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Acceleration of implicit schemes for large linear
systems of differential-algebraic equations

Mouhamad Al Sayed Ali , Miloud Sadkane ∗
Université de Brest. CNRS - UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique. 6

avenue Victor Le Gorgeu, CS 93837, 29285 Brest Cedex 3. France.

Abstract

Implicit schemes for solving large-scale linear differential-algebraic systems with constant coef-
ficients necessitate at each integration step the solution of a linear system, typically obtained
by a Krylov subspace method such as GMRES. To accelerate the convergence, an approach is
proposed that computes good initial guesses for each linear system to be solved in the implicit
scheme. This approach requires, at each integration step, a small dimensional subspace where a
good initial guess is found using the Petrov-Galerkin process. It is shown that the residual asso-
ciated with the computed initial guess depends on the dimension of the subspace, the order of
the implicit scheme, and the discretization stepsize. Several numerical illustrations are reported.

Key words: Petrov-Galerkin, GMRES, initial guess, linear DAE

1. Introduction and motivation

In [2], the authors proposed a way to improve predictor schemes for large systems of
ordinary differential equations with constant coefficients. Since the integration schemes
involved are implicit, they require the solution of a large linear system at each inte-
gration step. These systems are usually solved by a Krylov subspace iterative method
that requires good initial guesses and/or good preconditioners to accelerate the conver-
gence. The improvement mentioned above consisted in constructing subspaces of small
dimension in which good initial guesses are found. The accuracy of such initial guesses
depends on the dimension of the constructed subspaces and the discretization stepsize
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but is independent of the order of the implicit scheme. In the present work, we propose to
extend the idea to large linear systems of differential algebraic equations with constant
coefficients. Since these equations are of algebraic type, the subspaces defined in [2] may
no longer be applicable. For this reason, new subspaces containing good initial guesses
will be the focus of this work.

Consider the linear system of differential-algebraic equations (DAEs)Bẏ(t) = Ay(t) + f(t), ∀ t ∈ [t0, T ],

y(t0) = y(0),
(1)

which results, for example, from the method of lines applied to a linear partial differential
algebraic equation, see, e.g., [16], and arises in a wide variety of applications, see, e.g.,
[8]. Using the Weierstrass canonical form of λB−A (see [11]), equation (1) generally can
be separated into an ordinary differential system and an algebraic differential system.
A concept that plays an important role in the solution of (1) is the index which can be
defined as the number of times the algebraic part has to be differentiated to obtain an
ordinary differential system. A higher index causes numerical difficulties. For example, the
papers [9,13,22] propose index reduction techniques for linear (time-varying or constant
coefficients) DAEs with the aim of using appropriate numerical methods. The survey [3]
presents the solution theory of DAEs of type (1) and discusses, among other subjects,
numerical methods to check the solvability properties of DAEs as well as index reduction.
A family of multistep difference schemes is proposed in [7] for the numerical solution of
time-varying DAEs of index at most 2, see also [5,6] for a similar approach. Most of the
proposed techniques are limited to small size problems.

However, as we will see below, our goal is not the numerical resolution of (1) and,
therefore, the concept of index will not be relevant in this work.
We assume throughout this paper that A and B are real large n × n matrices and that
the pencil λB − A is regular (i.e., there exists λ such that det(λB − A) 6= 0). We make
no particular assumption on B.
Note that if f ∈ Cr+ν−1([t0, T ]) (i.e., (r + ν − 1)-times continuously differentiable in
[t0, T ]), where r is a nonnegative integer and ν is the index of the pencil λB − A (i.e.,
the degree of nilpotency in the Weierstrass canonical form of λB − A) and

(
y(0), f(t0)

)
satisfies the consistency condition (see, e.g., [17, chap. 2]), then (1) has a unique solution
y ∈ Cr([t0, T ]). In order to avoid repetition, the function f will be assumed to be suffi-
ciently smooth and the consistency condition is satisfied to guarantee the existence and
uniqueness of the solution of (1) in the set Cr([t0, T ]), where r is a given integer.

