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Abstract. This work is a contribution to the study of the ergodic and stochastic properties
of Zd-periodic dynamical systems preserving an infinite measure. We establish functional limit
theorems for natural Birkhoff sums related to local times of the Zd-periodic Lorentz gas with
infinite horizon, for both the collision map and the flow. In particular, our results apply to the
difference between the numbers of collisions in two different cells. Because of the Zd-periodicity
of the model we are interested in, these Birkhoff sums can be rewritten as additive functionals
of a Birkhoff sum of the Sinai billiard. Our proofs rely on a general argument valid in a
general framework. For completness and in view of future studies, we state a general result of
convergence of additive functionals of Birkhoff sums of chaotic probability preserving dynamical
systems under general assumptions.

Introduction

Let d ∈ {1, 2}. The Zd-periodic Lorentz gas coming from [14] models the displacement of
a point particle moving at unit speed in Rd × T2−d (i.e. in the plane R2 if d = 2 and on the
tube R×T if d = 1) between a (non-empty) Zd-periodic configuration of obstacles, with elastic
collisions off these obstacles. The obstacles are assumed to be open, convex, with boundary C3,
non null curvature and with pairwise disjoint closures. The number of obstacles is assumed to
be locally finite. We study the Zd-periodic Lorentz gas flow (Yt)t∈R (continuous time model)
via the Zd-periodic Lorentz gas map which describes the dynamics at collision times (discrete
time model). Both for the continuous time and for the discrete time model, a state is a couple
(q, v⃗) made of a position and a unit velocity vector.
For the Lorentz gas flow (Yt)t∈R, the positions are taken in the domain (outside obstacles),
and to avoid any confusion, we identify, when the position is on a obstacle, pre-collisional and
post-collisional vectors. The flow Yt maps a state (q, v⃗) to the state (qt, v⃗t) at time t of a point
particle that was in state (q, v⃗) at time 0. This map preserves the Lebesgue measure m.
For the Lorentz gas map T , the states are the couples of a position on the boundary of an
obstacle and of a unit post-collisional vector. We write M for the set of such states and we
consider the collision map T :M →M which maps a state at a collision time to the state at the
next reflection time. This maps T preserves a measure µ, invariant by translation, equivalent
to the Lebesgue measure and normalized so that µ (M ∩ ([0; 1[2×S1)) = 1. This measure µ is
infinite.
The horizon is said to be finite if there exist no line touching no obstacle, then the horizon is
actually bounded, meaning that the distance of a trajectory between two collisions is uniformly
bounded. It is said to be infinite otherwise.

Some results are now knwon to be true both in finite and infinite horizon. For d ∈ {1, 2}, the
Zd-periodic Lorentz gas is known to be recurrent (both in finite horizon [7, 33] and in infinite
horizon [34]) and ergodic ([31, 17]). A crucial point in the study of this model is that it is
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a Zd-extension of the Sinai billiard map (M̄, T̄ , µ̄), which enjoys a chaotic behaviour. This
probability measure preserving system corresponding to the Lorentz gas modulo Zd for the
position is mixing [32], enjoys exponential decorrelation for Hölder observables (both in finite
horizon[35] and in infinite horizon [5] and enjoys a standard Central Limit Theorem [5] for
Hölder observables (both in finite horizon [3, 4] and in infinite horizon [5]).

When the horizon is finite, the position of a particle after n collisions satisfies a standard
Central Limit Theorem [3, 4] (due to a general argument [36], this result holds true with
respect to any probability measure absolutely continuous with respect to the Lebesgue measure).
Among the results proved for the Lorentz gas in finite horizon, let us mention mixing rate in
infinite measure [33, 19, 20, 8] including expansions of any order (both for the map [20] and
for the flow [8]), limit theorems for Birkhoff sums (both for integrable observables [9], and for
smooth integrable observables with null integral [26, 27]), quantitative recurrence estimates
(estimate for the tail probability of the first return time in the initial cell [9], limit theorem
for the return time in a neighbourhood of the initial state or of its initial position [22]), limit
theorem for the self-intersections number [18, 29], study of differential equations perturbed by
the Lorentz gas [28], etc.

In the present article, we focus on the case when the horizon is fully-dimensional infinite,
i.e. when there exist d non parallel infinite lines touching no obstacle. In this case, the time
between two consecutive collisions is not bounded anymore, and even worth it is not square
integrable with respect to the invariant probability measure µ̄ of the Sinai billiard map. It
is still possible to apply operator techniques as in the finite horizon case, but with a loss of
important nice properties, and the study requires much more delicate study. Roughly speaking,
whereas the Fourier-perturbed operators family t 7→ Pt is C∞ from R to L(B) for some nice
Banach space B when the horizon is finite, when the horizon is infinite t 7→ Pt is only smooth
(and less than C2) from R to L(B → L1), this complicates seriously the work with iterates or
expansion this operator. Nevertheless some results have been established in this infinite horizon
context, overcoming these difficulties by creative ideas combined with additional technicality.
A first specific result is the non-standard Central Limit Theorem satisfied by the position at
the n-th collision time [34]. This result was established together with a non-standard local limit

theorem for the cell label [34], leading to a mixing rate in (n log n)−
d
2 for the Lorentz gas map.

Whereas a mixing expansion has been established in the finite horizon case, this does not seem
reachable in the infinite horizon case because of the weak smoothness properties of t 7→ Pt.
Nevertheless, further mixing estimates, including an error term and also different mixing rates
for some specific null integral smooth observables have been established in [24]. These shows
the variety of different possible mixing rates in the infinite horizon case. Among the recent
results in infinite horizon, let us mention an estimate on the tail probability of the first return
time of the map T to the initial cell [24], a Local Large Deviation (LLD) estimate [15], a mixing

rate in (t log t)−
d
2 for the flow [25] for natural observables (such as indicator functions of balls).

The proof of this last result required a coupled version of the above mentioned LLD, combined
with several new tricks such as a large deviation estimate on the time of the n-th collision, a
joint mixing local limit theorem, a new tightness-type criteria, etc.

The goal of the present article is to investigate the behaviour of ergodic sums of the Lorentz
gas map T , that is of partial sums of the form

∑n−1
k=0 f ◦T k for integrable observables, including

the case of null integral observables. We restrict our study to the case where the observables
only depend on the cell label. This restriction allows us to treat natural interesting cases such



BIRKHOFF SUMS AND LOCAL TIMES OF THE PERIODIC LORENTZ GAS IN INFINITE HORIZON 3

as the number of visits to the 0-cell, or the difference between the number of visits to two
different cells. Unfortunately the general study of [26] does not apply to this context because
of the lack of smoothness of t → Pt ∈ L(B). Nevertheless, we found a way to implement the
moment method used in [26] despite these difficulties and to establish a limit theorem for some
Birkhoff sums of null integral observables of the Zd-periodic Lorentz gas (Theorem 1.1). The
observables we consider are functions of the local time in the Lorentz-gas cells. In particular
it applies to the difference between the number of collisions (among the n first collisions) in
the cell labeled by a ∈ Zd and the number of collisions in another cell labeled by b ∈ Zd with
b ̸= a. Setting ak := max(1,

√
k log k), when the observable is integrable, the Birkhoff sum will

be normalized by An :=
∑n

k=1 a
−d
k , whereas it will be normalized by

√
An when the observable

has null integral (and satisfies some integrability assumption). We reinforce Theorem 1.1 in a
joint functional limit theorem (Theorem 1.3) valid for the Birkhoff sum of a couple (g, f) with
g integrable and f having a null integral, and obtain as a consequence an analogous result for
the Lorentz gas flow (Theorem 1.4). Observe that

An ∼ 2

√
n

log n
if d = 1 , and An ∼ log log n if d = 2 .

The present article is organized as follows. In Section 1 we present our main results for the
periodic Lorentz gas flow in infinite horizon. These results will appear as an application of
general results stated in a general framework in Section 2 completed with Appendix A. In
Section 3, we present a general strategy to prove our general assumptions of Section 2 via
Fourier type operator perturbation techniques and we use this approach to prove our main
results stated in Section 1.

1. Main results for the periodic Lorentz gas in infinite horizon

1.1. Limit theorem for Birkhoff sums for the map. Let us start by introducing some
additional notations. The obstacles are given by Oi + ℓ with ℓ ∈ Zd and with i = 1, ..., I for
some I ∈ N∗ (up to identifying Z1 with Z × {0} when d = 1). We write Cℓ (and call it ℓ-cell)

for the set of states (q, v⃗) ∈ M based on
⋃I

i=1 Oi + ℓ. We identify M̄ with C0 and the Sinai
billiard map T̄ to the map T̄ : M̄ → M̄ corresponding to the quotient map of T modulo Zd for
positions. Let Ψ̄ : M̄ → Zd be the cell change function, i.e., for all x̄ ∈ M̄ = C0, T (x̄) ∈ CΨ̄(x̄).
This can be rewritten as follows

∀x̄ = (q, v⃗) ∈ M̄ = C0, T̄ (x̄) = (q′, v⃗′) ⇒ T (x̄) =
(
q′ + Ψ̄(x̄), v⃗′

)
.

