=0

a
−d−ηεj,1−ηεj,2
kj

 ,

and so, using (48), that

D(n,N)
ε1,...,εN

= O
(
d(n,N)
ε1,...,εN

)
= O

(
A

N0+N1
1−u0

2
n

)
,

where Nk := #{j : εj,1 + εj,2 = k}, since
∑

a∈Zd(1 + |a|)η|βa| < ∞. Observe that

N0 + N1 + N2 = N and that N =
∑2

k=1

∑N
j=1 εj,k = N1 + 2N2 and so N2 = N0 and

N0 =
N−N1

2
. Therefore, in this case,

D(n,N)
ε1,...,εN

= O
(
d(n,N)
ε1,...,εN

)
= O

(
A

N−u0N1
2

n

)
= o

(
AN/2

n

)
unless N1 = 0, i.e. unless N is even and ε1, ..., εN is the alternate sequence

(0, 0), (1, 1), ..., (0, 0), (1, 1) .

• Assume now that there exists some j0 ∈ {1, ..., N} such that εj0,2 + εj0+1,1 = 2. Recall
that it follows from Hypothesis 2.2 that, for all η′j,1, η

′
j,2 ∈ {0, η},

(50)
∥∥∥Q̃(εj)

k,aj ,aj−1

∥∥∥
B
= O

(
|aj−1/ak|η

′
j,1εj,1|aj/ak|η

′
j,2εj,2a−d

k

)
.
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Indeed this follows from (18), (19) and (20) combined with the two following facts

∀η ∈ [0; 1],
∥∥Q′′

k,a,b

∥∥
B =

∥∥Q′
k,−a,b−a −Q′

k,0,b

∥∥
B = O(|b|η)a−d−η

k

and

∀η ∈ [0; 1],
∥∥Q′′

k,a,b

∥∥
B =

∥∥Q′
k,b,b−a −Q′

k,0,−a

∥∥
B = O(|a|η)a−d−η

k .

We choose a family (η′j,i)j=1,...,N ;i=1,2 of {0, η} such that, for all j = 1, ..., N , η′j,2εj,2 +

η′j+1,1εj+1,1 = η = α+ε−d
2

. To do so, we can take e.g.

η′j,2 = η′j+1,1 = η if εj,2 + εj+1,1 = 1 ,

η′j,2 = η, ηj+1,1 = 0 if εj,2 + εj+1,1 = 2 .

Therefore

D(n,N)
ε1,...,εN

= O

 ∑
a1,...,aN∈Zd

N∏
j=1

|βaj | |aj|η
n∑

kj=0

a
−d−η′j,1εj,1−η′j,2εj,2
kj

 = O
(
d
(n,N)

ε′1,...,ε
′
N

)
,

where we set ε′j := (η′j,1εj,1, η
′
j,2εj,2)/η. We also consider the sequence ε′′1, ..., ε

′′
N obtained

from ε′ by permuting the values of ε′j0,2 and ε′j0+1,1. Both sequences ε′ and ε′′ are
admissible and satisfy ε′j,2 + ε′j+1,1 = ε′′j,2 + ε′′j+1,1 = 1 for all j = 1, ..., N . Thus it follows
from the previous item that

D(n,N)
ε1,...,εN

= O
(
min

(
d
(n,N)

ε′1,...,ε
′
N
, d

(n,N)

ε′′1 ,...,ε
′′
N

))
= o

(
AN/2

n

)
,

since ε′ and ε′′ cannot both coincide with the alternate sequence (0, 0), (1, 1), ..., (0, 0), (1, 1).

Thus we have prove that
D(n,N)

ε1,...,εN
= o

(
AN/2

n

)
unless N is even and ε1, ..., εN is the alternate sequence (0, 0), (1, 1), ..., (0, 0), (1, 1). Esti-
mate (37) follows from this fact since

Q
(1)
kj−kj−1,aj−aj−1

= Q̃
(1,1)
kj−kj−1,aj−aj−1

+ Q̃
(1,0)
kj−kj−1,aj−aj−1

+ Q̃
(0,1)
kj−kj−1,aj−aj−1

and
Q

(0)
kj−kj−1,aj−aj−1

= Q̃
(0,0)
kj−kj−1,aj−aj−1

.

