
HAL Id: hal-04255285
https://hal.univ-brest.fr/hal-04255285

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ADAPTING THE ARC CACHE MANAGEMENT
POLICY TO FILE GRANULARITY

Hocine Mahni, Stéphane Rubini, Jalil Boukhobza, Sebastien Gougeaud,
Philippe Deniel

To cite this version:
Hocine Mahni, Stéphane Rubini, Jalil Boukhobza, Sebastien Gougeaud, Philippe Deniel. ADAPT-
ING THE ARC CACHE MANAGEMENT POLICY TO FILE GRANULARITY. 7th Workshop on
Performance and Scalability of Storage Systems (Per3S), May 2023, Paris, France. �hal-04255285�

https://hal.univ-brest.fr/hal-04255285
https://hal.archives-ouvertes.fr

ADAPTING THE ARC CACHE MANAGEMENT
POLICY TO FILE GRANULARITY
Hocine MAHNI1, Stéphane RUBINI 2, Jalil BOUKHOBZA1

Sebastien GOUGEAUD3, Philippe DENIEL3
1 ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
2 Univ. Bretagne Occidentale, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
3CEA Bruyères-le-Châtel, France

1- HPC Data Placement on Heterogeneous and Multilevel Storage System
• The global data volume will reach 181 zettabytes in 2025.
• Exascale computing may widen the gap between computation, main memory
and storage.
• Exploitating multi-tier and heterogeneous storage systems (see table below) is
a key to reach trade-o between performance, cost, and capacity.

The new memory hierarchy with SCM[1].

Target Architecture : Heterogeneous three-tier architecture:
SSD on the top tier for high performance. HDD as the middle tier, lower perfor-
mance but higher capacity and lower cost; tape as the bottom tier for archival
purposes.
Application: File placement tasks in CEA supercomputers are performed using
Robinhood[2], a tool for applying and planning data placement policies. This
tool works at the le granularity.

Device Read latency Write Latency Write endurance Cell size (F)2 Cost
NVM(STT-RAM) 2-35ns 3-50ns >1015 6-50 Highest

NVM(PCM) 20-60ns 20-150ns 108 − 109 4-12 2-8 $ /GB
SSD 15-35us 200-500us 104 − 105 4-6 0.5-2$ /GB
HDD 3-5ms 3-5ms >1015 N/A 0.06-0.3$ /GB

Problem Statement:How to place and migrate data to/from storage tiers ac-
cording to application QoS.

2- Background on Adaptative Replacement Cache

• Which data to cache in top performance tier can
be solved at the operating system level.
• ARC (Adaptive Replacement Cache) is a reference
state-of-the-art work [3].

• T1 is an LRU list for pages accessed only once,
while T2 keeps items accessed more than once
• C : cache size, P: the current target size for the
list T2.
• B1 and B2 are ghost lists used to keep track of
the pages evicted by T1 and T2, respectively.

Algorithm 1 Pseudo code of ARC
1: Initialize T1=B1=T1=T2=B2, x: requested page.
2: x in T1 or T2: cache hit, move x to MRU T2.
3: x in B1: cache miss,

Adapt p= min (c,p+ max(|B2|/|B1|,1))
Replace(page), move x to mru T2.

4: x in B2: cache miss,
Adapt p= max (0,p-max(|B1|/|B2|,1))
Replace(page), move x to mru T2.

5: x not in L1∪L2 cache miss▷
case 1: |L1|=c :
if |t1|<c then delete the LRU page of B1, Re-
place(page)
else delete LRU page of T1.
case 2: |L1| <c and |L1| + |L2|>= c:
if |L1|+|L2| = 2c then delete the LRU page of B2.

Replace(page): If either |T1|>p or (|T1|=p and x in
B2), replace the LRU page in T1
If either |T1|<p or (|T1|=p and x in B1), replace
the LRU page in T2.