Suppose we wish to solve (1) by an implicit scheme. Let ti = t0 + ih, where h =
(T − t0)/N is the discretization stepsize, and let yi be an approximation of y(ti). Most
standard implicit schemes applied to (1) can be written as yi+1 = ai + hzi, q ≤ i ≤ N − 1,

y0 = y(0),
(2)

where y0 = y(0), y1, . . . , yq are given, q � N , ai is a vector generally depending on f and
yi−k, 0 ≤ k ≤ q. Since this scheme is implicit, at each time step, one must solve a linear
system of the form

Czi = bi, (3)
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where C is a nonsingular matrix depending on A, B and h; and bi is a vector depending
on A, B, yi−l, l = 0, . . . , q and f(ti−k), k = −1, . . . , q.
Without loss of generality we suppose that bi is of the form

bi =

q∑
l=0

(ξlA+ ψlB)yi−l +

q∑
k=−1

φkf(ti−k), (4)

where ξl, ψl and φk are real parameters.
As we will see in Section 2, the classical implicit schemes satisfy (2), (3) and (4).

Note that if B is invertible, then using for example the BDF scheme (see (9), (11)),
the system (3) is mathematically equivalent to

(I − βhB−1A)zi = B−1bi.

Therefore this scheme is associated with the ordinary differential system ẏ(t) = B−1Ay(t) +B−1f(t), ∀ t ∈ [t0, T ],

y(t0) = y(0),

on which the results of [2] can be applied (i.e., estimates similar to those of Theorems
3.2, 3.3 can be obtained, where the O(hp) term is absent).

Throughout this paper we assume that the scheme (2) is stable (see, e.g., [4, p.72])
and that, for i = 1, . . . , q, yi is obtained with an i-step stable scheme and of the same
order as (2).

Since the linear system (3) is large and sparse and the right-hand sides, i.e., the b′is,
will tend to get closer as the iterations unfold (see (17)), it is natural to use an iterative
Krylov subspace method rather than a direct method even if the matrix C is constant for
all iterations. However, unless a very good preconditioner is available, the effectiveness
of such an iterative method strongly depends on the initial guess.

Our goal is to propose a cheap Petrov-Galerkin based approach that allows the compu-
tation of a good initial guess for each linear system to be solved in (3). We will illustrate
this approach with the classical schemes mentioned above.

We emphasize that our objective is not the numerical solution of (1), but rather the
computation of an approximate solution of the linear system (3) which will be used as
initial guess in an iterative method in order to quickly arrive at a good approximate
solution of (3). This will naturally lead to an acceleration, whatever the implicit scheme
used. For this reason, issues specific to numerical methods for DAEs are not discussed.
Such issues are well addressed in the literature (see, e.g., [4,17,18]).

This paper is organized as follows. In Section 2 we explain that the relations (2), (3)
and (4) are shared by the classical implicit schemes. In Section 3 we briefly review the
projection method of Petrov-Galerkin type, describe the proposed approach for comput-
ing a good initial guess to the linear systems (3), and provide estimate on the quality of
the computed initial guess. The algorithmic aspect of the proposed approach is discussed
and numerically illustrated in Section 4 and a conclusion is given in Section 5.
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2. Examples of implicit schemes satisfying (2), (3) and (4)

As already mentioned, most standard implicit schemes can be expressed as in (2), (3)
and (4). For example
• the implicit Euler scheme applied to (1) writes

B(yi+1 − yi) = h(Ayi+1 + f(ti+1)). (5)

It can be transformed to (2)-(3)-(4) with

ai = yi, C = B − hA, bi = Ayi + f(ti+1). (6)

• The Crank-Nicolson scheme applied to (1) writes

B(yi+1 − yi) =
h

2
(A(yi + yi+1) + f(ti) + f(ti+1)) . (7)