4.3. Proof of Theorem 2.6. We start by proving the convergence of the finite distributions
and we will then prove the tightness. For the convergence of the finite distributions, we use
again the convergence of moments. It is enough to study the asymptotic behaviour as n goes
to infinity of every moments of the following form

En := Eν

 M∏
j=1

 ⌊ntj⌋−1∑
kj=⌊ntj−1⌋

β
(0)
Sk

N
(0)
j
 ⌊ntj⌋−1∑

k′j=⌊ntj−1⌋

β
(1)
Sk

N
(1)
j

 ,

for any M ∈ N∗, any N
(0)
j , N

(1)
j ∈ N, any t0 = 0 < t1 < ... < tM . We set Γk :=

∑M
j=1 N

(k)
j for

k ∈ {0, 1} and will prove that

lim
n→+∞

A
−Γ0−Γ1

2
n En = (Φ(0))Γ0+

Γ1
2

(∑
a∈Zd

β(0)
a

)Γ0

σΓ1

β(1)E

[
M∏
j=1

(
Ltj − Ltj−1

)N(0)
j +

N
(1)
j
2

]
M∏
j=1

E[NN
(1)
j ] .
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We set mi :=
∑i

r=1(N
(0)
r + N

(1)
r ) and N := mM . Proceeding as in the proof of Theorem 1.1,

we observe that En can be rewritten as follows∑
γ1,...,γN

∑
(k1,...,kN )∈Kn

(
N∏
i=1

c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )

) ∑
a1,...,aN∈Zd

(
N∏
j=1

β(γj)
aj

)
ν (∀i = 1, ..., N, Ski = ai) ,(51)

where Kn is the set of increasing N -tuples (k1, ..., kN) such that ⌊ntj−1⌋ ≤ km ≤ ⌊ntj⌋ − 1
for all m such that mj−1 < m ≤ mj, where the first sum is taken over γj ∈ {0, 1} such

that, for all γ ∈ {0, 1} and all i = 1, ...,M , #{j = mi−1 + 1, ...,mi : γj = γ} = N
(γ)
i

and where c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )
is the number of (γ′

mi−1+1, ..., γ
′
mi
, k′

mi−1+1, ..., k
′
mi
) ∈ {0, 1}N

(1)
i +N

(2)
i ×

{⌊nti−1⌋, ..., ⌊nti⌋ − 1}N
(0)
i +N

(1)
i such that there exists a permutation σ of {mi−1 + 1, ...,mi}

such that γ′
σ(r) = γr and k′

σ(r) = kr for all r ∈ {mi−1 + 1, ...,mi}. Furthermore we use (34) to

express ν(∀i = 1, ..., N, Ski = ai) using a composition of operators Qkj−kj−1,aj−aj−1
and, as in

Section 4.2, for each j, we decompose each Qkj−kj−1,aj−aj−1
in a sum of Q̃(ε). This leads to

En :=
∑

γ=(γ1,...,γN )

∑
ε=(ε1,...,εN )

H̃(n)
ε (γ) ,(52)

with

H̃(n)
ε1,...,εN

(γ1, ..., γN) :=
∑

(k1,...,kN )∈Kn

(
M∏
i=1

c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )

) ∑
a1,...,aN∈Zd

(53)

Eν

[
β(γN )
aN

(
β(γN−1)
aN−1

Q̃
(εN )
kN−kN−1,aN−1,aN

(
· · ·
(
β(γ1)
a1

Q̃
(ε2)
k2−k1,a1,a2

(
Q̃

(ε1)
k1,0,a1

(1)
))

· · ·
))]

,

with the use of the operators Q̃
(ε)
(k,a,b) defined in Section 4.2 and where the sum over ε1, ..., εN is

taken over ε2, ..., εN ∈ {0, 1}2 and
ε1,1 = 0 .

We write εj = (εj,1, εj,2). Since
∑

a∈Zd β
(1)
a = 0, Hε1,...,εN = 0 if there exists j = 1, ..., N such

that γj = 1 and εj,2 + εj+1,1 = 0 (with convention εN+1,1 = 0). Therefore we assume from now
on that (γ, ε) is such that

∀j = 1, ..., N, εj,2 + εj+1,1 ≥ γj ,

with the convention εN+1,1 = 0 and we call admissible such a pair (γ, ε). We want to determine
the ε such that

H̃(n)
ε1,...,εN

(γ1, ..., γN) ̸= o

(
A

Γ0+
Γ1
2

n

)
.

