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1- HPC Data Placement on Heterogeneous and Multilevel Storage System
• The global data volume will reach 181 zettabytes in 2025.
• Exascale computing may widen the gap between computation, main memory
and storage.
• Exploitating multi-tier and heterogeneous storage systems (see table below) is
a key to reach trade-o between performance, cost, and capacity.

The new memory hierarchy with SCM[1].

Target Architecture : Heterogeneous three-tier architecture:
SSD on the top tier for high performance. HDD as the middle tier, lower perfor-
mance but higher capacity and lower cost; tape as the bottom tier for archival
purposes.
Application: File placement tasks in CEA supercomputers are performed using
Robinhood[2], a tool for applying and planning data placement policies. This
tool works at the le granularity.

Device Read latency Write Latency Write endurance Cell size (F)2 Cost
NVM(STT-RAM) 2-35ns 3-50ns >1015 6-50 Highest

NVM(PCM) 20-60ns 20-150ns 108 − 109 4-12 2-8 $ /GB
SSD 15-35us 200-500us 104 − 105 4-6 0.5-2$ /GB
HDD 3-5ms 3-5ms >1015 N/A 0.06-0.3$ /GB

Problem Statement:How to place and migrate data to/from storage tiers ac-
cording to application QoS.

2- Background on Adaptative Replacement Cache

• Which data to cache in top performance tier can
be solved at the operating system level.
• ARC (Adaptive Replacement Cache) is a reference
state-of-the-art work [3].

• T1 is an LRU list for pages accessed only once,
while T2 keeps items accessed more than once
• C : cache size, P: the current target size for the
list T2.
• B1 and B2 are ghost lists used to keep track of
the pages evicted by T1 and T2, respectively.

Algorithm 1 Pseudo code of ARC
1: Initialize T1=B1=T1=T2=B2, x: requested page.
2: x in T1 or T2: cache hit, move x to MRU T2.
3: x in B1: cache miss,

Adapt p= min (c,p+ max(|B2|/|B1|,1))
Replace(page), move x to mru T2.

4: x in B2: cache miss,
Adapt p= max (0,p-max(|B1|/|B2|,1))
Replace(page), move x to mru T2.

5: x not in L1∪L2 cache miss▷
case 1: |L1|=c :
if |t1|<c then delete the LRU page of B1, Re-
place(page)
else delete LRU page of T1.
case 2: |L1| <c and |L1| + |L2|>= c:
if |L1|+|L2| = 2c then delete the LRU page of B2.

Replace(page): If either |T1|>p or (|T1|=p and x in
B2), replace the LRU page in T1
If either |T1|<p or (|T1|=p and x in B1), replace
the LRU page in T2.

3- Adapting the ARC cache management policy to le granularity
Assumptions: les have the same size + move
entire les between T1 and T2

Algorithm 2 Pseudo ARC algorithm with le-
level granularity(V1)
1: Initialize T1=B1=T1=T2=B2, f: requested le such as

∀f sf=
m

i=1

bi and all les’s size is equal to sf , block b’s

size is designated as sb.
2: f in T1 or T2: cache hit, move f to MRU T2.
3: f in B1: cache miss,

Adapt p= min (c,p+ max(|B2|/|B1| *sf/sb, sf/sb))
Replace(le), move f to mru T2.

4: f in B2: cache miss,
Adapt p= max (0,p-max(|B1|/|B2|*sf/sb, sf/sb))
Replace(le), move f to mru T2.

5: f not in L1∪L2 cache miss▷
case 1: |L1|=c :
if |t1|<c then delete the LRU le of B1, Replace(le)
else delete LRU le of T1.
case 2: |L1| <c and |L1| + |L2|>= c:
if |L1|+|L2| = 2c then delete the LRU le of B2.

Replace(le): is the same as that of the original ARC
algorithm, the only dierence being that it replaces
a le instead of a page.

Assumptions: les have dierent sizes and data
are moved between T1 and T2 with a page gran-
ularity while data are moved between tiers at a
le granularity.

Algorithm 3 Pseudo ARC algorithm with le-
level granularity(V2)
1: Initialize T1=B1=T1=T2=B2, b: requested BLOCK,

each block is associated with a given le and sf: les’s
size, block b’s size is designated as sb.

2: b in T1 or T2: cache hit, move b to MRU T2.
3: b in B1: cache miss,

Adapt p= min (c,p+ max((|B2|/|B1|)sf/sb, sf/sb))
Replace(le), move b to mru T2.

4: b in B2: cache miss,
Adapt p= max (0,p-max((|B1|/|B2|)sf/sb ,sf/sb))
Replace(le), move b to mru T2.

5: b not in L1∪L2 cache miss▷
case 1: |L1|=c :
if |t1|<c then delete the LRU blocks of B1, Replace(le)
else delete le f with highest score.
case 2: |L1| <c and |L1| + |L2|>= c:
if |L1|+|L2| = 2c then delete the LRU page of B2.

Replace(le): To decide which le to delete and
replace, we calculate a score that favors evicting les
with a high proportion in the LRU portion of T1
and T2 while protecting les that have more blocks
in the MRU portion of T1 and T2. Such as:

S =


bi∈t1∩f
(index(bi) + α


bi∈t2∩f

(index(bi))
cardf

▷

4- Related work
20 years after its introduction, ARC remains a reference strategy [4][5][6][7][8].
Several studies were based on the principle of using recency and frequency of access to manage caches, such
as Lecar[7] and its enhanced version, Cacheus[6]. These approaches maintain two lists, LRU (Least Recently
Used) and LFU (Least Frequently Used), and prioritize recency or frequency based on a regret ratio while
using machine learning algorithms to select the best strategy.

6- Conclusion and Future Work
We have proposed a version of the ARC algorithm for managing a two-tier (HDD-SSD) storage architecture
at the le level. Our strategy is based on striking a balance between the recency and frequency of access to
keep recently and frequently used les in the top tier, while preserving the logic of ARC.
For future work: Evaluation of both versions in a multi-tier simulator, including additional parameters
to consider for score calculation, such as le lifespan.
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