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UNIFORM BOUNDEDNESS FOR THE OPTIMAL CONTROLS OF A

DISCONTINUOUS, NON-CONVEX BOLZA PROBLEM∗,∗∗

Piernicola Bettiol1 and Carlo Mariconda2,***

Abstract. We consider a Bolza type optimal control problem of the form

min Jt(y, u) :=

∫ T

t

Λ(s, y(s), u(s)) ds + g(y(T ))

Subject to:


y ∈W1,1([t, T ];Rn)

y′ = b(y)u a.e. s ∈ [t, T ], y(t) = x

u(s) ∈ U a.e. s ∈ [t, T ], y(s) ∈ S ∀s ∈ [t, T ],

where Λ(s, y, u) is locally Lipschitz in s, just Borel in (y, u), b has at most a linear growth and both
the Lagrangian Λ and the end-point cost function g may take the value +∞. If b ≡ 1, g ≡ 0, (Pt,x) is
the classical problem of the Calculus of Variations. We suppose the validity of a slow growth condition
in u, introduced by Clarke in 1993, including Lagrangians of the type Λ(s, y, u) =

√
1 + |u|2 and

Λ(s, y, u) = |u| −
√
|u| and the superlinear case. We show that, if Λ is real valued, any family of

optimal pairs (y∗, u∗) for (Pt,x) whose energy Jt(y∗, u∗) is equi-bounded as (t, x) vary in a compact set,
has L∞ – equibounded controls. Moreover, if Λ is extended valued, the same conclusion holds under
an additional lower semicontinuity assumption on (s, u) 7→ Λ(s, y, u) and requiring a condition on the
structure of the effective domain. No convexity, nor local Lipschitzianity is assumed on the variables
(y, u). As an application we obtain the local Lipschitz continuity of the value function under slow
growth assumptions.
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1 Univ Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, 6 Avenue Victor Le Gorgeu, Brest
29200, France.
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1. Introduction

A major issue arising in the basic problem of the Calculus of Variations is the Lipschitz regularity of the
minimizers. Providing positive answers on this issue is often a first step towards higher regularity properties,
and it allows numerical methods to catch the value of the infimum.

We consider here optimal control problems, such as (Pt,x) below, imposing very weak assumptions on the
Lagrangian Λ(s, y, u), where s ∈ [t0, T ] (the time variable), y ∈ Rn (the state variable) and u ∈ Rm (the control
variable), motivated by the fact that, starting from the Calculus of Variations case (i.e. when b ≡ 1, u ∈ Rn) there
are discontinuous and non-convex problems that admit existence of minimizers, even if the classical Tonelli’s
existence conditions are not satisfied.

In the Calculus of Variations setting several results appeared on the subject following Tonelli himself [20]:
see, for instance Clarke–Vinter [16], Ambrosio–Ascenzi–Buttazzo [2], Cellina [9]. In the autonomous case, just
superlinearity or even slower growths suffice to obtain Lipschitzianity of the minimizers, whether they exist
among the absolutely continuous functions (Dal Maso–Frankowska [17], Mariconda–Treu [18]).

In the nonautonomous case growth conditions in general do not guarantee the Lipschitzianity of the minimiz-
ers. A celebrated example by Ball–Mizel [3] shows that there are polynomial Lagrangians that satisfy Tonelli’s
existence assumptions (convexity in the velocity variable and superlinearity) for which even the Lavrentiev
phenomenon occurs (i.e., the infimum of the functional among Lipschitz functions is strictly greater than the
infimum taken over the absolutely continuous ones). So, extra hypotheses are needed in the nonautonomous
setting to make sure that minimizers are Lipschitz continuous.

A well established approach consists in imposing superlinearity together with some regularity conditions
on the state or velocity variables in order to ensure the validity of both the Euler condition and Weierstrass
inequality, see [14] for a minimal set of assumptions.

Alternatively, one can impose a local Lipschitz condition on the time variable alone of the Lagrangian, that
we call here Condition (S) (see Sect. 2.2). Condition (S) was known in the smooth setting for providing the
validity of the Du Bois-Reymond equation (see [12]) at any minimizer x∗: namely,

p(s) := Λ(s, x∗(s), x
′
∗(s))− x′∗(s) · ∇vΛ(s, x∗(s), x

′
∗(s))

is absolutely continuous and

p′(s) = (DsΛ)(s, x∗(s), x
′
∗(s)),

where DsΛ denotes the partial derivative of Λ with respect to the first variable. In the nonsmooth setting it
became a key assumption for several recent results concerning important aspects such as existence and regularity
of minimizers:

– Existence: Clarke introduced in his seminal paper [13] the essential idea of using an indirect method which
relies on a weak growth condition of type (H), that we consider here for simplicity just in the autonomous
case Λ = Λ(y, v): it subsumes the convexity of v 7→ Λ(y, ·) = Λ(y, v) for each y; denoting by ∂vΛ(y, v) the

convex subdifferential of Λ(y, ·) at v and by J(y) =

∫ T

t0

Λ(y(s), y′(s)) ds it requires that there is c > 0 such

that, for every admissible trajectory on a suitable finite sublevel of J , one has

essinfs∈[t0,T ] |x′(s)| < c,

and

lim
ν→+∞

sup
y∈Rn, v∈U, |v|>ν

{Λ(y, v)− v · ∂vΛ(y, v)} < inf
y∈Rn, v∈U, |v|≤c

{Λ(y, v)− v · ∂vΛ(y, v)} .



UNIFORM BOUNDEDNESS FOR THE OPTIMAL CONTROLS 3

We notice that the term Λ(y, v) − v · ∂vΛ(y, v) is the level of the intersection of the supporting hyperplane
to the graph of u 7→ Λ(y, u) at u = v with the ordinate axis. Condition (H) is fulfilled, for instance, by
Lagrangians of the form Λ(s, y, u) =

√
1 + |u|2, and superlinear ones. In [13] it is shown that Condition (S)

with Condition (H) allow to replace the superlinearity assumption in Tonelli’s existence theorem (leaving
unchanged lower semicontinuity of the Lagrangian and convexity in the velocity variable), with the advantage
that minimizers turn out to be Lipschitz.

– Regularity: Condition (S) alone yields the validity of a Du Bois-Reymond (DBR) type condition expressed in
terms of convex subdifferentials, without any convexity assumption (see [4, 6]). The fact that (S) is satisfied
whenever the Lagrangian is autonomous implies in particular the validity of the (DBR) condition for any
Borel autonomous Lagrangian. Once Condition (S) is fulfilled, the weak growth condition (H) (alone if Λ is
real valued) yields the Lipschitzianity of the minimizers, when they exist, see [6].

Conditions such as (H) and (S) can be rephrased in the context of optimal control, providing Lipschitz regularity
of minimizers and boundedness of optimal controls (cf. [5, 7, 8, 19]).

