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Univ Brest, CNRS - UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique. 6, Av. Le
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Abstract

The Lyapunov stability theorem for linear systems is extended to linear delay-differential alge-
braic systems of index one. In particular, bounds on the decay of the solution are established in
terms of solvability of a certain Lyapunov-type matrix equation.
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1. Introduction

It is known that if A is a stable matrix (i.e., all of its eigenvalues have negative real
parts), then the linear ordinary differential system

ẋ(t) = Ax(t), t ≥ 0 (1)

is asymptotically stable, that is, x(t)→ 0 as t→ +∞.
The Lyapunov theory can be used to inform about the quality of stability and to measure
the decay rate of the solution (see, e.g., [8]). Indeed, under the assumption thatA is stable,
the Lyapunov matrix equation

C = −(ATH +HA) (2)

has the unique solution H =
∫∞

0
etA

T

CetAdt = HT > 0 (i.e., symmetric positive definite)
for all matrices C = CT > 0. Conversely, if the equation (2) is satisfied with some matrices
C = CT > 0 and H = HT > 0, then A is stable and, using the quadratic function

v(x(t)) = x(t)THx(t), (3)
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we obtain the bound (see, e.g., [9])

‖x(t)‖ ≤
√
‖H‖ ‖H−1‖ e−

λmin(C)

2‖H‖ t ‖x(0)‖, t ≥ 0, (4)

where ‖ ‖ denotes the 2-norm for vectors and matrices and λmin(C) denotes the smallest
eigenvalue of C. See also [25] for a comparison with other bounds. Although this bound
is not sharp, it measures the decay rate of the solution (because λmin(C) > 0) by involv-
ing quantities based on the computation of eigenvalues of symmetric (positive definite)
matrices for which reliable algorithms are available [10]. Moreover, the norm of H can
be used in preference to the spectral criterion ”Re(λ) < 0 for all eigenvalues of A” for
assessing the stability of A : the larger the norm of H, the less stable the matrix A. For
related issues, see, e.g., [18,20,24].

Our goal in this note is to study to what extent a bound similar to (4) holds for linear
differential algebraic systems with time delay, of the formEẋ(t) = Ax(t) +Bx(t− τ), t > 0,

x(t) = ψ(t), −τ ≤ t ≤ 0,
(5)

where E, A, B are real n× n matrices with E singular and τ is a fixed positive delay.
Time delay systems arise generally in applications where a transport phenomenon occurs.
A wide range of examples can be found in [7,15]. Solution theory for (5) is established
for example in [2,11,22,21,23] and the references therein.

Stability analysis of systems of type (5) has been investigated by many authors; for
example, in [5,6] the analysis is based on a careful choice of a Lyapunov-Krasovskii func-
tion (a generalization of (3)), and sufficient conditions for stability are given in terms of
linear matrix inequalities. In [17], the stability is based on the computation of eigenvalues
of certain matrix pencils. In [3], sufficient conditions for asymptotic stability are formu-
lated with the help of the characteristic equation of the system. In [16], a spectrum-based
approach is developed for the stability analysis and stabilization of systems described by
delay differential algebraic equations. In [4], necessary and sufficient conditions for ex-
ponential stability of classes of systems of the form (5) are derived using the roots of
the associated characteristic equation. In the present note, using a Lyapunov-Krasovskii
type function, bounds on the decay of the solution, analogous to (4), are established in
terms of solvability of a certain Lyapunov-type matrix equation.

2. Lyapunov-based stability analysis

We assume throughout this note that the pencil λE −A is regular (i.e., there exists λ
such that det(λE − A) 6= 0) and of index 1 (this is the index of the nilpotent matrix in
the Weierstraß canonical form of λE−A, see, e.g., [19]). Since the matrices E and A are
real, the real Weierstraß canonical form can be used to decompose E and A as

E = W

Ir 0

0 0

T, A = W

J 0

0 In−r

T, (6)

where W and T are real nonsingular matrices, the symbol Ik denotes the identity matrix
of order k, the matrix J is in real Jordan form (see, e.g., [12, Section 3.4]) and corresponds
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to the finite eigenvalues of the pencil λE −A and r = rank(E). Alternatively, the quasi-
Weierstraß form or a block-diagonalization via the real generalized Schur form may also
be used (see [1], [14]).