It can be transformed to (2)-(3)-(4) with

ai = yi, C = B − h

2
A, bi = Ayi +

f(ti) + f(ti+1)

2
. (8)

• The backward differentiation formula (q-step BDF) applied to (1) writes

q∑
j=0

αjByi+j−q+1 = hβ(Ayi+1 + f(ti+1)), (9)

where the vectors (yj)0≤j≤q−1 are given, αq = 1, and the coefficients α0, . . . , αq, β are
obtained by requiring that the order of accuracy of the method is as high as possible. In
particular, the case q = 1 yields the implicit Euler scheme (also referred to as BDF1).
For the intermediate values, q = 2, 3, 4 we have the following q-step BDF methods:

Byi+1 −
4

3
Byi +

1

3
Byi−1 =

2

3
h(Ayi+1 + f(ti+1)), (10a)

Byi+1 −
18

11
Byi +

9

11
Byi−1 −

2

11
Byi−2 =

6

11
h(Ayi+1 + f(ti+1)), (10b)

Byi+1 −
48

25
Byi +

36

25
Byi−1 −

16

25
Byi−2 +

3

25
Byi−3 =

12

25
h(Ayi+1 + f(ti+1)), (10c)

referred, respectively, to as BDF2, BDF3 and BDF4.
The scheme (9) can be rearranged as (2)-(3)-(4) with

ai = −
q∑
j=0

αjyi+j−q, C = B − βhA, bi = β(f(ti+1) +Aai). (11)

• The s-stage implicit Runge-Kutta scheme applied to (1) writes

Byi,k = A(yi + h

s∑
j=1

akjyi,j) + f(ti + ckh), 1 ≤ k ≤ s, (12a)

yi+1 = yi + h

s∑
k=1

dkyi,k, 0 ≤ i ≤ N − 1, (12b)
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where the scalars ck and dk are given and the (unknown) quantities yi,k are estimates
for ẏ(ti+ckh). The equation (12a) defines a linear system of dimension s.n of the form
(3) where

zi =
(
yTi,1, y

T
i,2, . . . , y

T
i,s

)T
, C = (Is ⊗B)− h(A0 ⊗A), bi = (1s ⊗Ayi) + Fi, (13)

and where 1s = (1, . . . , 1)
T ∈ Rs,A0 = (akj)1≤k,j≤s, Fi =

(
f(ti + c1h)T , . . . , f(ti + csh)T

)T
and the symbol ⊗ denotes the Kronecker product.
The relation (12b) can then be cast in the form of (2) : yi+1 = ai + hZi with ai = yi,
Zi = (d⊗ In)zi, where d = (d1, . . . , ds).

A detailed presentation of these schemes can be found, for example, in [1,4,15,17]. These
schemes will be tested in Section 4.

3. Acceleration of implicit scheme

In this section we propose some subspaces of small dimension where a good initial
guess for each linear system (3) is found using the Petrov-Galerkin process. Recall that
the Petrov-Galerkin process for solving (3) requires a subspace Vi of small dimension in
which an approximate solution ẑi to zi is found such that

‖bi − Cẑi‖ = min
z∈Vi
‖bi − Cz‖. (14)

Here and throughout this paper, the symbol ‖ ‖ denotes the 2-norm for vectors and
matrices. The approximate solution ẑi is given by Vixi, where Vi is a matrix whose
columns form a basis of Vi and xi is the solution of the projected linear system(

(CVi)
TCVi

)
xi = (CVi)

T
bi. (15)

Since the matrix (CVi)
TCVi is of small size, the computation of xi is not expensive.