We study here the problem of finding a uniform Lipschitz constant for minimizers of a Bolza type control
problem of the form

min Jt(y, u) :=

∫ T

t

Λ(s, y(s), u(s)) ds+ g(y(T )) (Pt,x)

Subject to: 
y ∈W1,1([t, T ];Rn)

y′ = b(y)u a.e. s ∈ [t, T ], y(t) = x

u(s) ∈ U a.e. s ∈ [t, T ], y(s) ∈ S ∀s ∈ [t, T ],

(D)

as the initial time t and point x vary on compact sets. A motivation is the study of the regularity of the value
function, when one can assume the existence of an optimal pair for any initial data. This existence hypothesis
on minimizers is widespread in the literature and becomes a starting point to derive properties on the value
function, see for instance Dal Maso–Frankowska [17] in the autonomous and superlinear case of the Calculus
of Variations. In the real valued case our main result, Theorem 4.1 below, states that if Λ satisfies Condition
(S) and a growth condition of type (H), then the minimizers of (Pt,x) are locally equi-Lipschitz whenever

t < T, x ∈ Rn. Furthermore, if one knows an a priori upper bound of the integral term
∫ T
t

Λ(s, y∗(s), u∗(s)) ds
along the minimizers, a common Lipschitz rank may be explicitly written. We shall consider also the case of
the extended valued Lagrangians: in this case some further assumptions, namely the lower semicontinuity of
Λ(s, y, u) with respect to (s, u) and a topological property of the effective domain of Λ, are needed in order to
prove our regularity result on minimizers.

The growth condition introduced in Section 3.4 represents a violation of the (DBR) condition for big values
of the velocity; it coincides with Clarke’s original one [13] when the compact set is reduced to a single initial
datum (t0, x0) and the Lagrangian is convex in the velocity variable. The Lipschitz regularity of the (local)
minimizers for fixed initial time and data under this kind of growth condition was studied in [5]. The novelty
here is the fact that we can obtain uniform estimates of the Lipschitz constant when the initial data vary in a
neighbourhood of a given (t0, x0) with t0 < T .

As a byproduct of our formulation, the growth condition (Condition (G), see Sect. 3.2) introduced by Cellina–
Treu–Zagatti in [11], and studied in [9, 10, 18], becomes a particular case of the class of the growth condition
of type (H) considered here.

An equi-Lipschitz minimizers regularity was recently established in [19] under the additional assumption that
0 < r 7→ Λ(s, y, ru) is convex for all u (called ‘radial convexity’); in our paper we consider problems which may
not be necessarily radially convex. Moreover, differently from [19], minimizers are allowed to be just local ones,
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in the sense of the absolutely continuous norm. The fundamental tool in the proof of Theorem 4.1 is the Du
Bois-Reymond condition established in Theorem 3.1 of [5].

As an application, we extend the local Lipschitz regularity of the value function formulated in [17] in the
framework of autonomous and superlinear Lagrangians to the nonautonomous ones under the slower growth
condition of type (H).

2. Preliminaries

2.1. Basic setting and notation

Let t < T and x ∈ Rn. We consider the Bolza type optimal control problem (Pt,x)-(D) above with the
following basic assumptions.

Basic Assumptions and Notation. The following conditions hold (n,m ≥ 1).

– t0 < T are given real numbers, and t ∈ [t0, T ].
– The Lagrangian Λ : [t0, T ]×Rn×Rm → R∪{+∞}, (s, y, u) 7→ Λ(s, y, u) is Lebesgue – Borel measurable

(i.e., measurable with respect to the L([t0, T ])× BRn×Rm measurable sets).
– (Linear growth from below) There are α > 0 and d ≥ 0 satisfying, for a.e. s ∈ [t0, T ] and every
y ∈ Rn, u ∈ U ,

Λ(s, y, u) ≥ α|u| − d. (L)

– b : Rn → L(Rn,Rm) (the space of linear functions from Rn to Rm) is a Borel measurable function such
that, for some θ ≥ 0,

|b(y)| ≤ θ(1 + |y|). (2.1)

We refer to y′ = b(y)u as the controlled differential equation. It will be useful to recall that, if
y′ = b(y)u, y(t) = x for some integrable function u(·) on [t, T ] then, owing to Gronwall’s lemma (see [15],
Thm. 6.41), the following estimate holds:

∀s ∈ [t, T ] |y(s)− x| ≤ (|x|+ 1)eθ
∫ T
t
|u(τ)| dτ . (2.2)

– The control u : [t, T ] 7→ Rm is measurable.
– The state constraint set S is a nonempty subset of Rn;
– The control set U ⊂ Rm is a cone, i.e. if u ∈ U then λu ∈ U whenever λ > 0.
– The cost function g : Rn → R ∪ {+∞} is not identically equal to +∞.
– The effective domain of Λ, is given by

Dom(Λ) := {(s, y, u) : Λ(s, y, u) < +∞}.

An admissible pair for (Pt,x) is a pair of functions (y, u) : [t, T ]→ Rn × Rm with y absolutely continuous u
measurable, (y, u) satisfying (D) and such that Jt(y, u) < +∞. We assume henceforth that, for each t ∈ [t0, T ]
and x ∈ S, there exists at least an admissible pair for (Pt,x).

Notice, that in the particular case where the function b ≡ 1 in the controlled differential equation, then (Pt,x)
becomes a problem of the Calculus of Variations.
If z ∈ Rk we shall denote by Bkr (z) (simply Bkr if z = 0) the closed ball of center z and radius r in Rk. The
norm in L1 is denoted by ‖ · ‖1, and the norm in L∞ by ‖ · ‖∞.
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2.2. Condition (S)

We will consider the following local Lipschitz condition on the Lagrangian Λ with respect to the time variable.

Condition (S). There are κ,A ≥ 0, γ ∈ L1([t0, T ]), ε∗ > 0 satisfying, for a.e. s ∈ [t0, T ]

|Λ(s2, y, u)− Λ(s1, y, u)| ≤
(
κΛ(s, y, u) +A|u|+ γ(s)

)
|s2 − s1| (2.3)

whenever s1, s2 ∈ [s− ε∗, s+ ε∗] ∩ [t0, T ], y ∈ Rn, u ∈ Rm, are such that (s1, y, u), (s2, y, u) ∈ Dom(Λ).

Remark 2.1. Notice that, when (y∗, u∗) is an admissible pair for (Pt,x), then the growth condition (L) implies
that u∗ ∈ L1([t, T ]) and thus the function

κΛ(s, y∗(s), u∗(s)) +A|u∗(s)|+ γ(s) ∈ L1([t, T ]).

Condition (S) is satisfied if Λ(s, y, u) = Λ(y, u) is autonomous. Indeed in that case (2.3) holds with κ = A =
0,γ ≡ 0 and ε∗ = T .