More generally, by Zd-periodicity,

∀x̄ = (q, v⃗) ∈ M̄ = C0, ∀ℓ ∈ Zd, T̄ (x̄) = (q′, v⃗′) ⇒ T ((q + ℓ, v⃗)) =
(
q′ + ℓ+ Ψ̄(x̄), v⃗′

)
.

It then follows by a direct induction that

∀x̄ = (q, v⃗) ∈ M̄ = C0, ∀ℓ ∈ Zd, T̄ n(x̄) = (qn, v⃗n) ⇒ T n((q + ℓ, v⃗)) =
(
qn + ℓ+ S̄n(x̄), v⃗n

)
,

where S̄n :=
∑n−1

k=0 ψ̄◦T̄ k. This means that the dynamics of the Lorentz gas is totally determined
by the joint dynamics of the Sinai billiard and of the Birkhoff sum S̄n. In other words, (M,T, µ)
can be represented as the Zd-extension of (M̄, T̄ , µ̄) by Ψ̄. Recall that Szász and Varjú proved
in [34] that (S̄n/an)n converges in distribution to a Gaussian distribution. Let us write Φ for
the density function of this Gaussian random variable.
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Theorem 1.1. Let f be a µ-integrable function constant on the cells Cℓ. Then
(∑n−1

k=0 f ◦ T k/An

)
n

converges in distribution (with respect to any probability measure absolutely continuous with re-
spect to the Lebesgue measure on M) to Φ(0)

∫
M
f dµ |Z|, where

• Z is a standard gaussian distribution if d = 1,
• Z is a random variable with standard exponential distribution if d = 2.

If furthermore
∫
M
f dµ = 0 and

∫
M
(1 + d(0, ·)) 2+ε−d

2 |f | dµ < ∞ for some ε ∈ (0, 1/2), then(∑n−1
k=0 f ◦ T k/

√
An

)
n
converges in distribution (with respect to any probability measure abso-

lutely continuous with respect to the Lebesgue measure on M) to
√
σ2
fΦ(0)|Z|N where N is a

random variable, independent of Z, with standard gaussian and where σ2
f =

∑
k∈Z
∫
M
f.f◦T k dµ.

The first part of Theorem 1.1 is a direct consequence of [34] via moment estimates used e.g.
in [9] for the periodic Lorentz gas with finite horizon. Even in the case of the finite horizon, the
second part of Theorem 1.1 (study of Birkhoff sums of null integral) is more delicate to establish
since it requires a delicate care of cancellations in order to identify the main order terms in
compositions of perturbed operators using their expansions (see [26]). When the horizon is
infinite, taking care of these cancellations become even more challenging since the perturbed
operators do not admit expansion as a family of operators, but only expansions as a family of
linear maps from B to L1, forbidding direct compositions of these expansions. This additional
difficulty comes from the fact that the cell change function Ψ̄ is not square integrable with
respect to µ̄ (whereas it is bounded and so finite-valued when the horizon of the Lorentz process
is finite).

Remark 1.2. It follows from the first part of Theorem 1.1 with the notations therein combined
with the Hopf ergodic theorem1 that for any µ-integrable h : M → R,

(∑n−1
k=0 h ◦ T k/An

)
n

converges in distribution to Φ(0)
∫
M
h dµ |Z|. This result can be seen as a weak Law of Large

Number for the infinite measure preserving dynamical system (M,T, µ).

1.2. Functional limit theorem for the map and for the flow.

Theorem 1.3. Let f, g : M → R be two integrable functions, with f constant on each cell Cℓ.
Assume furthermore that

∫
M
(1 + d(0, ·)) 2+ε−d

2 |f | dµ < ∞ for some ε ∈ (0, 1
2
) and

∫
M
f dµ = 0,

then the following family of couple of processes

(1)

⌊nt⌋−1∑
k=0

g ◦ T k/An


t

,

⌊nt⌋−1∑
k=0

f ◦ T k/
√
An


t


n≥1

converges in distribution (with respect to any probability measure absolutely continuous with
respect to the Lebesgue measure on M) to ((

∫
M
g dµLt)t, (Bσ2

fLt
)t) (in (D([0;T ]))2 for all T > 0

if d = 1 and in (D([T0;T ]))
2 for all 0 < T0 < T if d = 2), where σ2

f is the quantity introduced
in Theorem 1.1, where B is a standard brownian motion independent of the process Lt where

• if d = 1, Lt is the local time at 0 in the time interval [0; t] of the Brownian motion W
limit in distribution of (S̄⌊nt⌋/

√
n)t as n→ +∞,

1The Hopf ergodic theorem states that, since (M,µ, T ) is recurrent ergodic, the sequence of ergodic ratios(∑n−1
k=0 h ◦ T k/

∑n−1
k=0 1C0

◦ T k
)
n≥1

converges almost surely to
∫
M

h dµ/µ(C0) =
∫
M

h dµ.
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• if d = 2, for all t > 0 Lt = L1 is a random variable with exponential distribution with
mean Φ(0).

.

Our proofs of Theorems 1.1 and 1.3 are given in Section 3. They rely on the general results
(in a general framework) stated in the Section 2.

As an immediate consequence of Theorem 1.3 combined with the classical random time
change result (see e.g. [1, Chapter 14]), we obtain the following result valid for the periodic
Lorentz gas flow. Let us write M for the set of states of the Lorentz gas flow, and m for the
Lebesgue measure on M, and Nt(ℓ) for the number of collisions of the flow in the cell Cℓ up to
time t.

Theorem 1.4. For any real valued sequence (βℓ)ℓ∈Zd such that
∑

ℓ∈Zd(1+ |ℓ|) 2+ε−d
2 |βℓ| for some

ε > 0 and
∑

ℓ∈Zd βℓ = 0, then the family of processes

(2)

(A−1
n Nnt(0),A

− 1
2

n

∑
ℓ∈Zd

βℓNnt(ℓ)

)
t


n≥1

converges in distribution (with respect to any probability measure absolutely continuous with
respect to the Lebesgue measure on M) to ((L′

t)t, (Bσ2L′
t
)t) (in (D([0;T ]))2 for all T > 0 if

d = 1 and in (D([T0;T ]))
2 for all 0 < T0 < T if d = 2), where σ2 is quantity σ2

f introduced in

Theorem 1.1 for the function f such that f|Cℓ ≡ βℓ for all ℓ ∈ Zd, or equivalently, with

σ2 :=
∑
k∈Z

∑
a,b∈Zd

βaβbµ̄
(
S̄k = b− a

)
=
∑
k∈Z

∑
a,b∈Zd

βaβb
(
µ̄
(
S̄k = b− a

)
− µ̄

(
S̄k = b

)
− µ̄

(
S̄k = −a

)
+ µ̄

(
S̄k = 0

))
.

where B is a standard brownian motion independent of the process L̃t where

• if d = 1, L′
t is the local time at 0 in the time interval [0; t] of the Brownian motion W ′

limit in distribution, as n → +∞, of ((qnt/
√
n)t)n where qnt is the first coordinate of

the position of Ynt(·), i.e. the first coordinate of the position at time nt of the particle,
• if d = 2, for all t > 0 L′

t = L′
1 is a random variable with exponential distribution with

mean Φ(0).

.

Proof of Theorem 1.4. Recall that the Sinai billiard flow (at unit speed) endowed with the

Lebesgue measurem can naturally be represented by the suspension flow over (M̄, T̄ , 2
∑I

i=1 |∂Oi|µ̄)
with roof function τ , the time before the next collision. Indeed, this representation consists
in identifying each y ∈ M with the unique couple (x, s) such that x ∈ M , s ∈ [0; τ(x)) and
y = Ys(x) (x corresponds to the state at the previous collision time and s to the time spent
since this previous colliqion time). Since the Sinai billiard system is ergodic, it follows from the
Birkhoff ergodic theorem that the number of collisions nnt for the billiard flow (or equivalently
for the Zd-periodic Lorentz gas flow) in the time interval [0;nt] is almost surely equivalent to
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nt/Eµ̄[τ ] as n→ +∞. We conclude by applying Theorem 1.3 to g = 1C0 and to f =
∑

ℓ∈Zd βℓ1Cℓ ,
and using the random time nnt, that(A−1

nn Nnt(0),A
− 1

2
nn

∑
ℓ∈Zd

βℓNnt(ℓ)

)
t


n

has the same limit in distribution (X(1), X(2)) as (1) for the above choice of (g, f). Now,

using the fact that, almost surely, as t → +∞, Ann ∼ An/(Eµ̄[τ ])
2−d
2 , we conclude that the

joint process (2) converges in distribution to the joint process ((Eµ̄[τ ])
2−d
2 X(1), (Eµ̄[τ ])

2−d
4 X(2)).