In the following theorem we define a subspace of small dimension that contains a good
initial guess for the linear system (3).
Theorem 3.1 Let Vi = span{zi−r, zi−(r−1), . . . , zi−1}. Then there exists a z in Vi such
that for i = q, . . . , N − 1,

‖bi − Cz‖ = O(hp) +O(hr), (16)

where p is the order of the implicit scheme (2).
Proof Since f, y ∈ Cr([t0, T ]) (see Introduction), from Lagrange interpolation formula
(see, e.g., [10]) we have, for q ≤ i ≤ N − 1, 0 ≤ l ≤ q and −1 ≤ k ≤ q

‖y(ti−l)−
r∑

m=1

αm,ry(t
i−l−m

)‖ = O(hr), (17a)

‖f(ti−k)−
r∑

m=1

αm,rf(ti−k−m)‖ = O(hr), (17b)

where αm,r = (−1)m−1 r!
m!(r−m)! .

Since the scheme (2) is stable and of order p, we have (see [4, p. 72])
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‖y
i−l
−

r∑
m=1

αm,ryi−l−m
‖= ‖(y

i−l
− y(ti−l)) + (y(ti−l)−

r∑
m=1

αm,ry(ti−l−m))

+

r∑
m=1

αm,r(y(ti−l−m)− y
i−l−m

)‖

=O(hp) +O(hr) (18)

Let z =
∑r
m=1 αm,rzi−m. Then z ∈ Vi and from (3) and then (4) we obtain

‖bi − Cz‖= ‖bi −
r∑

m=1

αm,rbi−m‖

≤
q∑
l=0

∥∥∥∥∥(ξlA+ ψlB)

(
yi−l −

r∑
m=1

αm,ryi−l−m

)∥∥∥∥∥
+

q∑
k=−1

|φk|

∥∥∥∥∥f(ti−k)−
r∑

m=1

αm,rf(ti−k−m)

∥∥∥∥∥ .
Now from (17b) and (18), we obtain ‖bi − Cz‖ = O(hp) +O(hr). 2

Actually, the motivation of the present work stems from the drawback of the subspace
defined in Theorem 3.1 where the linear systems (3) are solved exactly for each integration
step. To avoid this drawback, we use an approximation z̃i−k of zi−k, k = 1, . . . r. We
therefore consider the following approximation of the scheme (2) ỹi+1 = ãi + hz̃i, for i = q, . . . , N − 1,

ỹ0 = y(0),
(19)

where, for i = 1, . . . , q, ỹi is computed with an i-step scheme such that

max
1≤i≤q

‖ỹi − yi‖ = O(ε), (20)

with some tolerance threshold ε and where, for i = q, . . . , N − 1, z̃i is an approximation
of zi, computed by an iterative method such that

‖b̃i − Cz̃i‖ ≤ ε‖b̃i‖ (21)

and where ãi and b̃i are obtained by replacing the y′js in the expression of ai in (2) and
bi in (4) by the ỹ′js.
Since (2) is assumed to be stable, we deduce from (20) and (21) that (see [4, p.72]):

max
0≤i≤N

‖ỹi − yi‖ = O(ε). (22)

In the next theorem, we redefine Vi as the subspace spanned by the last r vectors z̃i−k,
and we show that it contains a good initial guess of the linear system (3).
Theorem 3.2 Let Vi = span{z̃i−r, z̃i−(r−1), . . . , z̃i−1} where z̃i−m, 1 ≤ m ≤ r, satisfy
(21). Then there exists a z in Vi such that for i = q, . . . , N − 1,

‖b̃i − Cz‖ = O(hp) +O(hr) +O(ε).

Proof Let z =
∑r
m=1 αm,r z̃i−m. Then, z ∈ Vi and we can write

6



‖b̃i − Cz‖= ‖b̃i −
r∑

m=1

αm,r b̃i−m +

r∑
m=1

αm,r b̃i−m −
r∑

m=1

αm,rCz̃i−m‖

≤ ‖b̃i −
r∑

m=1

αm,r b̃i−m‖+

r∑
m=1

|αm,r| ‖b̃i−m − Cz̃i−m‖.