3. Growth conditions

The definitions and results in this section are similar to those ones which have been introduced in some
recent papers (see [5, 6, 19]). There are however some differences: the present definition of Condition (Hδ

B(χ)) is
more general than the corresponding growth condition used in [5, 6], and we do not require, as in [19], that the
Lagrangian is radially convex in the control variable. Therefore, the detailed proofs of the properties displayed
in this section are reported below for the convenience of the reader.

3.1. Partial derivatives and subgradients

In what follows we often deal with subdifferentials in the sense of convex analysis.

Notation. If (s, y, u) ∈ Dom(Λ), we shall denote by

– ∂µ

(
Λ
(
s, y,

u

µ

)
µ

)
µ=1

the convex subdifferential of the map

0 < µ 7→ Λ
(
s, y,

u

µ

)
µ

at µ = 1;
– ∂rΛ

(
s, y, ru

)
r=1

the convex subdifferential of the map

0 < r 7→ Λ(s, y, ru)

at r = 1;
– ∇uΛ(s, y, u) the gradient of Λ(s, y, ·) at u. If Λ(s, y, ·) is differentiable then the (classical) directional

derivative of Λ w.r.t. the vector u is written DuΛ(s, y, u) = u · ∇uΛ(s, y, u).

Remark 3.1. Let (s, y, u) ∈ Dom(Λ). A simple change of variable r =
1

µ
shows that

p ∈ ∂µ
(

Λ
(
s, y,

u

µ

)
µ
)
µ=1
⇔ Λ(s, y, u)− p ∈ ∂rΛ

(
s, y, ru

)
r=1

.
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The growth assumptions introduced below involve some uniform limits.

3.2. The growth Condition (G)

The growth Condition (G) was thoroughly studied by Cellina and his school for autonomous Lagrangians
of the Calculus of Variations that are smooth or convex in the velocity variable. The extension to the radial
convex case, recalled here, was considered in [18] in the autonomous case and was subsequently generalized to
the nonautonomous case in [4, 5].

Growth Condition (G). We say that Λ satisfies (G) if, for all K ≥ 0,

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u) = −∞ unif. |y| ≤ K, (3.1)

meaning that for all M ∈ R there exists R > 0 such that P (s, y, u) ≤ M for all (s, y, u) ∈ Dom(Λ) whenever
∂µ(Λ(s, y, uµ )µ)µ=1 is no empty, |y| ≤ K, u ∈ U , |u| ≥ R.

Remark 3.2. 1. If u 7→ Λ(s, y, u) is differentiable, (3.1) becomes

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U
∂rΛ(s,y,ru)r=1 6=∅

Λ(s, y, u)− u · ∇uΛ(s, y, u) = −∞ unif. |y| ≤ K.

Superlinearity plays a key role in Tonelli’s existence theorem. It has been widely used as a sufficient condition
for Lipschitz regularity of minimizers.

Superlinearity. For every K ≥ 0 there exists ΘK :] −∞,+∞[→ R such that, for a.e. s ∈ [t0, T ] and every
y ∈ Rn, |y| ≤ K, u ∈ U ,

Λ(s, y, u) ≥ ΘK(|u|), lim
r→+∞

ΘK(r)

r
= +∞. (GΘ)

Superlinearity, together with some local boundedness condition, implies the validity of the growth Condition
(G). We refer to Proposition 2 and Remark 11 of [6] for the proof of the following result.

Proposition 3.3 (Superlinearity ⇒ (G)). Let Λ be superlinear and assume that for every K ≥ 0 there is
rK > 0 such that Λ(s, y, u) is bounded when s ∈ [t0, T ], |y| ≤ K,u ∈ U , |u| = rK . Then Λ satisfies Assumption
(G).

3.3. Assumptions on Dom(Λ) and distance-like functions

We assume that for a.e. s ∈ [t0, T ] and every y ∈ Rn the set

{u ∈ Rm : (s, y, u) ∈ Dom(Λ)}

is strictly star-shaped in the variable u w.r.t. the origin, i.e.,

Λ(s, y, u) < +∞, 0 < r ≤ 1⇒ Λ(s, y, ru) < +∞.

Definition 3.4 (u-distance, ∞-distance, Euclidean distance).

– We shall denote by diste the usual Euclidean distance in [t0, T ]× Rn × Rm.
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– The infinity distance-like dist∞ is defined for all ωi = (si, zi, vi) ∈ [t0, T ]× Rn × Rm (i = 1, 2),

dist∞(ω1, ω2) =

{
+∞ if ω1 6= ω2

0 if ω1 = ω2.

– The u-distance-like is the function defined on the pairs of points ω1 = (s1, z1, v1), ω2 = (s2, z2, v2) ∈
[t0, T ]× Rn × Rm such that (s1, z1) = (s2, z2) by

distu(ω1, ω2) = |v2 − v1|.

If χ ∈ {e, u,∞} and (s, z, v) ∈ Dom(Λ) we set distχ((s, z, v),Dom(Λ)c) to be equal to

inf{distχ((s, z, v), ω) : ω ∈ Dom(Λ)c}.

Remark 3.5. Differently from the Euclidean distance, the infinity distance-like and the u-distance-like are not
metrics on [t0, T ]×Rn ×Rm. Indeed both can take the value +∞ and distu is defined just on a strict subset of
pairs of [t0, T ]× Rn × Rm. We point out, however, that as well as diste and dist∞, distu satisfy the triangular
inequality among triples of points that have the same first two coordinates: if ωi := (s, z, vi) ∈ [t0, T ]×Rn×Rm
(i = 1, 2, 3) and χ ∈ {e, u,∞} then

distχ(ω1, ω3) ≤ distχ(ω1, ω2) + distχ(ω2, ω3).

Definition 3.6 (Well-inside Dom(Λ) for distχ, χ ∈ {e, u,∞}). We say that a subset E of Dom(Λ) is well-inside
Dom(Λ) w.r.t. distχ(χ ∈ {e, u,∞}) if it is contained in {(s, y, v) ∈ Dom(Λ) : distχ((s, y, v), Dom(Λ)c) ≥ ρ}, for
a suitable ρ > 0.

– If χ = e the above means that for all (s, y, v) ∈ E, the open ball of radius ρ in [t0, T ] × Rn × Rm and
center in (s, y, v) is contained in Dom(Λ);

– If χ = u the above means that

(s, y, v) ∈ E, 0 < r < ρ⇒ (s, y, v + rv) ∈ Dom(Λ).

– If χ =∞ the above means simply that E ⊂ Dom(Λ).

Remark 3.7. Notice that, if ω := (s, y, u) ∈ Dom(Λ) and F := Dom(Λ)c, then

diste(ω, F ) ≤ distu(ω, F ) ≤ dist∞(ω, F ).

Thus, if Mχ is the class of sets that are well inside Dom(Λ) w.r.t. distχ we have

Me ⊂Mu ⊂M∞. (3.2)

Example 3.8. Let Λ be autonomous and Dom(Λ) = {(y, u) ∈ R2 : |y| ≤ 1}. Then the set {(y, u) ∈ R2 : |y| ≤
1, |u| ≤ 1} is well-inside Dom(Λ) w.r.t. to du but not w.r.t. de.