Then

H̃(n)
ε (γ) = O

 ∑
(k1,...,kN )

∑
a1,...,aN∈Zd

N∏
j=1

(
|β(γj)

aj
|
∥∥∥Q̃(εj)

kj−kj−1,aj−1,aj

∥∥∥
B

)
= O

 ∑
(k1,...,kN )

∑
a1,...,aN∈Zd

N∏
j=1

(
|β(γj)

aj
| (1 + |aj|)ηa

−d−ηj,1εj,1−ηj,2εj,2
kj−kj−1

) ,

with (ηj,i)j,i a sequence in {0, η} such that

(54) ηγj ≤ ηj,2εj,2 + ηj+1,1εj+1,1 ≤ η .
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We set

ε′j,i := ηj,iεj,i .

As seen in Section 4.2, we use the fact that there exists u0 ∈ (0, 1] such that
∑n−1

k=0 a
−d−η
k =

O
(
A

1−u0
2

n

)
and that

∑
k≥0 a

−d−2η
k < ∞. Using the summability assumption on β

(γ)
a , we infer

that

H̃(n)
ε (γ) = O

 ∑
(k1,...,kN )

∏
j:εj,1+εj,2=0

a
−d−ε′j,1−ε′j,2
kj−kj−1

 = O
(
AEη

0 +
1−u0

2
Eη
1

n

)
,(55)

where

Eη
k := #

{
j = 1, ..., N : ε′j,1 + ε′j,2 = kη

}
.

We also set Ek := #{j = 1, ..., N : εj,1 + εj,2 = k}. Recall that

Γk =
N∑
j=1

N
(k)
j = #{j = 1, ..., N : γj = k} .

We observe that

(56) N = Eη
0 + Eη

1 + Eη
2 = E0 + E1 + E2 = Γ0 + Γ1 .

It follows from (54) that

ηΓ1 = η
N∑
j=1

γj ≤
N∑
j=1

(ε′j,2 + ε′j+1,1)

=
N∑
j=1

(ε′j,1 + ε′j,2) ,

since ε1,1 = 0 and so ε′1,1 = 0. Thus

ηΓ1 +
N∑
j=1

(
ε′j,2 + ε′j+1,1 − ηγj

)
= η (Eη

1 + 2Eη
2 ) .(57)

We now use this estimate combined with (56) to control the exponent of An in (55) as follows

Eη
0 +

1− u0

2
Eη
1 = N − Eη

2 − Eη
1 +

1− u0

2
Eη
1

≤ (Γ0 + Γ1)−
(
Γ1 − Eη

1

2

)
− wε′/η + (1 + u0)Eη

1

2

= Γ0 +
Γ1

2
− wε′/η + u0Eη

1

2
,

with

wε′ :=
N∑
j=1

(
ε′j,2 + ε′j+1,1 − ηγj

)
= η#

{
j = 1, ..., N : γj = 0, ε′j,2 + ε′j+1,1 > 0

}
.
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Hence we have proved that

H(n)
ε (γ) = O

(
AΓ0+

Γ1
2

n

)
.

and that

H(n)
ε (γ) = o

(
AΓ0+

Γ1
2

n

)
if Eη

1 > 0 or wε′ > 0 .

We assume now that

H(n)
ε (γ) ̸= o

(
AΓ0+

Γ1
2

n

)
.

This implies that Eη
1 = wε′ = 0 for any (ε′j,i) as above.

(i) We consider ε′j,i such that
– ε′1,1 = 0,
– If (εj,2, εj+1,1) ̸= (1, 1), then ε′j,2 = ηεj,2 and ε′j+1,1 = ηεj+1,1,
– If (εj,2, εj+1,1) = (1, 1), then ε′j,2 = η and ε′j+1,1 = 0.

Let j ∈ {1, ..., N} such that γj = 0. The fact that wε′ = 0 ensures that ε′j,2 = ε′j+1,1 = 0.
By definition of ε′j,i, this implies that εj,2 = εj+1,1 = 0. Since Eη

1 = 0, this implies also
that, for each j = 1, ..., N , ε′j+1,2 = 0 and so that εj+1,2 = 0.
The fact that wε′ = 0 combined with (57) ensures that Γ1 = Eη

1 + 2Eη
2 . But, since

Eη
1 = 0, we conclude that Eη

2 = Γ1

2
.