From (21), we have
∑r
m=1 |αm,r| ‖b̃i−m − Cz̃i−m‖ = O(ε).

On the other hand we have

‖b̃i −
r∑

m=1

αm,r b̃i−m‖ ≤
q∑
l=0

∥∥∥∥∥(ξlA+ ψlB)

(
ỹi−l −

r∑
m=1

αm,rỹi−l−m

)∥∥∥∥∥
+

q∑
k=−1

|φk|

∥∥∥∥∥f(ti−k)−
r∑

m=1

αm,rf(ti−k−m)

∥∥∥∥∥
and

‖ỹ
i−l
−

r∑
m=1

αm,rỹi−l−m
‖ ≤ ‖ỹ

i−l
− yi−l‖+ ‖y

i−l
−

r∑
m=1

αm,ryi−l−m
‖

+

r∑
m=1

|αm,r| ‖yi−l−m
− ỹ

i−l−m
‖.

The proof follows by using (22) and proceeding as in the proof of Theorem 3.1. 2

Suppose now that at some certain integration steps, the Petrov-Galerkin approximation
ẑi satisfies (21). This dispenses with the use of an iterative method to compute z̃i. We set
z̃i = ẑi ∈ Vi and use the same subspace Vi to compute the next initial guess ẑi+1. This
reduces the amount of computations in the proposed approach and leads us to re-define
the subspace Vi. A clarification is given in the following theorem.
Theorem 3.3 Let Vi = span {z̃i−lk , 1 ≤ k ≤ m} , lk < lk+1 be the subspace spanned
by the last m vectors z̃i−lk , k = 1, . . . ,m, whose computation necessitate the use of an
iterative method to satisfy (21) and let r = m+ l1 − 1. Then there exists a z in Vi such
that for i = q, . . . , N − 1,

‖b̃i − Cz‖ = O(hp) +O(hr) +O(ε).

Proof Since z̃i−l1 is the last vector whose computation necessitates the use of an iterative
method, the computation of z̃i−j for j = 1, . . . , l1 − 1 does not necessitate the use of an
iterative method and therefore z̃i−j = ẑi−j ∈ Vi for j = 1, . . . , l1− 1. This means that Vi
is spanned by the vectors {z̃i−lk , k = 1, . . . ,m} and the vectors {z̃i−j , j = 1, . . . , l1−1}.
Then, as in the proof of Theorems 3.1 and 3.2, we show the existence of a vector z ∈ Vi
such that

‖b̃i − Cz‖ = O(hp) +O(hm+l1−1) +O(ε).

2

4. Algorithm and numerical results

The computation of the sequence (ỹi) is formally summarized in the following algo-
rithm.
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Algorithm 1 [Computation of the sequence ỹi defined in (19)]

Input: ỹ1, . . . , ỹq
We assume that ỹ1, . . . , ỹq are either given or computed with an k-step scheme such
that max1≤k≤q ‖ỹk − yk‖ = O(ε).

Output: (ỹi)q+1≤i≤N .
1: Set i = q. Let Ri be the matrix formed by the last k0 vectors z̃i−k, 1 ≤ k ≤ k0,

where k0 = min(q, r). Orthonormalize the columns of Ri in Vi. Compute Li = CVi,
Ci = LTi Li, ãi and b̃i.