But, by the same random time change argument, the Brownian motion W ′ corresponds to the
Brownian motion limit of ((S̄nnt/

√
n)t)n, i.e. to the Brownian motion limit of (S̄nt/Eµ̄[τ ]/

√
n)n,

i.e. to W/
√

Eµ̄[τ ]. Thus the local time (L′
t)t of W

′ at 0, is equal to (
√
Eµ̄[τ ]Lt)t, recalling that

L is the local time of W at 0. This ends the proof of the corollary. □

Remark 1.5. Let G : M → R be an integrable function with respect to the Lebesgue measure m
on M (velocity vectors v⃗ ∈ S1 being identified with an angle in R/Z). The proof of Theorem 1.3

can be adapted, by taking defined on M by g(x) :=
∫ τ(x)

0
G(Ys(x)) ds and by noticing that∫

M

g dµ =

∫
MGdm

2
∑I

i=1 |∂Oi|
to prove that the family of processes(A−1

n

∫ nt

0

G ◦ Ys ds,A
− 1

2
n

∑
ℓ∈Zd

βℓNnt(ℓ)

)
t


n

converges in distribution (with respect to any probability measure absolutely continuous with

respect to the Lebesgue measure on Q × S1) to
((

1

2
∑I

i=1 |∂Oi|

∫
M
GdmL′

t )t, (Bσ2L′
t

)
t

)
in the

same sense as in Theorem 1.4, with σ2 the quantity appearing in Theorem 1.4.

2. General results

Observe that the Birkhoff sums considered in Theorem 1.1 can be rewritten as additive
functionals (

∑n−1
k=0 βS̄k

)n of the Birkhoff sums (S̄n)n with respect to the Sinai billiard system
(M̄, T̄ , µ̄). We keep this formulation in the present section and state limit theorems for addi-
tive functionals of Birkhoff sums of a probability preserving dynamical systems under general
assumptions expressed in terms of operators. We will see in Section 3 how these assumptions
can be proved using Fourier-perturbations of the transfer operator and how this result can be
used to prove Theorem 1.1.

2.1. General assumptions.

Hypothesis 2.1. Let d ∈ {1, 2} and α ∈ [d; 2]. Let (∆, F, ν) be a probability preserving
dynamical system with transfer operator P . Let Ψ : ∆ → Zd. For any a ∈ Zd and any
non-negative integer n, we set Sn :=

∑n−1
k=0 Ψ ◦ F k and we set Qn,a for the operator given by

Qn,a := P n(1{Sn=a}·) .
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There exist a (1/α)-regularly varying sequence (an)n≥0 such that An :=
∑n

k=0 a
−d
n → +∞ as

n→ +∞ and a Banach space (B, ∥ · ∥B) preserved by the operators Qn,a such that

(3) 1∆ ∈ B ↪→ L1(ν) ,

where the notation ↪→ means a continuous inclusion, we assume furthermore that

(4) ∥Qn,0∥B = O(a−d
n )

and that there exists Φ(0) > 0 such that 2

(5) Qn,0 = Φ(0)a−d
n Eν [·] + o(a−d

n ) in L(B → L1(ν)) .

In [26], to study Birkhoff sums of the periodic Lorentz gas with finite horizon, we used the
following condition

Qn,a = Φ(a/an)a
−d
n Eν [·] + o(a−d

n ) in L(B) .
A crucial difference between this condition and the assumptions of the present article is that (5)
is much weaker since it holds in L(B → L1(ν)) instead of L(B). In practice, this weaker
condition comes from the fact that the family of perturbed operators t 7→ Pt ∈ L(B) behind
(see Section 3) is not continuous, but that t 7→ Pt ∈ L(B → L1(ν)) is continuous.
To study additive functionals

∑n−1
k=0 βSk

with
∑

a∈Zd βa = 0, we will reinforce the previous
assumption as follows.

Hypothesis 2.2. Assume Hypothesis 2.1 and that

(6) sup
a∈Zd

∥Qk,a∥B = O(a−d
n ) ,

and that, for all η ∈ [0; 1],

(7)
∥∥Q′

k,a,b := Qk,b −Qk,a

∥∥
B = O

(
|b− a|ηa−d−η

k

)
,

and

(8)
∥∥Q′′

k,a,b := Qk,b−a −Qk,b −Qk,−a +Qk,0

∥∥
B = O

(
(|a||b|)ηa−d−2η

k

)
,

uniformly in a, b ∈ Zd.

2.2. Limit theorem for additive functionals of Birkhoff sums.

Theorem 2.3. Assume Hypothesis 2.1. Then
(∑n−1

k=0 1{Sk=0}/An

)
n≥1

converges in distribu-

tion (and in the sense of moments), with respect to ν, to Φ(0)Y, where Y is a Mittag-Leffler
distribution of index α−d

α
, i.e.

E[YN ] := N !
Γ(1 + α−d

α
)N

Γ(1 +N α−d
α

)
.

If furthermore
∑

ℓ∈Zd |1+ |ℓ||η|βℓ| <∞ with η := α+ε−d
2

for some ε ∈ (0, 1/2) and
∑

ℓ∈Zd βℓ = 0,

and if Hypothesis 2.2 holds true, then
(∑n−1

k=0 βSk
/
√
An

)
n≥1

converges in distribution (and in

2Φ(0) will appear to be the value at 0 of the density function Φ of the limit in distribution of (Sn/an)n (see
Section 3).
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the sense of moments), with respect to ν, to
√
σ2
βΦ(0)YN where N is a random variable,

independent of Z, with standard gaussian and where

σ2
β :=

∑
k∈Z

∑
a,b∈Zd

βaβbν
(
S|k| = b− a

)
(9)

=
∑
k∈Z

∑
a,b∈Zd

βaβb
(
ν
(
S|k| = b− a

)
− ν

(
S|k| = b

)
− ν

(
S|k| = −a

)
+ ν

(
S|k| = 0

))
.(10)

Remark 2.4. The summability assumption of βℓ appearing in Theorem 2.3 is to our knowledge
the optimal one even in the case of additive observables of random walks with i.i.d. increments.

Remark 2.5. It follows from our assumptions that, if β is not identically null, only the second
sum (10) defining σ2

β is absolutely convergent in k, a, b. Indeed

ν(Sk = b− a)− ν(Sk = b)− ν(Sk = −a) + ν(Sk = 0) = Eν [Q
′′
k,a,b(1)]

is summable in (k, a, b) ∈ N × Zd × Zd, whereas ν(Sk = 0) = Eν [Qk,0(1)] ∼ Φ(0)a−d
k is not

summable. The summability of (10) combined with the fact that

∀k ≥ 0,
∑

a,b∈Zd

βaβbν(Sk = b− a) =
∑

a,b∈Zd

βaβbEν [Q
′′
k,a,b(1)]

implies the absolute convergence in k of the sum appearing in the right hand side of (9).

Proof of Theorem 2.3. Let (βℓ)ℓ∈Zd be as in the assumption of Theorem 2.3. We start by writing

Eν

(n−1∑
k=0

βSk

)N
 =

n−1∑
k1,...,kN=0

Eν

[
N∏
j=1

βSkj

]

=
∑

0≤k1≤...≤kN≤n−1

c(k1,...,kN )

∑
a1,...,aN∈Zd

Eν

[
N∏
j=1

(
βaj1{Skj

=aj}

)]
,(11)

where we denote by c(k1,...,kN ) the number of N -uples (k′1, ..., k
′
N) ∈ {0, ..., n − 1}N such that

there exists a permutation σ ∈ SN such that k′i = kσ(i) for all i = 1, ..., N . We observe that

Eν

[
N∏
j=1

(
βaj1{Skj

=aj}

)]
= Eν

[
N∏
j=1

(
βaj1{Skj−kj−1

=aj−aj−1} ◦ F kj−1

)]

= Eν

[
P kN

(
N∏
j=1

(
βaj1{Skj−kj−1

=aj−aj−1} ◦ F kj−1

))]
,(12)

setting a0 := 0 and P for the transfer operator of F with respect to ν, using the fact that
Eν [·] = Eν [P

kN (·)]. Since P k(f.g ◦ F k) = gP k(f), we observe that, for any j = 1, ..., N , for any
k1 ≤ ... ≤ kj and any b1, ..., bj ∈ Zd,

P kj

(
j∏

i=1

1{Ski−ki−1
=bi} ◦ F ki−1

)
= P kj−kj−1

(
1{Skj−kj−1

=bj}P
kj−1

(
j−1∏
i=1

(
1{Ski−ki−1

=bi} ◦ F ki−1

)))
.

(13)



BIRKHOFF SUMS AND LOCAL TIMES OF THE PERIODIC LORENTZ GAS IN INFINITE HORIZON 9

It follows from (12) and (13) that

Eν

[
N∏
j=1

(
βaj1{Skj

=aj}

)]
= Eν

[
βaNQkN−kN−1,aN−aN−1

(· · · (βa2Qk2−k1,a2−a1(βa1Qk1,a1(1))) · · · )
]
.

(14)

For the first part of Theorem 2.3, we apply (11) with βℓ = 1{ℓ=0} with (14). In that case,
applying repeatedly (5), combined with (4) and (3), the right hand side of (14) becomes

Eν

[
QkN−kN−1,0(...(Qk1,0(1)))

]
= (Φ(0))N

N∏
j=1

a−d
kj−kj−1

+
N∑
j=1

o(a−d
kj−kj−1

))
∏
i ̸=j

O(a−d
ki−ki−1

)

and so that

Eν

(n−1∑
k=0

1{Sk=0}

)N
 = o(AN

n ) +N !

(
Φ(0)

∫
M

f dµ

)N ∑
1<k1<...<kN≤n−1

N∏
j=1

a−d
kj−kj−1

= o(AN
n ) +N !AN

n

[(
Φ(0)

∫
M

f dµ

)N Γ(1 + 2−d
2
)N

Γ(1 +N 2−d
2
)
+ o(1)

]
,

using [26, Lemma 2.7] for the last estimate. This ends the proof of the first part of Theorem 2.3.