The spectral projection onto the right deflating subspace of λE −A corresponding to
the finite eigenvalues is given by

P =
1

2πi

∮
Γ

(λE −A)−1E dλ, (7)

where Γ is a closed Jordan curve surrounding the finite eigenvalues. Using (6), we obtain

P = T−1

Ir 0

0 0

T. (8)

As a first step, a bound on Px(t) analogous to (4) is obtained in Theorem 2.1. Then,
Theorem 2.2 extends the bounds to x(t). In these theorems, the assumption that the
pencil has index 1 plays an essential role (see the function v(t, y(t)) in the proof of
Theorem 2.1 and the property (16)).
From (6) and (8) the system (5) can be written Êẏ(t) = Ây(t) + B̂y(t− τ), t > 0,

y(t) = ψ̂(t), −τ ≤ t ≤ 0,
(9)

where 
Ê =

Ir 0

0 0

 , Â =

J 0

0 In−r

 , B̂ = W−1BT−1,

y(t) = Tx(t), ψ̂(t) = Tψ(t).

(10)

With this notation, we obtain the following result.
Theorem 2.1 Assume that there exists

H =

H11 0

0 H22

 with H11 = HT

11 > 0, H22 +HT

22 +
1

τ
In−r < 0

such that

C = −

ÂTH +HT Â+
1

τ
In HT B̂

B̂TH − 1

2τ
In

 = CT > 0.

Then
(i) the pencil λE−A is stable (i.e., the eigenvalues of J lie in the open left-half plane).

(ii) The following bound holds for t ≥ 0

‖Px(t)‖ ≤ α e−
1
2

β
‖H11‖

t
,

where

α= ‖T‖‖T−1‖
√
‖H−1

11 ‖ (‖H11‖+ ln 2) max
−τ≤ν≤0

‖Px(ν)‖,

β = min

(
λmin(C),

‖H11‖
2τ

)
.
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Proof

(i) Let (λ, x1) be an eigenpair of J and x̂ =

x1

0

 and x =

x̂
0

 be respectively of

size n and 2n. Then, denoting by x∗ the conjugate transpose of x, we obtain

−x∗Cx = 2x∗1H11x1 Reλ+
‖x1‖2

τ

which shows that Re(λ) < 0.
(ii) Consider the Lyapunov-Krasovskii type function

v(t, y(t)) = yT (t)ÊHy(t) +

∫ t

t−τ

‖y(ν)‖2

t− ν + τ
dν, t ≥ 0.

If we set y(t) =

y1(t)

y2(t)

, then yT (t)ÊHy(t) = yT1 (t)H11y1(t) ≥ 0 and

v̇(t, y(t)) = yT (t)HT Êẏ(t) + (Êẏ(t))THy(t) +
‖y(t)‖2

τ
− ‖y(t− τ)‖2

2τ

−
∫ t

t−τ

‖y(ν)‖2

(t− ν + τ)2
dν

= y(t)THT

(
Ây(t) + B̂y(t− τ)

)
+
(
Ây(t) + B̂y(t− τ)

)T
Hy(t)

+
‖y(t)‖2

τ
− ‖y(t− τ)‖2

2τ
−
∫ t

t−τ

‖y(ν)‖2

(t− ν + τ)2
dν

=−

 y(t)

y(t− τ)

T

C

 y(t)

y(t− τ)

− ∫ t

t−τ

‖y(ν)‖2

(t− ν + τ)2
dν ≤ 0. (11)

Note that y(t)

y(t− τ)

T

C

 y(t)

y(t− τ)

≥ λmin(C)

∥∥∥∥∥∥
 y(t)

y(t− τ)

∥∥∥∥∥∥
2

≥ λmin(C) ‖y(t)‖2

≥ λmin(C)

‖H11‖
yT (t)ÊHy(t) (12)

t− τ ≤ ν ≤ t⇒ (t− ν + τ)2 ≤ 2τ(t− ν + τ). (13)

Using (11), (12) and (13) we obtain

v̇(t, y(t)) ≤ − β

‖H11‖
v(t, y(t)), β = min

(
λmin(C),

‖H11‖
2τ

)
.

Therefore

v(t, y(t)) ≤ e−
β

‖H11‖
t
v(0, y(0)).

Since
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v(t, y(t))≥ yT (t)ÊHy(t) = yT1 (t)H11y1(t)

≥ λmin(H11) ‖y1(t)‖2 = ‖H−1
11 ‖−1 ‖y1(t)‖2,

v(0, y(0)) = yT (0)ÊHy(0) +

∫ 0

−τ

‖y(ν)‖2

−ν + τ
dν

≤ ‖ÊH‖‖y(0)‖2 + max
−τ≤ν≤0

‖y(ν)‖2 ln 2

≤ (‖H11‖+ ln 2) max
−τ≤ν≤0

‖y(ν)‖2,

we deduce that

‖y1(t)‖2 ≤ ‖H−1
11 ‖ (‖H11‖+ ln 2) max

−τ≤ν≤0
‖y(ν)‖2e−

β
‖H11‖

t
.