3.4. Growth condition (HδB(χ))

Let δ ∈ [t0, T [. The number B represents an upper bound of the integral term in (Pt,x) for a prescribed family
of admissible pairs, with initial time t varying in [t0, δ]. The following quantities ct(B) and Φ(B) will play a role
in the proof of the main results.
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Definition 3.9 (ct(B) and Φ(B)). Let t ∈ [t0, T [, B ≥ 0 and assume the linear growth from below (L). Set

ct(B) :=
B + d(T − t)
α (T − t)

.

Moreover, if Condition (S) holds, we define

Φ(B) :=

0 if Λ is autonomous,

κB +
A

α
(B + d (T − t0)) + ‖γ‖1 otherwise.

Remark 3.10. Notice that, in Definition 3.9, ct(B) ≤ cδ(B) for all t ∈ [t0, δ].

The next result highlights the roles of Φ(B) and ct(B), we refer to Proposition 4.10 of [19] for a proof.

Proposition 3.11 (The role of φ(B) and ct(B)). Assume the linear growth from below (L) and the validity of

Condition (S). Let t ∈ [t0, T [, x ∈ Rn, and take an admissible pair (y, u) for (Pt,x) with

∫ T

t

Λ(s, y(s), u(s)) ds ≤
B for some B ≥ 0. Then

1. ∫ T

t

|u(s)|ds ≤ B + d(T − t)
α

= (T − t)ct(B).

2. For every c > ct(B) the set {s ∈ [t, T ] : |u(s)| ≤ c} is non negligible.

3.

∫ T

t

{
κΛ(s, y(s), u(s)) +A|u(s)|+ γ(s)

}
ds ≤ Φ(B).

Given B ≥ 0 and δ ∈ [t0, T [, the growth Condition (Hδ
B(χ)) below requires the validity of Condition (S),

unless Λ is autonomous. It will be applied when B is an upper bound for the values of a given set of admissible
pairs for problems (Pt,x) as t ∈ [t0, δ].
Below, taking the inf/sup where P (s, y, u) ∈ ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅ means that we consider just those points

(s, y, u) such that ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅.

Growth Condition (Hδ
B(χ)). Assume that Λ satisfies Condition (S) and let χ ∈ {e, u,∞}. Let B ≥ 0 and

δ ∈ [t0, T [. We say that Λ satisfies (Hδ
B(χ)) if for all K ≥ 0, there are ν > 0 and c > cδ(B) satisfying, for all

ρ > 0,

sup
s∈[t0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

{P (s, y, u)}+ Φ(B) < inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u). (3.3)

Remark 3.12. Condition (Hδ
B(χ)) below is a refinement of Condition (H) of [13], introduced by Clarke, who

first thoroughly began the investigation on existence and regularity under such a kind of weak growth condition.
Condition (H) of [13] corresponds to Condition (Hδ

B(χ)) with δ = t0, χ = ∞. It was subsequently considered
in [6] to derive Lipschitz regularity of minimizers for a given initial datum (t, x). Here we are interested in
investigating the uniformity of the Lipschitz constant of the minimizers as the initial data (t, x) vary. Moreover,
allowing the cases when χ = e or χ = u, we enlarge the class of Lagrangians that satisfy (Hδ

B(χ)). Notice, in
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view of (3.2), that from (3.3) we have

(Hδ
B(∞))⇒ (Hδ

B(u))⇒ (Hδ
B(e)). (3.4)

We refer to Example 4.18 of [19] for a Lagrangian that satisfies (Hδ
B(e)) but not (Hδ

B(∞)). Notice that, if Λ is
autonomous, Condition (3.3) is much simpler and does not depend anymore on B, since Φ(B) = 0.

Remark 3.13. 1. The validity of Condition (Hδ
B(χ)) implies that the right side of inequality (3.3) is not

equal to −∞.
2. If u 7→ Λ(s, y, u) is differentiable, (3.3) may be rewritten as

sup
s∈[t0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞
∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

{Λ(s, y, u)− u · ∇uΛ(s, y, u)}+ Φ(B) < inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

{Λ(s, y, u)− u · ∇uΛ(s, y, u)}.

Remark 3.14 (Interpretation of (G) and of (Hδ
B(χ))). Consider for simplicity a Lagrangian Λ(u) of the

variable u. Let Λ(u) < +∞ and assume that

P (u) ∈ ∂µ
(

Λ
(u
µ

)
µ
)
µ=1
6= ∅.

Then P (u) = Λ(u)−Q(u) for some Q(u) ∈ ∂rΛ(ru)r=1. Notice that

Λ(ru) ≥ φu(r) := Λ(u) +Q(u)(r − 1) ∀r > 0.

The value φu(0) = P (u) := Λ(u)−Q(u) represents the intersection of the “tangent” line z = φu(r) to 0 < r 7→
Λ(ru) at r = 1 with the z axis.

Condition (G) thus means that the ordinate P (u) of the above intersection point tends to −∞ as |u| goes to
∞.

Condition (Hδ
B(χ)) means that there is a gap of at least Φ(B) between the above points as |u| ≥ ν and when

evaluated at u such that |u| ≤ c, more precisely that (see Fig. 1)

sup
|u|≥ν

P (u) + Φ(B) < inf
|u|≤c

P (u).

The validity of Condition (Hδ
B(χ)) implies that the infimum (resp. the sup) involved in (3.3) is not equal to

−∞ (resp. +∞). These facts, actually, occur quite often, independently of Condition (Hδ
B(χ)): their validity

is actually a slow growth Condition, it was introduced and named (Mδ
B) in [19]. Claim 2) of Proposition 3.15

improves the sufficient condition formulated in Proposition 4.24 of [19].

Proposition 3.15. Let K ≥ 0. The following implications hold:

1. Assume that Λ is bounded on the bounded sets that are well-inside Dom(Λ) w.r.t. distχ(χ ∈ {e, u}).
Then for any c, ρ > 0,

−∞ < inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u). (3.5)
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Figure 1. Condition (Hδ
B(e)).

2. Assume that there is ν > 0 such that

Λ is bounded on ([t0, T ]×BnK ×Bmν ) ∩Dom(Λ). (B)

Then

sup
s∈[t0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u) < +∞. (3.6)

Proof. 1) Fix c, ρ > 0. It is not restrictive to assume that ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅ for some (s, y, u) ∈ Dom(Λ),

distχ((s, y, u),Dom(Λ)c) ≥ ρ. It follows from Remark 3.1 that

inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u) = inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
Q(s,y,u)∈∂r(Λ(s,y,ru)µ)r=1 6=∅

{Λ(s, y, u)−Q(s, y, u)}.