Now let us prove the second part. We assume from now on that
∑

a∈Zd βa = 0 and that∑
a∈Zd(1 + |a|η)|βa| < ∞ with η := α−d+ε

2
for some ε ∈ (0; 1

2
). Recall that it follows from (11)

combined with (14) that

Eν

(n−1∑
k=0

βSk

)N
 =

∑
0≤k1≤...≤kN≤n−1

c(k1,...,kN )

∑
a1,...,aN∈Zd

Eν

[
βaNQkN−kN−1,aN−aN−1

(· · · (βa2Qk2−k1,a2−a1(βa1Qk1,a1(1))) · · · )
]
.(15)

In Formula (15), we decompose each Qk,a in Q
(0)
k,a +Q

(1)
k,a, with Q

(0)
k,a := Qk,0 and Q

(1)
k,a := Q′

k,a :=
Q′

k,0,a = Qk,a −Qk,0. Thus

Eν

(n−1∑
k=0

βSk

)N
 =

∑
ε1,...,εN∈{0,1}

H(n,N)
ε1,...,εN

,(16)

with

H(n,N)
ε1,...,εN

=
∑

0≤k1≤...≤kN≤n−1

c(k1,...,kN )H
n,N
k,ε

setting k = (k1, ..., kN), ε = (ε1, ..., εN) and

Hn,N
k,ε :=

∑
a1,...,aN∈Zd

Eν

[
βaNQ

(εN )
kN−kN−1,aN−aN−1

(· · · (βa2Q
(ε1)
k2−k1,a2−a1

(βa1Qk1,a1(1))) · · · )
]

=
∑

aN∈Zd

Eν

βaN
 ∑

aN−1∈Zd

βaN−1
Q

(εN )
kN−kN−1,aN−aN−1

· · ·

∑
a1∈Zd

βa1Q
(ε2)
k2−k1,a2−a1

(
Q

(ε1)
k1,a1

(1)
) · · ·

 .
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We observe that H
(n,N)
ε1,...,εN = 0 as soon as εN = 0 or if there exists j0 = 1, ..., N − 1 such that

εj0 = εj0+1 = 0 (since
∑

aj0∈Zd βaj0 = 0). Thus, we restrict our study to the case of the ε′js for

which the j0’s such that εj0 = 0 are isolated and do not include N . Let such an ε = (ε1, ..., εN).
Observe that there are at most N/2 indices j’s such that εj = 0. We set, by convention,
εN+1 = ε0 = 0. We will prove that

(17) Hn,N
ε1,...,εN

= o
(
A

N
2
n

)
unless if #{j : εj = 0} =

N

2
,

i.e. Hn,N
ε1,...,εN

= o
(
A

N
2
n

)
unless if N is even and if (ε1, ..., εN) = (0, 1, ..., 0, 1). For reader’s

convenience, we first give a short proof of this estimate in a particular case. A proof of this

estimate in the general case
∑

a∈Zd |a|
α−d+ε

2 |βa| <∞ with η = α−d+ε
2

, with ε ∈ (0; 1
2
) is given in

Appendix A.

• A short proof of (17) in a particular case. Assume in this item only that α < d+1 and∑
a∈Zd(1 + |a|)2η̄|βa| <∞ with α− d < η̄ < 1. It follows from Hypothesis 2.2 that

Q
(εj)
kj−kj−1,aj−aj−1

= O
(
|aj − aj−1|εj η̄a

−d−εj η̄
kj−kj−1

)
= O

(
((1 + |aj|)(1 + |aj−1|))εj η̄a

−d−εj η̄
kj−kj−1

)
,

and so that∣∣Hn,N
ε1,...,εN

∣∣ = O

(∑
a∈Zd

(1 + |a|)2η̄|βa|

)N N∏
j=1

n−1∑
kj=0

a
−d−εj η̄
k


= O

(
A#{j:εj=0}

n

)
,

where we used the fact that
∑

a∈Zd(1+|a|)2η̄|βa| <∞ combined with
∑

k≥0 a
−d−η̄
k < +∞,

since d+ η̄ > α and since (an)n is 1
α
-regularly varying. This concludes the proof of (17).

In particular, Formula (17) ensures that

(18) Eν

(n−1∑
k=0

βSk

)N
 = o

(
A

N
2
n

)
if N is odd ,

and that

(19) Eν

(n−1∑
k=0

βSk

)N
 = H

(n,N)
0,1,...,0,1 + o

(
A

N
2
n

)
if N is even .

Assume from now on that N is even, then

H
(n,N)
0,1,...,0,1 =

∑
0≤k1≤...≤kN≤n−1

ck1,...,kN
∑

a1,...,aN∈Zd

(
N∏
j=1

βaj

)
Eν [Q

′
kN−kN−1,aN−aN−1

(QkN−1−kN−2,0(...(Q
′
k2−k1,a2−a1

(Qk1,0(1)))...))]

Hence

H
(n,N)
0,1,...,0,1 =

∑
0≤k1≤...≤kN≤n−1

ck1,...,kNEν [Q̄kN−kN−1
(QkN−1−kN−2,0(...(Q̄k2−k1(Qk1,0(1)))...))] ,(20)
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with

Q̄k :=
∑

a,b∈Zd

βaβbQ
′
k,b−a =

∑
a,b∈Zd

βaβbQk,b−a =
∑

a,b∈Zd

βaβbQ
′′
k,a,b ,(21)

where we used the fact that
∑

a∈Zd βa = 0 and the notation Q′′
k,a,b = Qk,b−a−Qk,b−Qk,−a+Qk,0

introduced in (8). Combining (8) with η = α+ε−d
2

with (21), since
∑

a∈Zd(1+ |a|)η|βa| <∞, we
infer that

(22) Q̄k = O
(
a−α−ε
k

)
in L(B) ,

since d + 2η = α + ε, which ensures the summability of ∥Q̄k∥B. The study of (20) leads us
to the question of estimating Eν [Q̄k′(Qk,0(h))]. Unfortunately we cannot compose directly (8)
and (5) since this last estimate is in L(B → L1(ν)) and not in L(B). But, proceeding in two
steps, we will prove that

(23) Eν [Q̄k′(Qk,0(h))]− Φ(0)a−d
k Eν

[
Q̄k′(1)

]
Eν [h] = O

(
a−α−ε′

k′ ∥h∥B
)
o(a−d

k ) ,

where ε′ ∈ (0, 1
2
) is small enough so that (α−d+2ε′)(α+ε′)

α+2ε′
≤ α− d+ ε = 2η.

First, dominating separately both terms, it follows from (8) with η′ = α+2ε′−d
2

∈ (0, 1) and
from (3) and (4) that

Eν [Q
′′
k′,a,b(Qk,0(h))]− Φ(0)a−d

k Eν

[
Q′′

k′,a,b(1)
]
Eν [h] = O

(
|a|η′|b|η′a−α−2ε′

k′ a−d
k ∥h∥B

)
,(24)

since −d− 2η′ = −α− 2ε′. Second, it follows from the definition of Q′′
k′,a,b that

Eν [Q
′′
k′,a,b(h0)] = Eν

[
(1{Sk′=b−a} − 1{Sk′=b} − 1{Sk′=−a} + 1{Sk′=0}).h0

]
= O

(
∥h0∥L1(ν)

)
.

This combined with (5) ensures that

Eν [Q
′′
k′,a,b(Qk,0(h))]− Φ(0)a−d

k Eν

[
Q′′

k′,a,b(1)
]
Eν [h]

= Eν

[
Q′′

k′,a,b(Qk,0(h)− Φ(0)a−d
k Eν [h])

]
= O(∥h∥B)o(a−d

k ) .(25)

Thus, combining (24) and (25), we obtain that

Eν [Q
′′
k′,a,b(Qk,0(h))]− Φ(0)a−d

k Eν

[
Q′′

k′,a,b(1)
]
Eν [h]

=
(
O(|a|η′ |b|η′a−α−2ε′

k′ a−d
k ∥h∥B)

)(α+ε′)/(α+2ε′) (
O(∥h∥B)o(a−d

k )
)ε′/(α+2ε′)

= O(|a|
η′(α+ε′)
α+2ε′ |b|

η′(α+ε)

α+2ε′ a−α−ε′

k′ ∥h∥B)o(a−d
k ) .

After summation over a, b ∈ Zd, we obtain (23), since η′(α+ε′)
α+2ε′

≤ η and since
∑

a∈Zd(1+|a|η)|βa| <
∞.

Using (23) inductively in (20) (combined with the fact that ∥Qk,0∥B = O(a−d
k ) and that

∥Q̄k∥B is summable which follows from (22)), we conclude that, when N is even

H
(n,N)
0,1,...,0,1 =

∑
0≤k1≤...≤kN

ck1,...,kN

N/2∏
j=1

(
Φ(0)

(
a−d
k2j−1−k2j−2

Eν [Q̄k2j−k2j−1
(1)]

))

+O

( n∑
k=1

a−d
k

)N/2−1 n∑
k=1

o(a−d
k )

 .
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Recall that

σ2
β =

∑
k∈Z

Eν

[
Q̄|k|(1)

]
= Eν

[
Q̄0(1)

]
+ 2

∑
k≥1

Eν

[
Q̄k(1)

]
.