2: while i ≤ N − 1 do
3: compute the initial guess ẑi = ViCi

−1LTi b̃i
4: if ‖b̃i − Cẑi‖ ≤ ε‖b̃i‖ then
5: set ỹi+1 = ãi + hẑi, Ri+1 = Ri, Vi+1 = Vi, Ci+1 = Ci, Li+1 = Li, compute b̃i+1,

set i = i+ 1 and go to (3)
6: else
7: starting with ẑi, compute by a Krylov subspace method z̃i that satisfies (21)
8: end if
9: set ỹi+1 = ãi + hz̃i and compute b̃i+1

10: let k0 be the number of columns of Ri. If k0 < r then Ri+1 = [Ri, z̃i], else Ri+1 =
[Si, z̃i], where Si is the matrix formed by the last r − 1 columns of Ri. Orthonor-
malize the columns of Ri+1 in Vi+1

11: Compute Li+1 = CVi+1, Ci+1 = LTi+1Li+1, and set i = i+ 1
12: end while

In Algorithm 1 and in our numerical tests, the subspace Vi is the one given by Theorem
3.3. If we want to use the subspace Vi of Theorem 3.2, then step 5 should be replaced
by:

set z̃i = ẑi, and go to 9.

To illustrate the numerical behavior of Algorithm 1, we consider equation (1) with the
following data:
• [t0, T ] = [0, 1],
• the matrices A and B result from the discretization of a hydrodynamic problem (see

[14])

A =

 F −G

GT 0

 , B =

Inf
0

0 0

 , (23)

where G ∈ Rnf×ng has full rank, F ∈ Rnf×nf , and Inf
is the identity matrix of size

nf , nf = 11200, ng = 3999, the size of A and B is n = nf + ng = 15199,
• the right hand side f(t) is given by f(t) = (f1(t), . . . , fn(t))T where fk(t) = e−tkδx sin(kδx)

with δx = 1/(n+ 1),

• the initial value y(0) is given by y(0) = (y
(0)
1 , . . . , y

(0)
n )T where y

(0)
k = cos(kδx).

Remark 4.1 (i) The assumption that G has full rank is important since, otherwise

kerA ∩ kerB =


0

x

 : x ∈ kerG

 ,

8



which implies that the pencil λB −A is singular.
(ii) With the notation (23), the system (1) can be transformed to the ordinary differ-

ential system  ẏ(t) = Ay(t) + f(t), ∀ t ∈ [t0, T ],

y(t0) = y(0),

where

A =

 F −G

G†F 2 −G†FG

 , f(t) =

 f1(t)

G†(Ff1(t) + ḟ1(t)) + (GTG)−1f̈2(t))

 , f(t) =

f1(t)

f2(t)

 ,

and G† = (GTG)−1GT is the pseudo-inverse of G.
Therefore, in theory, we could use the subspaces defined in [2]. However, in practice,
doing so does not allow to take the structure of the coefficient matrices of (23).

Algorithm 1 is implemented and executed in MATLAB 7.13 on an Intel Core 2 Duo 3.16
Ghz processor. The following parameters are used in the algorithm: r = 20, h = 1/100,
ε = 10−8, the computation of z̃i (step 7 of Algorithm 1) is done by restarted GMRES
[20] with restart value 20.
The scheme (19) is obtained with implicit Euler, Crank Nicolson, BDF4 (which requires a
prior implementation of BDF1, BDF2 and BDF3 for computing ỹ1, ỹ2, and ỹ3, see (10)),
and implicit Runge-Kutta. For the latter, we consider the 3-stage scheme (see (12)) given
by (see, e.g., [17, p. 226])

A0 =


5

36

2

9
−
√

15

15

5

36
−
√

15

30
5

36
+

√
15

24

2

9

5

36
−
√

15

24
5

36
+

√
15

30

2

9
+

√
15

15

5

36

 ,
d1 =

5

18
, d2 =

4

9
, d3 =

5

18

c1 =
1

2
−
√

15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10

.