Let j′ such that (ε′j′,1, ε
′
j′,2) = (η, η), then γj′ = 1 (due to the previous analysis of the

j’s such that γj = 0). Furthermore, since ε′j′,i ≤ ηεj,i, it follows that εj′ = (1, 1), that
j′ ∈ {2, ..., N − 1} (since ε1,1 = 0) and εj′−1,2 = 0 (otherwise we would have ε′j′−1,2 = η
and ε′j′,1 = 0).

(ii) Now, exchanging the role played by εj,2 and εj+1,1, we consider ε′j,i such that
– ε′1,1 = 0,
– If (εj,2, εj+1,1) ̸= (1, 1), then ε′j,2 = ηεj,2 and ε′j+1,1 = ηεj+1,1,
– If (εj,2, εj+1,1) = (1, 1), then ε′j,2 = 0 and ε′j+1,1 = η.

Arguing as in the previous item, we conclude that
– if γj = 0, then εj,2 = εj+1,1 = 0, and, since Eη

1 = 0, then ε′j,1 = 0 and so εj,1 = 0,
– if (ε′j,1, ε

′
j,2) = (η, η), then γj = 1 (due to the previous item) and εj = (1, 1), and so

j ∈ {2, ...N − 1} (since ε1,1 = 0) and εj+1,1 = 0.

Gathering, all these facts, we conclude that :

• γj = 0 implies that εj = (0, 0) and εj+1 = (0, 0).
• Γ1 is even and the set of j’s such that γj = 1 is a disjoint union of two sets J and J ′

of same cardinal Γ1/2 such that
– The set J is the set of j ∈ {1, ..., N} such that γj = 1 and εj = (1, 1). For any
j ∈ J , we also have γj−1 = 1, εj−1,2 = 0, εj+1,1 = 0.

– The set J ′ is the set of j’s such that γj = 1, (j+1) ∈ J and εj,2 = 0. Furthermore,
since these points are either j = 1, or after a j − 1 such that γj−1 = 0, or after
j − 1 ∈ J , we conclude that they satisfy also εj = (0, 0).

Hence we have proved that

H(n)
ε (γ) ̸= o

(
AΓ0+

Γ1
2

n

)
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implies that Γ1 is even, that ε is a sequence of (0, 0) and (1, 1) and that

• if γj = 0, then εj = εj+1 = (0, 0),
• if γj = 1, then either [εj = (0, 0) and γj+1 = 1 and εj+1 = (1, 1)] or [εj = (1, 1) and
γj−1 = 1 and εj−1 = (0, 0)].

This means that the j’s such that γj = 1 appear in pairwise disjoint pairs (j − 1, j) such that
(γj−1, γj) = (1, 1), and that εj = (1, 1) if and only if (j − 1, j) is such a couple. We fix such a
pair (γ, ε), and still write J for the set of j such that εj = (1, 1).

Then, using repeatedly (16), (17) and (45), we obtain

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) =
∑

(k1,...,kN )∈Kn

(
M∏
i=1

c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )

) ∏
j′:γj′=0

(
a−d
kj′−kj′−1

An

Φ(0)
∑
a∈Zd

β(0)
a

)
∏
j∈J

Φ(0)a−d
kj−1−kj−2

An

∑
a,b∈Zd

β(1)
a β

(1)
b Eν

[
Q′′

kj−kj−1,a,b
(1)
]
+ o(1)

and so

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) = o (1) + Φ(0)Γ0+
Γ1
2

(∑
a∈Zd

β(0)
a

)Γ0 ∑
(k1,...,kN )∈Kn:kj<kj+1

M∏
i=1

(N
(0)
i )!(N

(1)
i )!

 ∏
j:γj=0

a−d
kj−kj−1

An

∏
j∈J

a−d
kj−1−kj−2

An

∑
a,b∈Zd

β(1)
a β

(1)
b Eν

[
Q′′

kj−kj−1,a,b
(1)
]
.

It can be worthwhile to notice that we can restrict the above sum on the set K′
n made of the

(k1, ..., kN) ∈ Kn such that kj −kj−1 < log n if j ∈ J , and kj −kj−1 > log n for the other values
of j’s. Let us observe that, for any (k1, ..., kN) ∈ K′

n, since kj > kj−1 for all j ̸∈ J , we have

(58) c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )
=

(
N∏
i=1

N
(0)
i !N

(1)
i !