Therefore, proceeding exactly as in [26, p. 1918-1919], we obtain that

H
(n,N)
0,1,...,0,1 =

Γ(1 + α−d
α

)N/2

Γ(1 + N
2

α−d
α

)

N !

2N/2

(
Φ(0)σ2

βAn

)N/2
+ o

(
AN/2

n

)
= AN/2

n E
[(√

σ2
βΦ(0)|Z|N

)N]
+ o

(
AN/2

n

)
.

This, combined with (18) and (19), ends the proof of the convergence of every moments. We
conclude the convergence in distribution by the Carleman criterion [30]. □

2.3. Joint Limit theorem for additive functional of Birkhoff sums.

Theorem 2.6. Assume Assumptions 2.1 and 2.2. Let η := α+ε−d
2

for some ε ∈ (0, 1/2). Let

(β
(0)
a )a∈Zd and (β

(1)
a )a∈Zd be two families of real numbers such that

∑
a∈Zd(1 + |a|)η|β(j)

a | < ∞
and

∑
a∈Zd β

(1)
a = 0. Then the following family of couples of processes

(26)

⌊nt⌋−1∑
k=0

β
(0)
Sk
/An


t

,

⌊nt⌋−1∑
k=0

β
(1)
Sk
/
√
An


t


n≥1

converges in distribution, with respect to ν, to ((
∑

a∈Zd β
(0)
a Lt)t, (σβ(1)BLt)t), (in (D([0;T ]))2 for

all T > 0 if d = 1 and in (D([T0;T ]))
2 for all 0 < T0 < T if d = 2), where σ2

β(1) is defined in

Formula (9) of Theorem 2.3 taking β = β(1), where B is a Brownian motion and where Lt is
the following process

• if α > d, Lt is the local time at 0 in the time interval [0; t] of an centered α-stable process
W , independent of B, such that W1 has density probability Φ with Φ(0) satisfying (5),

• if α = d, Lt = 1{t>0}L1, where L1 is a random variable with exponential distribution
with mean Φ(0).

Proof of Theorem 2.6. We start by proving the convergence of the finite distributions and we
will then prove the tightness. For the convergence of the finite distributions, we use again the
convergence of moments. It is enough to study the asymptotic behaviour as n goes to infinity
of every moments of the following form

En := Eν

 M∏
j=1

 ⌊ntj⌋−1∑
kj=⌊ntj−1⌋

β
(0)
Sk

N
(0)
j
 ⌊ntj⌋−1∑

k′j=⌊ntj−1⌋

β
(1)
Sk

N
(1)
j

 ,

for any M ∈ N∗, any N
(0)
j , N

(1)
j ∈ N, any t0 = 0 < t1 < ... < tM . We set Γk :=

∑M
j=1N

(k)
j for

k ∈ {0, 1} and will prove that

lim
n→+∞

A
−Γ0−Γ1

2
n En = (Φ(0))Γ0+

Γ1
2

(∑
a∈Zd

β(0)
a

)Γ0

σΓ1

β(1)E

[
M∏
j=1

(
Ltj − Ltj−1

)N(0)
j +

N
(1)
j
2

]
M∏
j=1

E[NN
(1)
j ] .
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We set mi :=
∑i

r=1(N
(0)
r + N

(1)
r ) and N := mM . Proceeding as in the proof of Theorem 1.1,

we observe that En can be rewritten as follows

∑
γ1,...,γN

∑
(k1,...,kN )∈Kn

N∏
i=1

c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )

∑
a1,...,aN∈Zd

(
N∏
j=1

β(γj)
aj

)
ν (∀i = 1, ..., N, Ski = ai) ,(27)

where Kn is the set of increasing N -uples (k1, ..., kN) such that ⌊ntj−1⌋ ≤ km ≤ ⌊ntj⌋ − 1
for all m such that mj−1 < m ≤ mj, where the first sum is taken over γj ∈ {0, 1} such

that, for all γ ∈ {0, 1} and all i = 1, ...,M , #{j = mi−1 + 1, ...,mi : γj = γ} = N
(γ)
i and

where c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )
is the number of (γ′mi−1+1, , ..., γ

′
mi
, k′mi−1+1, ..., k

′
mi
) ∈ {0, 1}N

(1)
i +N

(2)
i ×

{⌊nti−1⌋, ..., ⌊nti⌋ − 1}N
(0)
i +N

(1)
i such that there exists a permutation σ of {mi−1 + 1, ...,mi}

such that γ′σ(r) = γr and k′σ(r) = kr for all r ∈ {mi−1 + 1, ...,mi}. Furthermore we use (14) to

express ν(∀i = 1, ...j − 1, N, ki = ai) using a composition of operators Qkj−kj−1,aj−aj−1
and, as

in Appendix A, for each j, we decompose each Qkj−kj−1,aj−aj−1
in a sum of Q̃(ε). This leads to

En :=
∑

γ=(γ1,...,γN )

∑
ε=(ε1,...,εN )

H̃(n)
ε (γ) ,(28)

with

H̃(n)
ε1,...,εN

(γ1, ..., γN) =
∑

(k1,...,kN )∈Kn

M∏
i=1

c
(hmi−1+1,...,hmi )

(kmi−1+1,...,kmi )

∑
a1,...,aN∈Zd

Eν

[
β(γN )
aN

(
β(γN−1)
aN−1

Q̃
(εN )
kN−kN−1,aN−1,aN

(
· · ·
(
β(γ1)
a1

Q̃
(ε2)
k2−k1,a1,a2

(
Q̃

(ε1)
k1,0,a1

(1)
))

· · ·
))]

,

with the use of the operators Q̃
(ε)
(k,a,b) defined in Appendix A and where the sum over ε1, ..., εN

is taken over ε2, ..., εN ∈ {0, 1}2 and ε1 ∈ {(0, 0), (0, 1)}. We write εj = (εj,1, εj,2). Since∑
a∈Zd β

(1)
a = 0, Hε1,...,εN = 0 if there exists j = 1, ..., N such that γj = 1 and εj,2 + εj+1,1 = 0

(with convention εN+1,1 = 0). Therefore we assume from now on that (γ, ε) is such that
εj,2 + εj+1,1 ≥ γj, for all j (with the convention εN+1,1 = 0, and with ε1,1 = 0) and we call
admissible such a pair (γ, ε). Then

H̃(n)
ε (γ) = O

 ∑
(k1,...,kN )

∑
a1,...,aN∈Zd

N∏
j=1

(
|β(γj)

aj
|
∥∥∥Q̃(εj)

kj−kj−1,aj−1,aj

∥∥∥
B

)
= O

 ∑
(k1,...,kN )

∑
a1,...,aN∈Zd

N∏
j=1

(
|β(γj)

aj
| (1 + |aj|)ηa

−d−ηj,1εj,1−ηj,2εj,2
kj−kj−1

) ,

with (ηj,i)j,i a sequence in {0, η} such that ηj,2εj,2 + ηj+1,1εj+1,1 = ηγj and such that

• (ηj,1, ηj,2) = ηεj if εj ̸= (1, 1),
• ηj,1 = η(1− εj−1,2) if εj = (1, 1),
• ηj,2 = η if εj = (1, 1) and εj+1 ̸= (1, 0),
• ηj,2 = 0 if εj = (1, 1) and εj+1 = (1, 0).
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As seen in Appendix A, we use the fact that there exists u0 ∈ (0, 1] such that
∑n−1

k=0 a
−d−η
k =

O
(
A

1−u0
2

n

)
and that

∑
k≥0 a

−d−2η
k < ∞. Using the summability assumption on β

(γ)
a , we infer

that

H̃(n)
ε (γ) = O

 ∑
(k1,...,kN )

∏
j:εj,1+εj,2=0

a
−d−ηj,1εj,1−ηj,2εj,2
kj−kj−1

 = O
(
AEη

0 +
1−u0

2
Eη
1

n

)
,

where

Eη
k := #{j = 1, ..., N : ηj,1εj,1 + ηj,2εj,2 = kη} .

We also set Ek := #{j = 1, ..., N : εj,1 + εj,2 = k} and observe that E1 ≤ Eη
1 . Recall Γk =∑N

j=0N
(k)
j = #{j : γj = k}. Then

N = Eη
0 + Eη

1 + Eη
2 = E0 + E1 + E2 = Γ0 + Γ1 .

On the other side

ηΓ1 = η
N∑
j=1

γj =
N∑
j=1

(ηj,2εj,2 + ηj+1,1εj+1,1)

=
N∑
j=1

(ηj,1εj,1 + ηj+1,1εj,2)− η1,1ε1,1 = η (Eη
1 + 2Eη

2 ) ,

and so

Eη
0 +

1− u0
2

Eη
1 = N − Eη

2 − Eη
1 +

1− u0
2

Eη
1

= (Γ0 + Γ1)−
(
Γ1 − Eη

1

2

)
− 1 + u0

2
Eη
1

= Γ0 +
Γ1

2
− u0

2
Eη
1 .

Hence we have proved that

H(n)
ε (γ) = o

(
AΓ0+

Γ1
2

n

)
if Eη

1 > 0 ,

Now we assume that Eη
1 = 0, this implies that E1 = 0 and so that the j’s such that εj = (1, 1)

are isolated and E2 = Eη
2 = Γ1

2
.