For each scheme, Figure 1 shows the residual norm ‖b̃i − Cẑi‖/‖b̃i‖ associated with
the initial guess ẑi computed by the proposed approach, versus the number of iterations
of the scheme. Figures 2 shows, for each scheme, the number of GMRES iterations for
computing z̃i satisfying (21) and starting with ẑi. Figures 3 shows the run time required
for each iteration of the used schemes.
The figures show that BDF provides the best results, followed by Crank Nicolson and
implicit Euler. The relatively less good performance of implicit Runge-Kutta can be ex-
plained by the need to solve, at each iteration of the scheme, a linear system of size (see
(13)): s× n = 3× 15199 = 45597.
Overall, these results show that the subspace Vi has led to a significant acceleration of
the used schemes. Table 1 shows the total number of GMRES iterations and the total
time required for computing all the iterates (yi). Table 2 shows, for some iterations i of
the scheme, the number of iterations required by GMRES to compute z̃i starting with
the initial solution ẑi such that (21) holds. We see from this table that, at some iterations
i, GMRES is not used, which means that ẑi already satisfies (21). This can also be seen
in Figures 1 and 2. Figures 1, 2, 3 and Table 2 show that during the first iterations of
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Algorithm 1, the subspace Vi does not contain enough information, and this explains the
large relative residual norm, the number of GMRES iterations and the run time. These
numbers decrease as the subspace Vi contains more information on the last iterates of
the scheme.

For comparison purposes, we computed the total number of GMRES iterations and the
total time required for computing all the iterates (yi) when ẑi = 0 is taken as initial guess
in step 3 of Algorithm 1. The results for implicit Euler, Crank-Nicolson and BDF schemes
are given in Table 3. For implicit Runge-Kutta, we had to interrupt the computation since
after 24 hours, only the first two iterations i = 1, 2 were executed. This table has to be
compared with Table 1. It shows that the proposed initial guess ẑi strongly accelerates
the computation of the sequence (yi).
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Fig. 1. Relative residual norm of the initial guess versus the number of iterations of the scheme

Time (min.) # GMRES iter.

IE 9.20 167408

CN 5.16 92640

BDF 7.76 140996

IRK 2773 69296

Table 1

Total CPU time in minutes and total number of GMRES iterations starting with ẑi to satisfy (21)
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Fig. 2. Number of GMRES iterations required to satisfy (21) starting with ẑi versus the number of
iterations of the scheme
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Fig. 3. Run time (in seconds) versus the number of iterations of the scheme

iteration i 1 20 30,31 40 60 80 100

IE 38931 13 0 14 40 28 280

iteration i 1 20 34,35 40 60 80 100

CN 40552 24 0 828 2 7 7

iteration i 1 20 9,26,28,48,79 40 60 80 100

BDF 19822 31 0 14 26 6 27

iteration i 1 20 40 60 80 100

IRK 6696 46 877 890 624 762

Table 2
Number of iterations required by GMRES when implicit Euler (IE), Crank Nicolson (CN), BDF and
implicit Runge-Kutta (IRK) are used
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Time (min.) # GMRES iter.

IE 70.49 2406702

CN 301.06 3596560

BDF 149.83 2470509

Table 3

Total CPU time in minutes and total number of GMRES iterations starting with 0 initial guess (ẑi = 0)

5. Conclusion

This work was concerned with the choice of the initial guess in the iterative solution
of the linear systems that arise in implicit schemes for large linear differential-algebraic
systems. A good choice leads to an acceleration of the scheme. To this end, a Petrov-
Galerkin based approach has been developed to extract, at each iteration of the scheme,
a good initial guess from a subspace of small dimension that contains information on the
preceding iterates of the schemes. The estimates obtained on the norm of the residuals
associated with the linear systems show that the accuracy depends on the stepsize (of the
discretized time), the order of the schemes, and the dimension of the subspace Vi. The
effectiveness of this approach has been illustrated in the case where the linear systems are
solved by GMRES and the schemes used are implicit Euler, Crank Nicolson, BDF and
implicit Runge-Kutta. The user can easily adapt this strategy to other implicit schemes
and possibly combine it with other strategies such as preconditioning [20, chap. 9-14],
recycling [19] or deflation and augmentation [12].

Acknowledgements. The authors would like to thank the reviewers for useful remarks
and suggestions.