The proof terminates by noticing that

‖y1(t)‖ = ‖TPx(t)‖ and ‖T−1‖−1‖Px(t)‖ ≤ ‖TPx(t)‖ ≤ ‖T‖‖Px(t)‖.
2

Remarks
- In Theorem 2.1, the connection between H and C is the analogue of equation (2). In

particular, if E = I, B = 0, then the bound in (ii) reduces to (4).
- Similar to the ordinary case, the bound on ‖Px(t)‖ depends on the solvability of the

Lyapunov-type equation involving C and H.
- In the expression of α, the coefficient ln 2 results from our simple choice of the function
v. Of course, more sophisticated choices can be considered.

- The factor α depends essentially on the condition number of T , which is an indicator of
the quality of the spectral projection (8), and on ‖H11‖ = ‖ÊH‖, which is an indicator
of the stability of J and therefore of the pencil λE − A. A large value of α can result
in a transient growth of Px(t). The factor β depends on λmin(C) and ‖H11‖ and is
responsible for the decay and asymptotic behavior of Px(t).

- The assumption of the theorem results in constraints mainly on the matrix B. Indeed,
by considering the Schur complement, the positive definiteness of C is equivalent to

ÂTH +HT Â+
1

τ
In < 0, (14)

B̂TH

(
ÂTH +HT Â+

1

τ
In

)−1

HT B̂ +
1

2τ
In > 0. (15)

If we assume that the pencil λE−A is stable, then the condition (14) is easily satisfied.
Indeed, by considering, for example, the matrix K = c

τ Ir of size r × r with c > 1, the
Lyapunov equation JTH11 + H11J + K = 0 has a unique solution H11 = HT

11 > 0.
Then

ÂTH +HT Â+
1

τ
In =

1− c
τ

Ir 0

0 H22 +HT

22 +
1

τ
In−r

 < 0.

In particular, the choice H22 = − c
2τ In−r leads to ÂTH +HT Â+ 1

τ In = − c−1
τ In < 0.

The condition (15) can be written (W−1BT−1)THHT (W−1BT−1) − c−1
2τ2 In < 0 and

will be satisfied if ‖B‖ ≤ (‖H‖‖T−1‖‖W−1‖)−1
(
c−1
2τ2

) 1
2 .
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For example if n = 4, A =

J 0

0 I2

 , J =

−3 1

0 −2

 , E =

I2 0

0 0

 , τ = 1, then the

equation JTH11 + H11J + 2I2 = 0 has the unique solution H11 =

 1

3

1

15
1

15

8

15

. Taking

H22 = −I2 and letting H =

H11 0

0 H22

 leads to ATH +HAT + 1
τ I4 = −I4 and hence

the condition (14) is satisfied. The condition (15) will be satisfied for any matrix B such
−2BTH2B + I4 is positive definite, and, in particular if ‖B‖ ≤ 1√

2‖H‖ = 0.70711.

Under the assumption of Theorem 2.1, the pencil λE−A is stable and hence the matrix
A is nonsingular. Multiplying equation (5) on the left by (In − P)A−1 and noting that
(In − P)A−1E = 0, we obtain

0 = (In − P)x(t) + (In − P)A−1Bx(t− τ), t > 0, (16)

which will be used to derive a bound analogous to (4).
Theorem 2.2 Under the assumption of Theorem 2.1, let t = kτ + µ, 0 ≤ µ ≤ τ , k ≥ 0.
Then

‖x(t)‖ ≤ α
k∑
j=0

(
‖(In − P)A−1B‖ e

βτ
2‖H11‖

)j
e
− β

2‖H11‖
t
+‖(In−P)A−1B‖k+1 max

−τ≤ν≤0
‖x(ν)‖,

where α and β are defined in Theorem 2.1.
Proof For 0 ≤ t ≤ τ , the equality (16) gives

‖(In − P)x(t)‖ ≤ ‖(In − P)A−1B‖ max
−τ≤ν≤0

‖x(ν)‖ (17)

and for t = τ + µ, 0 ≤ µ ≤ τ , it gives

‖(In − P)x(t)‖ ≤ ‖(In − P)A−1B‖ [‖Px(t− τ)‖+ ‖(In − P)x(t− τ)‖] .

From Theorem 2.1 and the inequality (17) we obtain

‖Px(t− τ)‖ ≤ αe−
β

2‖H11‖
µ
, ‖(In − P)x(t− τ)‖ ≤ ‖(In − P)A−1B‖ max

−τ≤ν≤0
‖x(ν)‖.