The claim follows directly from Lemma 3.17.
2) Let (s, y, u) ∈ Dom(Λ) with |y| ≤ K and |u| ≥ ν, u ∈ U . Assume that P (s, y, u) ∈ ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅.
Then P (s, y, u) = Λ(s, y, u)−Q(s, y, u) for some Q(s, y, u) ∈ ∂r(Λ(s, y, ru))r=1 (Rem. 3.1). The assumption that

Dom(Λ) is star-shaped in the control variable implies that
(
s, y, ν

u

|u|

)
∈ Dom(Λ) and thus

Λ
(
s, y, ν

u

|u|

)
− Λ(s, y, u) ≥ Q(s, y, u)

( ν
|u|
− 1
)
,

from which we deduce that

Λ(s, y, u)−Q(s, y, u) ≤ Λ
(
s, y, ν

u

|u|

)
− ν

|u|
Q(s, y, u). (3.7)
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The assumptions imply that

Λ
(
s, y, ν

u

|u|

)
≤ C1(K, ν) (3.8)

for some constant C1(K, ν) depending only on K, ν.
We now provide un upper bound for −Q(s, y, u). The assumption that Dom(Λ) is strictly star-shaped in the

control variable implies that
(
s, y,

ν

2

u

|u|

)
∈ Dom(Λ) and thus

Λ
(
s, y,

ν

2

u

|u|

)
− Λ(s, y, u) ≥ Q(s, y, u)

(
ν

2|u|
− 1

)
,

so that the linear growth hypothesis (L) gives

−Q(s, y, u) ≤ 1(
1− ν

2|u|

) [Λ(s, y, ν
2

u

|u|

)
− Λ(s, y, u)

]

≤ 2

[
Λ
(
s, y,

ν

2

u

|u|

)
+ d

]
≤ C2(K, ν)

(3.9)

for some constant C2(K, ν) depending only on K and ν. It follows from (3.8)–(3.9) that the right side of (3.7)
is bounded above by a constant depending only on K and ν.

Remark 3.16. Assumption (B) in Proposition 3.15 is a known sufficient condition for the nonoccurrence of
the Lavrentiev gap for positive autonomous Lagrangians of the Calculus of Variations (see [1], Assump. (B)).
Unsurprisingly, the more recent Conditions (3.5)–(3.6) play a role in the avoidance of the Lavrentiev phenomenon
(see [19]).

Lemma 3.17 (Bound of ∂rΛ(s, y, ru)r=1 on bounded sets). Assume that Λ(s, y, u) is bounded on the
bounded subsets that are well-inside Dom(Λ) w.r.t. distχ(χ ∈ {e, u}). Let

Σ := {(s, y, u) ∈ Dom(Λ) : ∂rΛ(s, y, ru)r=1 6= ∅},

and Q be any function satisfying Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 for every (s, y, u) ∈ Σ. Then Q is bounded on the
bounded sets of Σ that are well-inside Dom(Λ) w.r.t. distχ.

Proof. Let (s, y, u) ∈ Dom(Λ) and Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 6= ∅. Suppose that, for some C > 0, ρ > 0, |y|+
|u| ≤ C and

distχ((s, y, u),Dom(Λ)c) ≥ ρ.

The triangular inequality (see Rem. 3.5) implies that

distχ

((
s, y, u+

ρ

2C
u
)
,Dom(Λ)c

)
≥ ρ

2
.

Assuming that

∂rΛ(s, y, ru)r=1 6= ∅
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we obtain

Λ
(
s, y, u+

ρ

2C
u
)
− Λ(s, y, u) ≥ ρ

2C
Q(s, y, u).

The boundedness assumption of Λ implies that Q(s, y, u) is bounded above by a constant depending only on C
and ρ. Similarly, from

Λ
(
s, y, u− ρ

2C
u
)
− Λ(s, y, u) ≥ − ρ

2C
Q(s, y, u),

we deduce a lower bound for Q.

The fact that the validity of Condition (G) implies that of Condition (Hδ
B(χ)) was proved in [6] for real

valued Lagrangians and in Proposition 4.21 of [19] under the additional assumption that 0 < r 7→ Λ(s, y, ru) is
convex. Actually, the result holds true in greater generality.

Proposition 3.18 ((G) implies (Hδ
B(χ)) for all B, δ). Assume that Λ satisfies Condition (S) and that Λ is

bounded on the bounded subsets that are well-inside Dom(Λ) w.r.t. distχ(χ ∈ {e, u}). If Λ satisfies Condition
(G) then Λ satisfies Hypothesis (Hδ

B(χ)), whatever are the choices of δ ∈ [t0, T [, c > 0 and B ≥ 0.

Proof. Take any K ≥ 0. Assume that

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U
Q(s,y,u)∈∂r(Λ(s,y,r u))r=1 6=∅

{Λ(s, y, u)−Q(s, y, u)} = −∞ unif. |y| ≤ K.

Then we obtain

lim
ν→+∞

sup
s∈[t0,T ]
|u|≥ν,u∈U

Λ(s,y,u)<+∞
Q(s,y,u)∈∂r(Λ(s,y,r u))r=1 6=∅

{Λ(s, y, u)−Q(s, y, u)} = −∞ unif. |y| ≤ K.

It follows from 1) of Proposition 3.15 that Condition (Hδ
B(χ)) is valid, for any choice of B, c > 0, δ ∈ [t0, T [.

Remark 3.19. In Proposition 3.18, the assumption that Λ is bounded on bounded sets that are well-inside
Dom(Λ) is not a merely technical hypothesis (see [19], Ex. 4.25).

4. Uniform regularity for optimal pairs

We say that (y∗, u∗) is a W 1,1-weak local optimal pair for (Pt,x) if there is ε > 0 such that Jt(y∗, u∗) ≤ Jt(y, u)
for any admissible pair (y, u) such that ‖y − y∗‖1 + ‖y′ − y′∗‖1 ≤ ε. In Theorem 4.2 of [5] it is shown that, if
(y∗, u∗) is a W 1,1-weak local optimal pair for (Pt,x) and Condition (Ht0

Jt(y∗,u∗)(e)) holds, then u∗ is bounded and

y∗ has a finite Lipschitz rank. We give here a sufficient condition under which the above bounds are uniform as
the initial time t varies in an interval [t0, δ] (δ ∈ [t0, T [) and the initial point x varies in a compact set.

Theorem 4.1 (L∞– uniform boundedness for optimal controls and equi-Lipschitz rank of minimiz-
ers). Assume that Λ takes values in R and satisfies Assumption (S). Fix δ ∈ [t0, T [, δ∗ ≥ 0 and x∗ ∈ Rn. Let
(y∗, u∗) be a W 1,1-weak local optimal pair for (Pt,x) where t ∈ [t0, δ], x ∈ Bnδ∗(x∗), and let B ≥ 0 be such that

∫ T

t

Λ(s, y∗(s), u∗(s)) ds ≤ B.