References

[1] U.M. Ascher, L.R. Petzold, Computer methods for ordinary differential equations and differential-

algebraic equations, SIAM, Philadelphia, PA, 1998.

[2] M. Al Sayed Ali, M. Sadkane, Improved predictor schemes for large systems of linear ODEs,

Electron. Trans. Numer. Anal., 39 (2012), pp. 253–270.

[3] P. Benner, ; P. Losse, V. Mehrmann, M. Voigt, Numerical linear algebra methods for linear
differential-algebraic equations. Surveys in differential-algebraic equations. III, 117175, Differ.-

Algebr. Equ. Forum, Springer, Cham, 2015.

[4] K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical solution of initial-value problems in

differential-algebraic equations, SIAM, Philadelphia, PA, 1989.

[5] M.V. Bulatov, L. Ming-Gong, L.S. Solovarova, On first- and second-order difference schemes
for differential-algebraic equations of index at most two, Computational Mathematics and

Mathematical Physics, 50 (2010), pp. 1808–1817.

[6] M.V. Bulatov, V.H. Linh, L.S. Solovarova, On BDF-based multistep schemes for some class of
linear differential-algebraic equations of index at most two, Acta Math. Vietnam, 41 (2016), pp.
715–730.

[7] M.V. Bulatov, V.H. Linh, L.S. Solovarova, Block difference schemes of high order for stiff linear

differential-algebraic equations, Computational Mathematics and Mathematical Physics, 59 (2019),

pp. 1049–1057.

[8] S.L. Campbell, Singular systems of differential equations, Research Notes in Mathemat-ics, Pitman,
1980.

12



[9] S. L. Campbell, P. Kunkel, On the numerical treatment of linear-quadratic optimal control problems

for general linear time-varying differential-algebraic equations, J. Comput. Appl. Math., 242 (2013),

pp. 213–231.
[10] P.J. Davis, Interpolation and approximation, Blaisdell, New York, 1963.

[11] F. R. Gantmacher, The Theory of Matrices II. Chelsea Publishing Company, New York, 1959.

[12] A. Gaul, M.H. Gutknecht, J. Liesen, R. Nabben, A Framework for deflated and augmented Krylov
subspace methods, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 495–518.

[13] M. Hanke, R. März, C. Tischendorf, E. Weinmller, and S. Wurm, Least-squares collocation for linear

higher-index differential-algebraic equations, J. Comput. Appl. Math., 317 (2017), pp. 403–431.
[14] G. Hechme, Y. M. Nechepurenko, and M. Sadkane, Efficient methods for computing spectral

projectors for linearized hydrodynamic equations, SIAM J. Sci. Comput., 31 (2008), pp. 667–686,

[15] E. Hairer, G. Wanner, Solving ordinary differential equations II : Stiff and differential-algebraic
problems, 2nd ed., Springer-Verlag, Berlin, 1996.

[16] W. Hundsdorfer, J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction
equation, Springer-Verlag, Berlin, 2003.

[17] P. Kunkel, V. Mehrmann, Differential-Algebraic Equations Analysis and Numerical Solution, EMS

Publishing House, Zrich, Switzerland, 2006.
[18] R. März, Numerical methods for differential-algebraic equations, Acta Numerica, (1992), pp. 141–

198.

[19] M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, S. Maiti, Recycling Krylov subspaces for
sequences of linear systems, SIAM J. Sci. Comput., 28(2006), pp. 1651–1674.

[20] Y. Saad, Iterative methods for sparse linear systems, 2nd ed., SIAM, Philadelphia, PA, 2003.

[21] M. Shirvani, J.W.-H. So, Solutions of linear differential algebraic equations, SIAM Rev. 40, (1998),
pp. 344–346.

[22] M. Takamatsu, S. Iwata, Index reduction for differential-algebraic equations by substitution

method, Linear Algebra Appl., 429 (2008), pp. 2268–2277.

13