Observe that this implies that Γ1 =
∑M

j=1N
(1)
j is even and we have proved that

(29) En = o

(
A

Γ0+
Γ1
2

n

)
if n is odd .

The above conditions on γ and ε imply that ε is a sequence of (0, 0) and (1, 1) (which are
isolated) and that εj,2 + εj+1,1 ≥ γj, thus εj,2 + εj+1,1 = γj and

• if γj = 0, then both εj = (εj,1, εj,2) and εj+1 = (εj+1,1, εj+1,2) are (0, 0).
• if γj = 1, then either εj = (εj,1, εj,2) or εj = (εj,1, εj,2) is (1, 1), and the other one is
(0, 0).
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This means that the j’s such that γj = 1 appear in pairwise disjoint pairs (j − 1, j) such that
(γj−1, γj) = (1, 1), and that εj = (1, 1) if and only if (j − 1, j) is such a couple. Fixing such a
pair (γ, ε), let us write J for the set of such j such that εj = (1, 1). Then, using repeatedly (5)
and (24), we obtain

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) =
∑

(k1,...,kN )∈Kn

M∏
i=1

c
(γmi−1+1,...,γmi )

(kmi−1+1,...,kmi )

∏
j′:γj′=0

(
a−d
kj′−kj′−1

An

Φ(0)
∑
a∈Zd

β(0)
a

)
∏
j∈J

Φ(0)a−d
kj−1−kj−2

2An

∑
a,b∈Zd

β(1)
a β

(1)
b Eν

[
Q′′

kj−kj−1,a,b
(1)
]
+ o(1)

and so

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) = o (1) + Φ(0)Γ0+
Γ1
2

(∑
a∈Zd

β(0)
a

)Γ0 ∑
(k1,...,kN )∈Kn:kj<kj+1

M∏
i=1

(N
(0)
i )!(N

(1)
i )!

 ∏
j:γj=0

a−d
kj−kj−1

An

∏
j∈J

a−d
kj−1−kj−2

2An

∑
a,b∈Zd

β(1)
a β

(1)
b Eν

[
Q′′

kj−kj−1,a,b
(1)
]
.

It can be worthwhile to notice that we can restrict the above sum on the (k1, ..., kN) ∈ Kn such
that kj − kj−1 < log n if j ∈ J , and kj − kj−1 > log n for the other values of j’s. This implies
that

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) = o(1)

as soon as there exist j ∈ J and i ∈ {1, ...,M} such that kj−1 < ⌊nti⌋ ≤ kj (indeed this
combined with kj − kj−1 < log n implies that 0 < kj − nti < log n and 0 < nti − kj−1 < log n.
In particular

En = o

(
A

Γ0+
Γ1
2

n

)
if ∃j ∈ {1, ...,M}, N (1)

j ∈ 2Z+ 1 .

We assume from now on that the N
(1)
j ’s are even and that J is such that, for every j ∈ J ,

there exists i = 1, ...,M such that kj−1, kj are in a same set {⌊nti−1⌋, ..., ⌊nti⌋ − 1}. Then

A
−Γ0−Γ1

2
n H̃(n)

ε (γ) = o (1) +
M∏
j=1

N (0)
j !N

(1)
j !(Φ(0))N

′′
j

(∑
a∈Zd

β(0)
a

)N
(0)
j

1

2

∑
k≥0

(1 + 1{k ̸=0})
∑

a,b∈Zd

β(1)
a β

(1)
b Eν

[
Q̄′′

kj−kj−1,a,b
(1)
]

N
(1)
j
2 ∑

(k′1,...,k
′
N′′ )∈K′

n

N ′′∏
j=1

a−d
k′j−k′j−1

An

 ,

with N ′′
j := N

(0)
j +

N
(1)
j

2
and N ′′ :=

∑M
j=1N

′′
j , and where K′

n is the set of strictly increasing

sequences k′1 ≤ ... ≤ k′N ′′ with exactly N ′′
j elements between ⌊ntj−1⌋ and ⌊ntj⌋− 1 and with the

convention k′0 = 0. Thus

H̃
(n)
ε (γ)

A
∑M

j=1 N
′′
j

n

= o (1) + E ′
n

M∏
j=1

N (0)
j !N

(1)
j !

(∑
a∈Zd

β(0)
a

)N
(0)
j

2−
N

(1)
j
2 σ

N
(1)
j

β(1)

1

N ′′
j !
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with

E ′
n := (Φ(0))N

′′

(
M∏
j=1

N ′′
j !

) ∑
(k′1,...,k

′
N′′ )∈K′

n

N ′′∏
j=1

a−d
k′j−k′j−1

An

= o(1) + A−N ′′

n Eν

 M∏
j=1

 ⌊ntj⌋−1∑
kj=⌊ntj−1⌋

1{Skj
=0}

N ′′
j

 .(30)

We observe that there exist
N ′′

j !

N
(0)
j !(N

(1)
j /2)!

sequences (γmj+1, ..., γmj+1
) ∈ {0, 1}N

(0)
j +N

(1)
j in which

the 1’s appear in N
(1)
j /2 pairwise distinct pairs (γj−1, γj). Therefore

En

A
∑M

j=1 N
′′
j

n

= o (1) + E ′
n

M∏
j=1

 N
(1)
j !

(N
(1)
j /2)!2

N
(1)
j
2

(∑
a∈Zd

β(0)
a

)N
(0)
j

σ
N

(1)
j

β(1)


= o (1) + E ′

n

M∏
j=1

(∑
a∈Zd

β(0)
a

)N
(0)
j

E
[
(σβ(1)N )N

(1)
j

] .

It remains to study the asymptotics of E ′
n.

• If d = 1 < α, we consider a Z-valued non-arithmetic random walk (S̃n)n (with i.i.d.

increments) such that (S̃⌊nt⌋/an)n converges in distribution to the α-stable process W .

The previous computations hold also true (more easily) for S̃n instead of Sn and lead to

E ′
n ∼ A−N ′′

n E

 M∏
j=1

 ⌊ntj⌋−1∑
kj=⌊ntj−1⌋

1{S̃kj
=0}

N ′′
j

 as n→ +∞ .

But the process
(∑⌊nt⌋−1

k=0 1{Sk=0}

)
t
of local time at 0 of S̃n converges in distribu-

tion to the process (Lt)t of local time at 0 of W . This combined with the domi-
nations of the moments of any order ensures that (E ′

n)n converges in distribution to

E
[∏M

j=1

(
Ltj − Ltj−1

)N ′′
j

]
. We conclude that

En

A
∑M

j=1 N
′′
j

n

= o (1) + E

[
M∏
j=1

(
Ltj − Ltj−1

)N ′′
j

]
M∏
j=1

(∑
a∈Zd

β(0)
a

)N
(0)
j

E
[
(σβ(1)N )N

(1)
j

]
= o (1) + E

 M∏
j=1

(∑
a∈Zd

β(0)
a

(
Ltj − Ltj−1

))N
(0)
j M∏

j=1

(
σβ(1)(NLtj

−NLtj−1
)
)N(1)

j

 .
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• If d = α, then

A−N ′′

n Eν


⌊NtM ⌋−1∑

k=⌊NT0⌋

1{Sk=0}

N ′′ = O

A−N ′′

n

⌊ntM ⌋−1∑
k=⌊NT0⌋

a−d
k

N ′′
= O

((
(A⌊ntM ⌋ − A⌊nT0⌋)/A

N ′′

n

)N ′′)
,

converges to 0 as n→ +∞, since (An)n≥0 is slowly varying. Thus

E ′
n = o(1) if M ≥ 2 .

Furthermore, it follows from the proof of Theorem 1.1 that if M = 1,

E ′
n = o(1) + A−N ′′

n Eν


 ⌊ntj⌋−1∑

kj=⌊ntj−1⌋

1{Skj
=0}

N ′′
1


= (Φ(0))N

′′
1N ′′

1 ! = (Φ(0))N
′′
1 E[EN ′′

1 ] ,

where E is a random variable with standard exponential distribution due to theorem 2.3.
We infer that

En

A
∑M

j=1 N
′′
j

n

= o (1) + E

[
(Φ(0)E)N ′′

1

M∏
j=2

(Φ(0)E − Φ(0)E)N
′′
j

]
M∏
j=1

(∑
a∈Zd

β(0)
a

)N
(0)
j

E
[
(σβ(1)N )N

(1)
j

]
= o (1) + E

 M∏
j=1

(∑
a∈Zd

β(0)
a

(
Φ(0)E(1{tj>0} − 1{tj−1>0})

))N
(0)
j M∏

j=1

(σβ(1)(NΦ(0)E1{tj>0} −NΦ(0)E1{tj>0}))
N

(1)
j

 .

This combined with (29) and the Carleman’s criteria [30] ends the proof of the convergence of
the finite dimensional distributions.
Let us write ((X

(1,n)
t , X

(2,n)
t )t)n≥1 for the joint process (26) and let us prove its tightness. When

d = 1 < α, we set T0 = 0, otherwise we fix some T0 ∈ (0;T ). We use the tightness criterion of [1,
Theorem 13.5, (13.4)]. We have proved the convergence of the finite dimensional distributions.
It remains to prove that there exist α1 > 1 and C > 0 such that, for every r, s, t such that
T0 ≤ r ≤ s ≤ t ≤ T , for all j ∈ {1, 2},

(31) ∃pj ∈ N∗, Eν

[
|X(j,n)

t −X(j,n)
s |pj |X(j,n)

s −X(j,n)
r |pj

]
≤ C|t− r|α1 .