)∏
j∈J

1 + 1{kj−kj−1 ̸=0}

2
.

The fact that we can neglect the sum over Kn \ K′
n implies that

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) = o(1)

as soon as there exist j ∈ J and i ∈ {1, ...,M} such that kj−1 < ⌊nti⌋ ≤ kj (indeed this
combined with kj − kj−1 < log n implies that 0 < kj − nti < log n and 0 < nti − kj−1 < log n.
In particular

En = o

(
A

Γ0+
Γ1
2

n

)
if ∃j ∈ {1, ...,M}, N

(1)
j ∈ 2Z+ 1 .

We assume from now on that the N
(1)
j ’s are even and that J is such that, for every j ∈ J ,

there exists i = 1, ...,M such that kj−1, kj are in a same set {⌊nti−1⌋, ..., ⌊nti⌋−1}. Then, using
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the fact that the sum over Kn \ K′
n is neglectable and (58), we obtain that

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) = o (1) +
M∏
j=1

N
(0)
j !N

(1)
j !(Φ(0))N

′′
j

(∑
a∈Zd

β(0)
a

)N
(0)
j

1

2

∑
k≥0

(1 + 1{k ̸=0})
∑

a,b∈Zd

β(1)
a β

(1)
b Eν

[
Q̄′′

kj−kj−1,a,b
(1)
]

N
(1)
j
2 ∑

(k′1,...,k
′
N′′ )∈K′′

n

N ′′∏
j=1

a−d
k′j−k′j−1

An

 ,

with N ′′
j := N

(0)
j +

N
(1)
j

2
and N ′′ :=

∑M
j=1N

′′
j , and where K′′

n is the set of strictly increasing

sequences k′
1 < ... < k′

N ′′ with exactly N ′′
j elements between ⌊ntj−1⌋ and ⌊ntj⌋− 1 and with the

convention k′
0 = 0. Thus

H̃
(n)
ε (γ)

A
∑M

j=1 N
′′
j

n

= o (1) + E ′
n

M∏
j=1

N
(0)
j !N

(1)
j !

(∑
a∈Zd

β(0)
a

)N
(0)
j

2−
N

(1)
j
2 σ

N
(1)
j

β(1)

1

N ′′
j !


with

E ′
n := (Φ(0))N

′′

(
M∏
j=1

N ′′
j !

) ∑
(k′1,...,k

′
N′′ )∈K′

n

N ′′∏
j=1

a−d
k′j−k′j−1

An

= o(1) + A−N ′′

n Eν

 M∏
j=1

 ⌊ntj⌋−1∑
kj=⌊ntj−1⌋

1{Skj
=0}

N ′′
j

 .(59)

We observe that there exist
N ′′

j !

N
(0)
j !(N

(1)
j /2)!

sequences (γmj+1, ..., γmj+1
) ∈ {0, 1}N

(0)
j +N

(1)
j in which

the 1’s appear in N
(1)
j /2 pairwise distinct pairs (γj−1, γj). Therefore

En

A
∑M

j=1 N
′′
j

n

= o (1) + E ′
n

M∏
j=1

 N
(1)
j !

(N
(1)
j /2)!2

N
(1)
j
2

(∑
a∈Zd

β(0)
a

)N
(0)
j

σ
N

(1)
j

β(1)


= o (1) + E ′

n

M∏
j=1

(∑
a∈Zd

β(0)
a

)N
(0)
j

E
[
(σβ(1)N )N

(1)
j

] .

It remains to study the asymptotics of E ′
n.

• If d = 1 < α, we consider a Z-valued non-arithmetic random walk (S̃n)n (with i.i.d.

increments) such that (S̃⌊nt⌋/an)n converges in distribution to the α-stable process W .

The previous computations hold also true (more easily) for S̃n instead of Sn and lead to

E ′
n ∼ A−N ′′

n E

 M∏
j=1

 ⌊ntj⌋−1∑
kj=⌊ntj−1⌋

1{S̃kj
=0}

N ′′
j

 as n → +∞ .
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But the process
(∑⌊nt⌋−1

k=0 1{Sk=0}

)
t
of local time at 0 of S̃n converges in distribu-

tion to the process (Lt)t of local time at 0 of W . This combined with the domi-
nations of the moments of any order ensures that (E ′

n)n converges in distribution to

E
[∏M

j=1

(
Ltj − Ltj−1

)N ′′
j

]
. We conclude that

En

A
∑M

j=1 N
′′
j

n

= o (1) + E

[
M∏
j=1

(
Ltj − Ltj−1

)N ′′
j

]
M∏
j=1

(∑
a∈Zd

β(0)
a

)N
(0)
j

E
[
(σβ(1)N )N

(1)
j

]
= o (1) + E

 M∏
j=1

(∑
a∈Zd

β(0)
a

(
Ltj − Ltj−1

))N
(0)
j M∏

j=1

(
σβ(1)(BLtj

−BLtj−1
)
)N(1)

j

 .