UNIFORM BOUNDEDNESS FOR THE OPTIMAL CONTROLS 13

Assume that Λ satisfies the growth condition (Hδ
B(e)). Then u∗ is bounded and y∗ is Lipschitz with bounds and

ranks depending only on δ,B, δ∗, x∗.
The same conclusion is valid when Λ takes values in R ∪ {+∞}, provided that we impose also the following

assumptions:

a) (s, u) 7→ Λ(s, y, u) is lower semicontinuous for every y;
b) For every (s, y, u) ∈ Dom(Λ), the set {λ > 0 : Λ(s, y, λu) < +∞} is open;
c) For some χ ∈ {e, u,∞}, Λ satisfies the growth condition (Hδ

B(χ)) and for a.e. s ∈ [t, T ], {(s, y∗(s), u∗(s))}
is well-inside Dom(Λ) w.r.t. distχ, i.e.,

∃ρs > 0 distχ((s, y∗(s), u∗(s)),Dom(Λ)c) ≥ ρs a.e. s ∈ [t0, T ]. (Wχ)

Remark 4.2. When Λ is an extended valued function, in Theorem 4.1 we impose the additional assumptions a),
b) and c). Condition c) is employed in the proof of Theorem 4.1 (for the extended valued case) to take advantage
of the information provided by ‘inf’-term in (3.3) of the growth Condition (Hδ

B(χ)), while assumptions a) and
b) are used just to ensure the validity of the Du Bois-Reymond condition ([6], Thm. 2). Therefore, a) and b)
can be removed and the regularity properties of Theorem 4.1 remain valid provided that the Du Bois-Reymond
condition ([6], Thm. 2) is in force. This is the case, for instance, when Λ is the indicator function of a (bounded)
control set U (cf. [6], Rem. 4).

Remark 4.3. In the case of an extended valued Lagrangian, the choice of χ ∈ {e, u,∞} in Theorem 4.1 depends
on the validity of both conditions (Hδ

B(χ)) and (Wχ) of Condition c) of Theorem 4.1. Now, it appears that the
best choice of χ for the first condition may be the worse for the second one, and vice versa. Indeed, from (3.4),

(Hδ
B(∞))⇒ (Hδ

B(u))⇒ (Hδ
B(e)),

whereas

(We)⇒ (Wu)⇒ (W∞).

Thus, if (Hδ
B(e)) or (W∞) are not fulfilled, Theorem 4.1 is not applicable. Otherwise, one has to find a trade-off

for a common value of χ ∈ {e, u,∞} in order to satisfy both the conditions.

Remark 4.4. Let χ be as in Hypothesis (Hδ
B(χ)). Then, in Theorem 4.1:

– If χ = u then (Wχ) of Assumption c) follows from Assumption b).
– If χ =∞ then (Wχ) of Assumption c) is always satisfied.
– If χ = e Assumptions b) and (Wχ) of c) are fulfilled if Dom(Λ) is open in [t0, T ]× Rn × Rm.
– The validity of (Wχ) of Assumption c) is ensured once, for all s ∈ [t0, T ],

lim
distχ((s,z,v),Dom(Λ)c)→0

Λ(s, z, v) = +∞, (4.1)

uniformly w.r.t. z in compact sets, i.e., if for all compact K ⊂ Rn and M ≥ 0 there is ρ > 0 such that,
for all (s, z, v) ∈ Dom(Λ) with z ∈ K,

distχ ((s, z, v),Dom(Λ)c) ≤ ρ⇒ Λ(s, z, v) ≥M.

Condition (4.1) has been used in the assumptions ([19], Thm. 5.1) among the sufficient conditions for the
existence of minimizing sequences with equi-bounded controls.
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Proof of Theorem 4.1. Let α, d be as in (L) and (y∗, u∗) be a W 1,1-weak local optimal pair for (Pt,x). From
Point 1 of Proposition 3.11 we have∫ T

t

|u∗|ds ≤
B + d(T − t)

α
≤ R = R(B) :=

B + d(T − t0)

α
. (4.2)

Claim: There is K := K(δ,B, δ∗, x∗) such that |y∗(s)| ≤ K for every s ∈ [t, T ]. Indeed, for a.e. s ∈ [t, T ],

|y′∗(s)| ≤ θ(1 + |y∗(s)|)|u∗(s)|.

Since y∗(t) = x, (2.2) and (4.2) imply that, for all s ∈ [t, T ],

|y∗(s)− x| ≤
∫ s

t

exp

(
θ

∫ s

τ

|u∗(r)| dr
)
θ|u∗(τ)|(|x|+ 1) dτ

≤ (|x|+ 1)(eRθ − 1),

so that

|y∗(s)| ≤ |x|+ (|x|+ 1)(eRθ − 1) ≤ eRθ(|x∗|+ δ∗ + 1),

where in the latter we used the fact that x ∈ Bδ∗(x). The claim follows from the fact that R depends on B,
with

K = eRθ(|x∗|+ δ∗ + 1).

We prove the result in the extended valued case since when Λ is real valued the analysis is simpler: we just
take χ = e and hypotheses a), b), c) are not necessary anymore. Assumptions a), b) imply that the Lagrangian
Λ satisfies ([5], Hypothesis (S∞(y∗,u∗))). The optimal pair (y∗, u∗) satisfies the Du Bois-Reymond – Erdmann

condition formulated in Theorem 3.1 of [5]. In particular

∂µ

(
Λ
(
s, y∗(s),

u∗(s)

µ

)
µ

)
µ=1

6= ∅ a.e. s ∈ [t, T ]

and there is an absolutely continuous function p ∈W 1,1([t, T ]) such that

p(s) ∈ ∂µ
(

Λ
(
s, y∗(s),

u∗(s)

µ

)
µ

)
µ=1

a.e. s ∈ [t, T ],

|p′(s)| ≤ κΛ(s, y∗(s), u∗(s)) +A|u∗(s)|+ γ(s) a.e. s ∈ [t, T ]. (4.3)

We consider P (s, z, v) ∈ ∂µ
(

Λ
(
s, z,

v

µ

)
µ
)
µ=1

such that

p(s) = P (s, y∗(s), u∗(s)) a.e. s ∈ [t, T ].

Remark 3.10 tells us that the parameter c in Condition (Hδ
B(χ)) satisfies c > ct(B). It follows from Claim 2 of

Proposition 3.11 that there is a non negligible set of τ ∈ [t, T ] satisfying |u∗(τ)| < c and p(τ) = P (τ, y∗(τ), u∗(τ)).
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We fix such a τ and set ρ := distχ((τ, y∗(τ), u∗(τ)),Dom(Λ)c); notice that Assumption c) implies that ρ > 0.
Let ν be such that (3.3) holds. We have

P (s, y∗(s), u∗(s)) = p(τ) +

∫ s

τ

p′(σ) dσ a.e. s ∈ [t, T ]. (4.4)

It follows from (4.3) and (4.4) that for a.e. s ∈ [t, T ] we have

p(τ) = P (s, y∗(s), u∗(s))−
∫ s

τ

p′(σ) dσ

≤ P (σ, y∗(s), u∗(s)) +

∫ s

τ

[κΛ(σ, y∗, u∗) +A|u∗|+ γ] dσ.