3- Adapting the ARC cache management policy to le granularity
Assumptions: les have the same size + move
entire les between T1 and T2

Algorithm 2 Pseudo ARC algorithm with le-
level granularity(V1)
1: Initialize T1=B1=T1=T2=B2, f: requested le such as

∀f sf=
m

i=1

bi and all les’s size is equal to sf , block b’s

size is designated as sb.
2: f in T1 or T2: cache hit, move f to MRU T2.
3: f in B1: cache miss,

Adapt p= min (c,p+ max(|B2|/|B1| *sf/sb, sf/sb))
Replace(le), move f to mru T2.

4: f in B2: cache miss,
Adapt p= max (0,p-max(|B1|/|B2|*sf/sb, sf/sb))
Replace(le), move f to mru T2.

5: f not in L1∪L2 cache miss▷
case 1: |L1|=c :
if |t1|<c then delete the LRU le of B1, Replace(le)
else delete LRU le of T1.
case 2: |L1| <c and |L1| + |L2|>= c:
if |L1|+|L2| = 2c then delete the LRU le of B2.

Replace(le): is the same as that of the original ARC
algorithm, the only dierence being that it replaces
a le instead of a page.

Assumptions: les have dierent sizes and data
are moved between T1 and T2 with a page gran-
ularity while data are moved between tiers at a
le granularity.

Algorithm 3 Pseudo ARC algorithm with le-
level granularity(V2)
1: Initialize T1=B1=T1=T2=B2, b: requested BLOCK,

each block is associated with a given le and sf: les’s
size, block b’s size is designated as sb.

2: b in T1 or T2: cache hit, move b to MRU T2.
3: b in B1: cache miss,

Adapt p= min (c,p+ max((|B2|/|B1|)sf/sb, sf/sb))
Replace(le), move b to mru T2.

4: b in B2: cache miss,
Adapt p= max (0,p-max((|B1|/|B2|)sf/sb ,sf/sb))
Replace(le), move b to mru T2.

5: b not in L1∪L2 cache miss▷
case 1: |L1|=c :
if |t1|<c then delete the LRU blocks of B1, Replace(le)
else delete le f with highest score.
case 2: |L1| <c and |L1| + |L2|>= c:
if |L1|+|L2| = 2c then delete the LRU page of B2.

Replace(le): To decide which le to delete and
replace, we calculate a score that favors evicting les
with a high proportion in the LRU portion of T1
and T2 while protecting les that have more blocks
in the MRU portion of T1 and T2. Such as:

S =

bi∈t1∩f
(index(bi) + α

bi∈t2∩f

(index(bi))
cardf

▷

4- Related work
20 years after its introduction, ARC remains a reference strategy [4][5][6][7][8].
Several studies were based on the principle of using recency and frequency of access to manage caches, such
as Lecar[7] and its enhanced version, Cacheus[6]. These approaches maintain two lists, LRU (Least Recently
Used) and LFU (Least Frequently Used), and prioritize recency or frequency based on a regret ratio while
using machine learning algorithms to select the best strategy.

6- Conclusion and Future Work
We have proposed a version of the ARC algorithm for managing a two-tier (HDD-SSD) storage architecture
at the le level. Our strategy is based on striking a balance between the recency and frequency of access to
keep recently and frequently used les in the top tier, while preserving the logic of ARC.
For future work: Evaluation of both versions in a multi-tier simulator, including additional parameters
to consider for score calculation, such as le lifespan.

References
[1] Mark LaPedus. Next-gen memory ramping up.
[2] Thomas Leibovici. Taking back control of hpc

le systems with robinhood policy engine. arXiv
preprint arXiv:1505.01448, 2015.

[3] Nimrod et. al. Arc: A self-tuning, low overhead re-
placement cache. In FAST, volume 3, 2003.

[4] Nimrod et. al. Outperforming lru with an adaptive
replacement cache algorithm. Computer, 37(4):58–
65, 2004.

[5] Santana et. al. To arc or not to arc. In HotStorage,
pages 14–14, 2015.

[6] Liana et. al. Learning cache replacement with
cacheus. In FAST, pages 341–354, 2021.

[7] Giuseppe et. al. Driving cache replacement with ml-
based lecar. In HotStorage, pages 928–936, 2018.

[8] Singh et. al. Adaptive replacement cache policy in
named data networking. In IEEE CONIT, pages 1–
5. IEEE, 2021.

View publication stats