Therefore

‖(In−P)x(t)‖ ≤ α‖(In−P)A−1B‖ e−
β

2‖H11‖
µ

+ ‖(In−P)A−1B‖2 max
−τ≤ν≤0

‖x(ν)‖. (18)

Continuing this way we easily obtain for t = kτ + µ, 0 ≤ µ ≤ τ a generalization of (17)
and (18) as follows

‖(In−P)x(t)‖ ≤ α
k∑
j=1

‖(In−P)A−1B‖j e−
β

2‖H11‖
(t−jτ)

+‖(In−P)A−1B‖k+1 max
−τ≤ν≤0

‖x(ν)‖.

Hence
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‖x(t)‖ ≤ ‖Px(t)‖+ ‖(In − P)x(t)‖

≤ α
k∑
j=0

‖(In − P)A−1B‖j e−
β

2‖H11‖
(t−jτ)

+ ‖(In − P)A−1B‖k+1 max
−τ≤ν≤0

‖x(ν)‖

= α

k∑
j=0

(
‖(In − P)A−1B‖ e

βτ
2‖H11‖

)j
e
− β

2‖H11‖
t

+ ‖(In − P)A−1B‖k+1 max
−τ≤ν≤0

‖x(ν)‖.

2

Corollary 1 Under the assumptions of Theorem 2.1, let t = kτ + µ, 0 ≤ µ ≤ τ , k ≥ 0.

(i) If ‖(In − P)A−1B‖ e
βτ

2‖H11‖ < 1, then

‖x(t)‖ ≤

(
α

1− ‖(In − P)A−1B‖e
βτ

2‖H11‖
+ max
−τ≤ν≤0

‖x(ν)‖

)
e
− β

2‖H11‖
t
.

(ii) If ‖(In − P)A−1B‖ e
βτ

2‖H11‖ = 1, then

‖x(t)‖ ≤
(
α

(
t

τ
+ 1

)
+ max
−τ≤ν≤0

‖x(ν)‖
)
e
− β

2‖H11‖
t
.

(iii) If 1 < ‖(In − P)A−1B‖ e
βτ

2‖H11‖ and ‖(In − P)A−1B‖ ≤ 1, then

‖x(t)‖ ≤

(
α e

βτ
2‖H11‖

‖(In − P)A−1B‖e
βτ

2‖H11‖ − 1
+ max
−τ≤ν≤0

‖x(ν)‖

)
e
− ln

(
‖(In−P)A−1B‖−

1
τ

)
t
.

Proof For the three cases we use Theorem 2.2.
(i) If ‖(In − P)A−1B‖ e

βτ
2‖H11‖ < 1, then

‖x(t)‖ ≤ α
∑
j≥0

(‖(In − P)A−1B‖ e
βτ

2‖H11‖ )j e
− β

2‖H11‖
t

+ e
− βτ(k+1)

2‖H11‖ max
−τ≤ν≤0

‖x(ν)‖

and the desired inequality follows from (k + 1)τ ≥ t.
(ii) If ‖(In − P)A−1B‖ e

βτ
2‖H11‖ = 1, then

‖x(t)‖ ≤ α(k + 1) e
− β

2‖H11‖
t

+ e
− βτ(k+1)

2‖H11‖ max
−τ≤ν≤0

‖x(ν)‖

and the desired inequality follows from t ≤ (k + 1)τ ≤ t+ τ.

(iii) If 1 < ‖(In − P)A−1B‖ e
βτ

2‖H11‖ and ‖(In − P)A−1B‖ ≤ 1, then

‖x(t)‖ ≤ α
k∑
j=0

(‖(In − P)A−1B‖ e
βτ

2‖H11‖ )j−k (‖(In − P)A−1B‖ e
βτ

2‖H11‖ )k e
− β

2‖H11‖
t

+ ‖(In − P)A−1B‖k+1 max
−τ≤ν≤0

‖x(ν)‖

≤ α
∑
j≥0

(
(‖(In − P)A−1B‖ e

βτ
2‖H11‖ )−1

)j
(‖(In − P)A−1B‖ e

βτ
2‖H11‖ )k e

− β
2‖H11‖

t

+ ‖(In − P)A−1B‖k+1 max
−τ≤ν≤0

‖x(ν)‖

≤

[
α e

βτ
2‖H11‖

‖(In − P)A−1B‖e
βτ

2‖H11‖ − 1
+ max
−τ≤ν≤0

‖x(ν)‖

]
‖(In − P)A−1B‖k+1
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and the desired inequality follows again from t ≤ (k + 1)τ.
2

As a consequence we have the following
Corollary 2 Under the assumption of Theorem 2.1, the solution of (5) is asymptotically
stable if ‖(In − P)A−1B‖ < 1 and stable if ‖(In − P)A−1B‖ = 1.

In particular, when E = I and hence P = In, Corollary 2 implies that the solution of
(5) is asymptotically stable, see also [13, Proposition 5.3].

Acknowledgements. The authors would like to thank the reviewers for useful remarks
and suggestions.
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