Assume that there is a non negligible subset F of [t, T ] such that |u∗| > ν on F . By taking s ∈ F we deduce
that

p(τ) ≤ sup
s∈[t0,T ],|z|≤K
|v|≥ν,v∈U

Λ(s,z,v)<+∞
∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

{P (s, z, v)}+

∣∣∣∣∫ s

τ

κΛ(σ, y∗(σ), u∗) +A|u∗|+ γ dσ

∣∣∣∣
≤ sup

s∈[t0,T ],|z|≤K
|v|≥ν,v∈U

Λ(s,z,v)<+∞
∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

{P (s, z, v)}+ Φ(B),
(4.5)

where the last inequality is justified by Claim 3 of Proposition 3.11. Now,

p(τ) = P (τ, y∗(τ), u∗(τ)) ≥ inf
s∈[t0,T ],|z|≤K
|v|≤c,v∈U,

distχ((s,z,v),Dom(Λ)c)≥ρ

∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

P (s, z, v). (4.6)

Therefore (4.5) and (4.6) imply that

sup
s∈[t0,T ],|z|≤K

|v|≥ν,v∈U,Λ(s,z,v)<+∞
∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

{P (s, z, v)}+ Φ(B) ≥ inf
s∈[t0,T ],|z|≤K
|v|≤c,v∈U,

distχ((s,z,v),Dom(Λ)c)≥ρ

∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

P (s, z, v),

contradicting (3.3). It follows that |u∗| ≤ ν a.e. on [t, T ]. The Lipschitzianity of y∗ and the uniformity of its
rank follows from (2.1).

Remark 4.5. The proof of Theorem 4.1 shows that if Λ is real valued then a uniform bound for the optimal
control u∗ satisfying the conditions of the claim is given by any ν > 0 satisfying one of the assumptions of

Condition (Hδ
B(χ)), with K = eRθ(|x∗|+ δ∗ + 1) and R =

B + d(T − t0)

α
.

One of the assumptions of Theorem 4.1 is the existence of an upper bound B for the cost of the optimal
pairs. Such a bound exists and can be explicitly computed for some classes of problems, e.g., for finite valued
Lagrangians of the Calculus of Variations, or if the cost function g is real valued. Corollary 4.6 below extends
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([17], Prop. 3.3) in various directions: Nonautonomous Lagrangians, weaker growths than superlinearity, optimal
control problems more general than problems of the Calculus of Variations, no convexity in the velocity variable.

Corollary 4.6 (The Calculus of Variations or real valued final cost g). Assume that Λ is real valued,
satisfies Assumption (S) and is bounded on bounded sets. Suppose, moreover, that g is bounded from below and
that one of the following assumptions holds:

i) b = 1 in the controlled differential equation, S is convex and U = Rn;
ii) The cost function g is real valued, locally bounded and 0 ∈ U ;

iii) b is Lipschitz continuous, the cost function g is real valued, locally bounded and S = Rn.

Let δ ∈ [t0, T [, δ∗ ≥ 0, x∗ ∈ Rn. Let t ∈ [t0, δ], x ∈ Bδ∗(x∗) and (y∗, u∗) be optimal for (Pt,x).

1. There is B ∈ R such that

B ≥
∫ T

t

Λ(s, y∗(s), u∗(s)) ds.

2. Assume that Λ satisfies (Hδ
B(e)). Then, u∗ is uniformly bounded and y∗ is uniformly Lipschitz as t ∈

[t0, δ], x ∈ Bδ∗(x∗).

Proof. In view of Theorem 4.1, Claim 2 is an immediate consequence of Claim 1.
If i) or ii) hold, Claim 1 follows from Lemma 5.3 of [19]. Assume that iii) holds. Let Υ be a bound from below
for g. Consider u ∈ U and let y be the solution to

y′ = b(y)u, y(t) = x.

Then

Jt(y∗, u∗) ≤ Jt(y, u) =

∫ T

t

Λ(s, y(s), u) ds+ g(y(T ))

is bounded above by a constant B that does not depend on x ∈ Bnδ∗(x∗) and on t ∈ [t0, δ], owing to standard a
priori boundedness properties of trajectories. Therefore∫ T

t

Λ(s, y∗(s), y
′
∗(s)) ds ≤ B − g(y∗(T )) ≤ B −Υ =: B.

5. Lipschitz continuity of the value function

We consider here problem (Pt,x) in the framework of the Calculus of Variations, i.e., with b ≡ 1 in (D).
The value function V (t, x) associated with problem (Pt,x) is the function defined by

∀t ∈ [t0, T ],∀x ∈ Rn V (t, x) = inf (Pt,x).

In this section we shall assume that Λ is real valued and bounded on bounded sets: since g is not identically
+∞ it follows that V (t, x) < +∞ for every (t, x). The next result extends to the nonautonomous case ([17],
Cor. 3.4), formulated there for autonomous and superlinear Lagrangians.

Corollary 5.1 (Local Lipschitz continuity of the value function in the Calculus of Variations
setting). Suppose that Λ is real valued, bounded on bounded sets, satisfies Assumption (S) and, moreover,
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b = 1, S = U = Rn. Let δ ∈]t0, T [, x∗ ∈ Rn, δ∗ > 0. We suppose that (Pt,x) admits at least an optimal pair for
each t ∈ [t0, δ], x ∈ Bδ∗(x∗). Assume, moreover, the validity of at least one of the following conditions:

1. Λ satisfies (Hδ
B(e)), where B ≥ 0 is such that, for any t ∈ [t0, δ], x ∈ Bδ∗(x∗) and optimal pair (y∗, u∗)

for (Pt,x),

B ≥
∫ T

t

Λ(s, y∗(s), u∗(s)) ds; (5.1)

2. Λ satisfies (G).

Then the value function V (t, x) is locally Lipschitz on [t0, δ[×Bδ∗(x∗).

Remark 5.2. If the cost function g is bounded from below, then the existence of B in (5.1) is ensured by
Corollary 4.6 (Case i)).

Remark 5.3. Sufficient conditions for the existence of a minimizer under the slow growth condition of type
(H), required in Corollary 5.1, are provided in [13, 19].