• If d = α, then

A−N ′′

n Eν


⌊NtM ⌋−1∑

k=⌊NT0⌋

1{Sk=0}

N ′′ = O

A−N ′′

n

⌊ntM ⌋−1∑
k=⌊NT0⌋

a−d
k

N ′′
= O

((
(A⌊ntM ⌋ − A⌊nT0⌋)/An

)N ′′)
,

converges to 0 as n → +∞, since (An)n≥0 is slowly varying. Thus

E ′
n = o(1) if M ≥ 2 .

Furthermore, it follows from the proof of Theorem 1.1 that if M = 1,

E ′
n = o(1) + A−N ′′

n Eν


 ⌊ntj⌋−1∑

kj=⌊ntj−1⌋

1{Skj
=0}

N ′′
1


= (Φ(0))N

′′
1 N ′′

1 ! = (Φ(0))N
′′
1 E[EN ′′

1 ] ,

where E is a random variable with standard exponential distribution due to theorem 2.3.
We infer that

En

A
∑M

j=1 N
′′
j

n

= o (1) + E

[
(Φ(0)E)N ′′

1

M∏
j=2

(Φ(0)E − Φ(0)E)N
′′
j

]
×

×
M∏
j=1

(∑
a∈Zd

β(0)
a

)N
(0)
j

E
[
(σβ(1)N )N

(1)
j

] .

Therefore

En

A
∑M

j=1 N
′′
j

n

= o (1) + E

 M∏
j=1

(∑
a∈Zd

β(0)
a

(
Φ(0)E(1{tj>0} − 1{tj−1>0})

))N
(0)
j

×

×
M∏
j=1

(σβ(1)(BΦ(0)E1{tj>0} −BΦ(0)E1{tj>0}))
N

(1)
j

]
.
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This combined with the Carleman’s criteria [47] ends the proof of the convergence of the finite
dimensional distributions.
Let us write ((X

(1,n)
t , X

(2,n)
t )t)n≥1 for the sequence of joint processes (23) and let us prove its

tightness. When d = 1 < α, we set T0 = 0, otherwise we fix some T0 ∈ (0;T ). We use the
tightness criterion of [2, Theorem 13.5, (13.4)]. We have proved the convergence of the finite
dimensional distributions. It remains to prove that there exist α1 > 1 and C > 0 such that, for
every r, s, t such that T0 ≤ r ≤ s ≤ t ≤ T , for all j ∈ {1, 2},

(60) ∃pj ∈ N∗, Eν

[
|X(j,n)

t −X(j,n)
s |pj |X(j,n)

s −X(j,n)
r |pj

]
≤ C|t− r|α1 .

Observe first that, if 0 ≤ r ≤ s ≤ t ≤ T and t−r < 1/n, thenX
(n)
t −X

(n)
s = 0 orX

(n)
s −X

(n)
r = 0,

thus the left hand side of (60) is null and so (60) holds true. Assume from now on that
T0 ≤ r ≤ s ≤ t ≤ T and that t− r ≥ 1/n. We will use the following inequality

Eν

[
|X(j,n)

t −X(j,n)
s |pj |X(n)

s −X(n)
r |pj

]
≤
∥∥∥X(j,n)

t −X(j,n)
s

∥∥∥pj
L2pj (ν)

∥∥X(j,n)
s −X(j,n)

r

∥∥pj
L2pj (ν)

.

Thus (60) will follow from the fact that, for any T0 ≤ r < t ≤ T , |t− r| > 1/n, and j ∈ {1, 2},

(61) ∃pj ∈ N∗, sup
a,b:r≤a<b≤t

∥∥∥X(j,n)
b −X(j,n)

a

∥∥∥2pj
L2pj (ν)

≤ C|t− r|α1 .