Observe first that, if 0 ≤ r ≤ s ≤ t ≤ T and t−r < 1/n, thenX
(n)
t −X(n)

s = 0 orX
(n)
s −X(n)

r = 0,
thus the left hand side of (31) is null and so (31) holds true. Assume from now on that
T0 ≤ r ≤ s ≤ t ≤ T and that t− r ≥ 1/n. We will use the following inequality

Eν

[
|X(j,n)

t −X(j,n)
s |pj |X(n)

s −X(n)
r |pj

]
≤
∥∥∥X(j,n)

t −X(j,n)
s

∥∥∥pj
L2pj (ν)

∥∥X(j,n)
s −X(j,n)

r

∥∥pj
L2pj (ν)

.

Thus (31) will follow from the fact that, for any T0 ≤ r < t ≤ T , |t− r| > 1/n, and j ∈ {1, 2},

(32) ∃pj ∈ N∗, sup
a,b:r≤a<b≤t

∥∥∥X(j,n)
b −X(j,n)

a

∥∥∥2pj
L2pj (ν)

≤ C|t− r|α1 .
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It follows from our previous moment computation that

EµC0

[
|X(j,n)

b −X(j,n)
a |2p

]
= O


A−1

n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k


2p
j

 .

Thus it is enough to prove that

(33) ∃α0 > 0, sup
r,t:T0≤r<t<T, |t−r|≥1/n

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k = O ((t− r)α0) .

Indeed, we will conclude by taking pj = j⌈(2α0)
−1⌉ so that (32) and so (31) hold true with

α1 :=
2pjα0

j
> 1.

Since (an)n≥0 is (1/α)-regularly varying, it follows from Karamata’s theorem [12, 2] that there
exist three bounded convergent sequences (c(n))n≥0 (positive, with positive limit), (b(n))n≥0

(converging to 0) and (θn)n≥0 (positive, converging to α−1
α

if d < α and to 0 if d = α, see [2,
Proposition 1.5.9.b]) such that

∀n ≥ 0, na−d
n = Anθn and An = c(n)n

α−d
α e

∫ n
1

b(t)
t

dt .

Now let us choose α0. If d = 1 < α, we set α0 :=
α−1
2α

. If d = α, we take α0 := 1. Up to change,
if necessary, the first terms of (b(n))n≥0 and (c(n))n≥0, we assume without loss of generality
that the sequence (b(n))n≥0 is bounded by α0.
If d = 1 < α, if r ≤ 2/n (observe that, when d = α, this case does not happen for large values
of n since r ≥ T0 > 0) and |t− r| ≥ 1/n, then

(34) A−1
n

⌊nt⌋−1∑
k=0

a−d
k = O

(
A⌊nt⌋

An

)
= O

(
t1−

1
α
−α0

)
= O ((t− r)α0) ,

implying (33) and so (32) and (31) in this case.

We assume from now on that T0 ≤ r < t ≤ T and 2/n < r < t ≤ T (so that ⌊nr⌋ − 1 > 0)
and t− r ≥ 1/n (so that ⌊nt⌋ − ⌊nr⌋ ≤ 2(nt− nr)). Then, using the uniform dominations on
(c(n), θn, b(n))n combined with a series-integral comparison, we obtain that

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k =

⌊nt⌋−1∑
k=⌊nr⌋

α− 1

αk

c(k)

c(n)

k
α−d
α

n
α−d
α

θke
∫ k
n

b(u)
u

du = O

⌊nt⌋−1∑
k=⌊nr⌋

1

n
(k/n)−

d
α
−α0

 .

• If d = 1 < α, it follows that

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k = O

((
⌊nt⌋ − 1

n

)α0

−
(
⌊nr⌋ − 1

n

)α0
)

= O
((

⌊nt⌋ − ⌊nr⌋
n

)α0
)

= O ((t− r)α0) ,(35)

ending the proof of (33), from which we infer (32) and (31). This ends the proof of the
tightness when d < α.
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• When d = α, we obtain

A−1
n

⌊nt⌋−1∑
k=⌊nr⌋

a−d
k = O

((
⌊nr⌋
n

)−α0

−
(
⌊nt⌋
n

)−α0
)

= O

(
⌊nt⌋ − ⌊nr⌋

n

)
= O (t− r) ,(36)

from which we infer (33), (32), (31), and so the tightness in the case where d = α.

This ends the proof of Theorem 2.6. □

3. Proof of Theorems 1.1 and 1.3 via Fourier perturbations

A strategy to prove Assumptions 2.1 and 2.2 consists in noticing that

(37) Qk,a =
1

(2π)d

∫
[−π;π]d

e−i⟨t,a⟩P k
t (·) dt , with Pt(h) := P (ei⟨t,Ψ⟩) ,

and to establish nice properties for Pt as the one listed in the next result. Recall that P n
t (h) =

P n(heitSn).

Proposition 3.1. Assume B is a Banach space satisfying (3) and that there exist two constants
b ∈ (0, π) and α0 > 0 such that :

(38) ∀t ∈ [−b, b]d, P k
t = λktΠt +O(e−α0k) and sup

b<|u|∞<π

∥P k
u ∥B = O(e−α0k) ,

with (λkt/ak)k≥0 converging to the characteristic function φ of an α-stable distribution, with

Πt = Eν [·] + o(1) in L(B → L1(ν)) as t→ 0, and with

(39) sup
t∈[−b;b]d

∥Πt∥B <∞ and

∫
R
(1 + |t|2)

(
sup
k≥1

|λkt/ak |1{|t|<bak}

)
dt <∞ .

Then Hypotheses 2.2 (and so 2.1) hold true with Φ(0) the value at 0 of the density function Φ
of the α-stable distribution with characteristic function φ.

Proof of Proposition 3.1. It follows from our assumptions that

Qk,0 =
1

(2π)d

∫
[−π;π]d

P k
t dt =

a−d
k

(2π)d

∫
[−bak;bak]d

λkt/akΠt/ak dt+O(e−α0k) = Φ(0)a−d
k + o

(
a−d
k

)
,

(40)

in L(B → L1(ν)), via the dominated convergence theorem since limn→+∞ λnt/anΠt/an = φ(t)Eν [·]
in L(B → L1(ν)) and since Φ(0) = 1

(2π)d

∫
R φ(t) dt. Thus (5) holds true.

Furthermore, for all η ∈ [0; 2] and a ∈ Zd, in L(B),∫
[−π;π]d

|t|η
∥∥P k

t

∥∥
B dt = a−d−η

k

∫
[−bak;bak]d

|t|η
∣∣λkt/ak∣∣ ∥∥Πt/ak

∥∥
B dt+O

(
e−α0k

)
= O

(
a−d−η
k

)
.(41)
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Using the expression (37) of Qk,a combined with (41) with m = 0, we obtain (4) and (6). Fix
η ∈ [0; 1]. Then

Q′
k,a,b = Qk,b −Qk,a =

1

(2π)d

∫
[−π;π]d

(ei⟨t,b⟩ − ei⟨t,a⟩)P k
t (·) dt

=
1

(2π)d

∫
[−π;π]d

O(⟨t, b− a⟩)ηP k
t (·) dt

= O
(
|b− a|ηa−d−η

k

)
in L(B) ,

where we used again (41) combined with the bound |eix − eiy| ≤ min(2, |x− y|) ≤ 21−η|x− y|η,
and so we have proved (7). For (8), in the same way, we obtain

Q′′
k,a,b = Qk,b−a −Qk,b −Qk,−a +Qk,0

=
1

(2π)d

∫
[−π;π]d

(ei⟨t,b−a⟩ − ei⟨t,b⟩ − e−i⟨t,a⟩ + 1)P k
t (·) dt

=
1

(2π)d

∫
[−π;π]d

(ei⟨t,b⟩ − 1)(e−i⟨t,a⟩ − 1)P k
t (·) dt

=
1

(2π)d

∫
[−π;π]d

O(⟨t, b⟩⟨t, a⟩)ηP k
t (·) dt

= O
(
(|a||b|)ηa−d−2η

k

)
in L(B) ,(42)

and so (8). □

Proof of Theorems 1.1 and 1.3. Let us write βℓ for the constant to which f is equal on the ℓ-cell
Cℓ. The integrability assumption means that

∑
ℓ∈Z |βℓ| <∞. Due to [36], since µ is equivalent

to the Lebesgue measure on M , it is enough to prove the results with respect to the measure
µC0 (the restriction of µ to C0). Thus, we consider this reference measure and establish the
convergence of every moment with respect to this probability measure. We observe that, with
the identification of M̄ to C0, µC0 is identified with µ̄ and f ◦ T k is identified with βS̄k

.