Example 5.4. The result covers Lagrangians of slow growth not considered in previous literature concerning
the regularity of the value function. Consider, for instance, Λ(s, y, u) := L(y, u) = a(y)

√
1 + |u|2 (y, u ∈ R) with

a lower semicontinuous and 1 ≤ a ≤ 2, S = U = R; let g be continuous on R (this example is inspired by
Example 2.4.2 of [13]). Clearly L is not superlinear and, since L(y, u) ≥ |u|, it satisfies (L). Fix t0 = 0, T = 1,
δ ∈ [0, 1[, x∗ ∈ R, δ∗ > 0, t ∈ [0, δ] and x ∈ [x∗ − δ∗, x∗ + δ∗]. Let y∗ be a minimizer for (Pt,x); its existence
follows from Theorem 2 of [13]. Claim 1 of Corollary 4.6 says that there is B ≥ 0 depending only on δ and x∗, δ∗
such that

B ≥
∫ 1

t

L(y∗(s), y
′
∗(s)) ds.

Now, denoting by Lu the partial derivative of L with respect to u, we have

L(y, u)− uLu(y, u) =
a(y)√
1 + u2

,

so that, for any ν, c > 0,

sup
|u|≥ν

{L(y, u)− uLu(y, u)} =
a(y)√
1 + ν2

≤ 2√
1 + ν2

,

inf
|u|≤c
{L(y, u)− uLu(y, u)} =

a(y)√
1 + c2

≥ 1√
1 + c2

.

Since lim
ν→+∞

1√
1 + ν2

= 0, then L satisfies (Hδ
B(e)). Corollary 5.1 shows that the value function V (t, x) is locally

Lipschitz in [0, δ]× [x∗ − δ∗, x∗ + δ∗].

Proof of Corollary 5.1. Assume the validity of Condition 1. Let t∗ ∈ [t0, δ[, x ∈ Bδ∗(x∗) and fix ε > 0 such that

0 < ε < min{δ − t∗, δ∗}.
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Take t0 ≤ t1, t2 ∈ [t∗ − ε/5, t∗ + ε/5] and x1, x2 ∈ Bnε/5(x∗) with either t2 6= t1 or x2 6= x1. Set ∆ := |t2 − t1|+
|x2 − x1|. Notice that

t0 ≤ t1 < t1 + ∆ ≤ t∗ + ε ≤ δ, t0 ≤ t2 ≤ t1 + ∆ ≤ δ.

Since inf(Pt2,x2
) is attained, let y2 ∈W 1,1([t2, T ];Rn) be such that

y2(t2) = x2, Jt2(y2, y
′
2) = V (t2, x2).

Theorem 4.1 shows that every minimizer y for (Pt,x) is such that ||y||∞, ||y′||∞ ≤ K, where the constant K
depends only on δ, δ∗ and x∗.

Let

u :=
y2(t1 + ∆)− x1

∆
.

The choice of ε yields

|u| ≤ |y2(t1 + ∆)− y2(t2)|
∆

+
|y2(t2)− x1|

∆

≤ |y2(t1 + ∆)− y2(t2)|
∆

+
|x2 − x1|

∆

≤ K |t1 + ∆− t2|
∆

+
|x2 − x1|

∆
≤ K |∆|+ |t2 − t1|

∆
+ 1 ≤ 2K + 1.

We consider now the competitor z for (Pt1,x1
) given by

z(s) :=

{
x1 + (s− t1)u t1 ≤ s ≤ t1 + ∆,

y2(s) t1 + ∆ ≤ s ≤ T.

Since z(T ) = y2(T ) we get

V (t1, x1) ≤
∫ t1+∆

t1

Λ(s, z, z′) ds+

∫ T

t1+∆

Λ(s, y2, y
′
2) ds+ g(y2(T ))

≤
∫ t1+∆

t1

Λ(s, z, z′) ds+ V (t2, x2)−
∫ t1+∆

t2

Λ(s, y2, y
′
2) ds.

(5.2)

Since 0 ≤ ∆ ≤ 4ε/5 for all s ∈ [t1, t1 + ∆] we obtain

|z(s)| ≤ |x1|+ ∆|u| ≤ |x∗|+ ε/5 + 4(2K + 1)ε/5, |z′(s)| ≤ |u| ≤ 2K + 1,

so that, given that Λ is bounded on bounded sets,∣∣∣∣∣
∫ t1+∆

t1

Λ(s, z, z′) ds

∣∣∣∣∣ ≤ C∆ = 2C(|t2 − t1|+ |x2 − x1|),

for some positive constant C which depends only on δ, δ∗ and x∗. Moreover, as observed above, from Theorem 4.1
we obtain that ||y2||∞, ||y′2||∞ ≤ K, and thus, using the fact that |t2 − t1| + ∆ ≤ 2∆ (we can take the same
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constant C previously employed)∣∣∣∣∣
∫ t1+∆

t2

Λ(s, y2, y
′
2) ds

∣∣∣∣∣ ≤ C|t1 + ∆− t2|

≤ 2C(|t2 − t1|+ |x2 − x1|).

It follows from (5.2) that

V (t1, x1)− V (t2, x2) ≤ 4C(|t2 − t1|+ |x2 − x1|).

Exchanging the roles of (t1, x1) and (t2, x2) we arrive at

|V (t1, x1)− V (t2, x2)| ≤ 4C(|t2 − t1|+ |x2 − x1|),

which proves the claim. The result under Condition 2 follows immediately as a consequence of Proposition 3.18.

References
[1] G. Alberti and F. Serra Cassano, Non-occurrence of gap for one-dimensional autonomous functionals. In Calculus of variations,

homogenization and continuum mechanics (Marseille, 1993), volume 18 of Ser. Adv. Math. Appl. Sci., World Sci. Publ., River
Edge, NJ (1994) 1–17.

[2] L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous
integrands. J. Math. Anal. Appl. 142 (1989) 301–316.

[3] J.M. Ball and V.J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation.
Arch. Ratl. Mech. Anal. 90 (1985) 325–388.

[4] P. Bettiol and C. Mariconda, A new variational inequality in the calculus of variations and Lipschitz regularity of minimizers.
J. Differ. Equ. 268 (2020) 2332–2367.

[5] P. Bettiol and C. Mariconda, Regularity and necessary conditions for a Bolza optimal control problem. J. Math. Anal. Appl.
489 (2020) Article ID 124123.

[6] P. Bettiol and C. Mariconda, A Du Bois-Reymond convex inclusion for non-autonomous problems of the Calculus of Variations
and regularity of minimizers. Appl. Math. Optim. 83 (2021) 2083–2107.

[7] P. Cannarsa, H. Frankowska and E.M. Marchini, Existence and Lipschitz regularity of solutions to Bolza problems in optimal
control. Trans. Am. Math. Soc. 361 (2009) 4491–4517.

[8] P. Cannarsa, H. Frankowska and E.M. Marchini, On Bolza optimal control problems with constraints. Discr. Contin. Dyn.
Syst. Ser. B 11 (2009) 629–653.

[9] A. Cellina, The classical problem of the calculus of variations in the autonomous case: relaxation and Lipschitzianity of
solutions. Trans. Am. Math. Soc. 356 (2004) 415–426.

[10] A. Cellina and A. Ferriero, Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the
autonomous case. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 911–919.
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