It follows from our previous moment computation that

sup
a,b:r≤a<b≤t

Eν

[
|X(j,n)

b −X(j,n)
a |2p

]
= O


A−1

n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k


2p
j

 .

Thus it is enough to prove that

(62) ∃α0 > 0, sup
r,t:T0≤r<t<T, |t−r|≥1/n

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k = O ((t− r)α0) .

Indeed, we will conclude by taking pj = j(⌊(2α0)
−1⌋ + 1) so that (61) and so (60) hold true

with α1 :=
2pjα0

j
> 1.

Since (an)n≥0 is (1/α)-regularly varying and since limn→+∞ An = +∞, it follows from Kara-
mata’s theorem [21, 3] that there exist three bounded convergent sequences (c(n))n≥0 (positive,
with positive limit), (b(n))n≥0 (converging to 0) and (θn)n≥0 (positive, converging to α−1

α
if

d < α and to 0 if d = α, see [3, Proposition 1.5.9.b]) such that

∀n ≥ 0, na−d
n = Anθn and An = c(n)n

α−d
α e

∫ n
1

b(t)
t

dt .

Now let us choose α0. If d = 1 < α, we set α0 :=
α−1
2α

. If d = α, we take α0 := 1. Up to change,
if necessary, the first terms of (b(n))n≥0 and (c(n))n≥0, we assume without loss of generality
that the sequence (b(n))n≥0 is bounded by α0.
If d = 1 < α, if r ≤ 2/n (observe that, when d = α, this case does not happen for large values
of n since r ≥ T0 > 0) and |t− r| ≥ 1/n, then

(63) A−1
n

⌊nt⌋−1∑
k=0

a−d
k = O

(
A⌊nt⌋

An

)
= O

(
t1−

1
α
−α0

)
= O ((t− r)α0) ,
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implying (62) and so (61) and (60) in this case.

We assume from now on that T0 ≤ r < t ≤ T and 2/n < r < t ≤ T (so that ⌊nr⌋ − 1 > 0)
and t− r ≥ 1/n (so that ⌊nt⌋ − ⌊nr⌋ ≤ 2(nt− nr)). Then, using the uniform dominations on
(c(n), θn, b(n))n combined with a series-integral comparison, we obtain that

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k =

⌊nt⌋−1∑
k=⌊nr⌋

1

k

c(k)

c(n)

k
α−d
α

n
α−d
α

θke
∫ k
n

b(u)
u

du

= O

⌊nt⌋−1∑
k=⌊nr⌋

1

n
(k/n)−

d
α
−α0

 .(64)

• If d = 1 < α, then 1− d
α
− α0 = α0 and so

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k = O

((
⌊nt⌋ − 1

n

)α0

−
(
⌊nr⌋ − 1

n

)α0
)

= O
((

⌊nt⌋ − ⌊nr⌋
n

)α0
)

= O ((t− r)α0) ,(65)

ending the proof of (62), from which we infer (61) and (60). This ends the proof of the
tightness when d < α.

• When d = α, we obtain

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k = O

((
⌊nr⌋
n

)−α0

−
(
⌊nt⌋
n

)−α0
)

= O

(
⌊nt⌋ − ⌊nr⌋

n

)
= O (t− r) ,(66)

from which we infer (62), (61), (60), and so the tightness in the case where d = α.

This ends the proof of Theorem 2.6.
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[7] L. A. Bunimovich, Ya. G. Sinǎı and N. I. Chernov, Statistical properties of two-dimensional hyperbolic
billiards, (Russian) Uspekhi Mat. Nauk 46 (1991), No. 4 (280), 43–92, 192; translation in Russian Math.
Surveys 46 (1991), No. 4, 47–106.

[8] N. Chernov. Decay of correlations and dispersing billiards. J. Statist. Phys. 94 (1999) 513–556.
[9] N. Chernov, and R. Markarian. Chaotic billiards. Mathematical Surveys and Monographs 127. Providence,

American Mathematical Society (AMS) xii, 316 p. (2006).
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l’Institut Henri Poincaré, Probabilités et Statistiques, 34 p..
[44] M. Phalempin, Slow-fast systems in continuous time and infinite measure, with or without

averaging, preprint (2024), 25 p., hal-04608684v1
[45]
[46] K. Schmidt. On joint recurrence. C. R. Acad. Sci., Paris, Sér. I, Math. 327, No. 9, 837–842 (1998).
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