As in [34, 24], we use the two Young towers [35, 5]. We write (∆̂, F̂ , ν̂) for the hyperbolic tower
which is an extension of (M̄, T̄ , µ̄), and write (∆, F, ν) for the expanding tower obtained by

quotienting (∆̂, F̂ , ν̂) along stable curves. We write π̄ : ∆̂ → M̄ and π : ∆̂ → ∆ for the two

measurable maps such that π̄∗ν̂ = µ, π∗ν̂ = ν, T̄ ◦ π̄ = π̄ ◦ F̂ and F ◦ π = π ◦ F̂ . Since Ψ̄
is constant on stable curves, there exists a function Ψ : ∆ → Zd such that Ψ ◦ π = Ψ̄ ◦ π̄.
Setting Sn :=

∑n−1
k=0 Ψ ◦ F k, it follows that Sn ◦ π = S̄n ◦ π̄. For the first part of Theorem 1.1,

as noticed in Remark 1.2, it is enough to prove the first convergence result for βℓ = 1{ℓ=0}. We
will conclude by Theorem 2.3. To prove the assumptions of Theorem 2.3, we show that the
criterion given in Proposition 3.1 is satisfied here with our choice of an, with α = 2 and with Φ
the characteristic function of the Gaussian limit distribution of (Sn/an)n. The assumptions of
Proposition 3.1 have been proved in [34] with the use of the Banach spaces introduced in [35]
combined with the use of the Nagaev-Guivarch perturbation method [16, 10, 11] via the Keller
and Liverani theorem [13] (see also [21] for a general reference on this method). The fact that
(λkt/ak)k≥1 converges pointwise to the characteristic function of a Gaussian random variable

follows from the existence of a positive symmetric matrix A such that 1 − λt ∼ ⟨At, t⟩| log |t||
as t → 0 (this was proved in [34]). For the second part of (39), one can e.g. use the fact that
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|λkt/ak |1{|t|<bak} ≤ e−c0 min(|t|2−ε,|t|2+ε)). Thus Proposition 3.1 holds true and Theorems 2.3 and 2.6

apply. Finally, we identify the formulas of the asymptotic variances σ2
f and σ2

β by noticing that∑
a,b∈Z2

βaβbν(S|k| = b− a) =

∫
M

f.f ◦ T |k| dµ =

∫
M

f.f ◦ T k dµ .

For Theorem 1.3, we deduce the result for general g using ergodicity of (M,T, µ) together with
the Hopf ergodic ratio theorem. □

Appendix A. Proof of (17) in the general case

We assume here that
∑

a∈Zd(1 + |a|η)|βa| <∞ with η := α−d+ε
2

for some ε ∈ (0; 1/2).

In Formula (15), we decompose Qk,a using the operators Q
′′
k,a,b and Q

′
k,c := Q′

k,0,c = Qk,c−Qk,0

as follows

Qk,a = Q′′
k,a,b +Qk,b +Qk,−a −Qk,0 = Q′′

k,a,b +Q′
k,b +Q′

k,−a +Qk,0 .

In (15), we replace each Qkj−kj−1,aj−aj−1
by this decomposition, we develop and obtain

Eν

(n−1∑
k=0

βSk

)N
 =

∑
ε1,...,εN

D(n,N)
ε1,...,εN

,(43)

summing a priori over (ε1, ..., εN) ∈ ({0, 1}2)N such that ε1 ∈ {(0, 0), (0, 1)} the following
quantity

D(n,N)
ε1,...,εN

=
∑

0≤k1≤...≤kN≤n−1

c(k1,...,kN )

∑
a1,...,aN∈Zd

(
N∏
j=1

βaj

)
Eν [Q̃

(εN )
kN−kN−1,aN−1,aN

...Q̃
(ε2)
k2−k1,a1,a2

Q̃
(ε1)
k1,a0,a1

(1)] ,

with a0 = 0 and where Q̃
(0,0)
k,a,b = Qkj−kj−1,0, Q̃

(1,0)
k,a,b = Q′

k,−a, Q̃
(0,1)
k,a,b = Q′

k,b, Q̃
(1,1)
k,a,b = Q′′

k,a,b.

We first restrict the sum over ε1, ..., εN . We observe that, since
∑

aj∈Zd βaj = 0, Dn,N
ε1,...,εN

= 0

if there exists j = 1, ..., N such that εj,2 + εj+1,1 = 0 (with convention εN+1,1 = 0). Thus we
restrict the sum in (43) to the sum over the ε1, ..., εN such that for all j = 1, ..., N , such that
εj,2 + εj+1,1 ≥ 1. We call admissible any such sequence ε := (ε1, ..., εN). Let ε := (ε1, ..., εN)
be an admissible sequence.

• We observe that #{j : εj = (0, 0)} ≤ N/2.
• The contribution to (43) of an admissible sequence ε = (ε1, ..., εN) is

D(n,N)
ε1,...,εN

= O

 ∑
a1,...,aN∈Zd

N∏
j=1

|βaj |
n∑

kj=0

∥Q̃(εj)
kj ,aj−1,aj

∥B

 .

• We observe that there exists u0 > 0 such that

(44)
n∑

k=0

a−d
k = An ,

n∑
k=0

a−d−2η
k = O(1) ,

n∑
k=0

a−d−η
k = O

(
A

1−u0
2

n

)
.

Indeed d+2η = α+ε > α. For the last estimate, we use the fact that (ak)k is
1
α
-regularly

varying, and infer that (
∑n

k=0 a
−d−η
k )2 is either bounded or 2 − 2d+2η

α
-regularly varying
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whereas (An)n is (1 − d
α
)-regularly varying and diverges to infinity (and 2 − 2d+2η

α
=

1− d+ε
α
< 1− d

α
).

• If, for all j = 1, ..., N , εj,2 + εj+1,1 = 1, then, it follows from Hypothesis 2.2 that

D(n,N)
ε1,...,εN

= O
(
d(n,N)
ε1,...,εN

)
,

with

(45) d(n,N)
ε1,...,εN

:=
∑

a1,...,aN∈Zd

N∏
j=1

|βaj | |aj|η(εj,2+εj+1,1)

n∑
kj=0

a
−d−ηεj,1−ηεj,2
kj

 ,

and so, using (44), that

D(n,N)
ε1,...,εN

= O
(
d(n,N)
ε1,...,εN

)
= O

(
A

N0+N1
1−u0

2
n

)
,

where Nk := #{j : εj,1 + εj,2 = k}, since
∑

a∈Zd(1 + |a|)η|βa| < ∞. Observe that

N0 + N1 + N2 = N and N =
∑2

k=1

∑N
j=1 εj,k = N1 + 2N2 and so N2 = N0 and

N0 =
N−N1

2
. Therefore, in this case,

D(n,N)
ε1,...,εN

= O
(
d(n,N)
ε1,...,εN

)
= O

(
A

N−u0N1
2

n

)
= o

(
AN/2

n

)
unless if N1 = 0, i.e. unless if N is even and if ε1, ..., εN is the alternate sequence
(0, 0), (1, 1), ..., (0, 0), (1, 1).

• Assume now that there exists some j0 ∈ {1, ..., N} such that εj0,2 + εj0+1,1 = 2. Recall
that it follows from Hypothesis 2.2 that, for all η′j,1, η

′
j,2 ∈ {0, η},

(46)
∥∥∥Q̃(εj)

k,aj ,aj−1

∥∥∥
B
= O

(
|aj−1/ak|η

′
j,1εj,1|aj/ak|η

′
j,2εj,2a−d

k

)
.

Indeed this follows from (6), (7) and (8) combined with the two following facts

∀η ∈ [0; 1],
∥∥Q′′

k,a,b

∥∥
B =

∥∥Q′
k,−a,b−a −Q′

k,0,b

∥∥
B = O(|b|η)a−d−η

k

and

∀η ∈ [0; 1],
∥∥Q′′

k,a,b

∥∥
B =

∥∥Q′
k,b,b−a −Q′

k,0,−a

∥∥
B = O(|a|η)a−d−η

k .

We choose a family (η′j,i)j=1,...,N ;i=1,2 of {0, 1} such that, for all j = 1, ..., N , η′j,2εj,2 +

η′j+1,1εj+1,1 = η = α+ε−d
2

and η′1,1 = 0, with convention η′N+1,1 = 0. Therefore

D(n,N)
ε1,...,εN

= O

 ∑
a1,...,aN∈Zd

N∏
j=1

|βaj | |aj|η
n∑

kj=0

a
−d−η′j,1εj,1−η′j,2εj,2
kj

 = O
(
d
(n,N)

ε′1,...,ε
′
N

)
,

where we set ε′j := (η′j,1εj,1, η
′
j,2εj,2)/η. We also consider the sequence ε′′1, ..., ε

′′
N obtained

from ε′ by permuting the values of ε′j0,2 and ε′j0+1,1. Both sequences ε′ and ε′′ are
admissible and satisfy ε′j,2 + ε′j+1,1 = ε′′j,2 + ε′′j+1,1 = 1 for all j = 1, ..., N . Thus it follows
from the previous item that

D(n,N)
ε1,...,εN

= O
(
min

(
d
(n,N)

ε′1,...,ε
′
N
, d

(n,N)

ε′′1 ,...,ε
′′
N

))
= o

(
AN/2

n

)
,

since ε′ and ε′′ cannot both coincide with the alternate sequence (0, 0), (1, 1), ..., (0, 0), (1, 1).
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Estimate (17) follows from the two last items.
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