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Abstract—Autonomous vehicles are well-known for automated
tasks that are difficult or dangerous to be performed by human.
However, the environment in which those Autonomous Vehicle
(AV) are evolving are generally difficult to predict. Thus for
these, the challenge is to achieve a predefined mission while
adapting themselves to their shifting environment in real
time as efficiently as possible. Their mission often includes
path planning problems, where self-adaptation to terrain
modifications is required while maintaining contradictory
objectives, such as safety, risk assessment, travelling time or
distance, consumed energy. We choose to focus on supervision
missions (covering area with a lidar, with pictures, searching,
etc) with two objectives: travelled distance (that could later be
modeled into time or energy consumption) and covered area. We
propose a multi-objective optimization (MOO) framework for
a self adaptation of autonomous vehicles, with an offline/online
approach, in order to solve covering/monitoring missions. The
offline process will predict a path that the autonomous vehicle
is initialized with and the online process will be useful for
the dynamic path re-planning when obstacles are detected.
Our results demonstrate the benefits of reusing the offline
pre-computed solutions for the online phase and for dynamic
path re-planning.

Index Terms—drone/AV path planning, embedded decision
making, obstacle avoidance

I. INTRODUCTION

Autonomous vehicles obtained a lot of attention these
recent years. Indeed, they are able to perform dangerous or
difficult tasks, such as monitoring hardly accessible areas,
efficiently collecting data or conducting stealth oriented
tasks without human supervision. Path planning optimization
is a really important topic since it allows autonomous
robots or vehicles to carry on their mission even when
unexpected events happen. Moreover, when dealing with
autonomous vehicles, it is near mandatory to consider other
optimization issues related to path planning optimization.
Energy consumption for instance, is an important aspect of
autonomous vehicles, as much as safety, risk assessment,
travelling time, collision avoidance, etc. Therefore, dealing
both with path planning optimization and multiple objectives
appears to be a real challenge.
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Figure 1. Path for monitoring mission with covering by a lidar

We plan to take benefit of the routes computed offline
for obstacle avoidance. Hu et al. [5] use such an approach
for another MOO and real-time path planning problem
for Autonomous Surface Vehicles (AV). MOO approaches
contrast with single objective ones such as Niu et al. [7].
They focus on a path planning approach aiming at improving
the endurance of an Unmanned Surface Vehicle (USV) by
optimizing its energy consumption. In [9], Zhang et al. also
deal with USV path planning, proposing an hybrid genetic
algorithm. Previously, we also formulated the problem of
monitoring with shortest path as a Mixed Integer Programming
Problem in [8] and solved it with meta-heuristics in [2], but
these works do not include an online phase for dynamic
environment management.

Regarding the multi-objective optimization (MOO), we
focus on the travelled distance (Length correlated with energy
consumption and time) and the covered area by the lidar
of the AV (Cov correlated with the surface not covered), as
illustrated in Fig. 1. We have chosen these two objectives.
The consumed energy is an important factor to achieve the
whole mission of autonomous vehicles. Their capacity to
conduct a mission from start to end while applying path
modifications along the route is strongly affected by their
energy consumption, specially when dealing with unexpected
re-planning of the route. The covered area is the surface
of the supervised area defined by the autonomous vehicle
with its on-board detection device. Regarding path planning



Figure 2. Obstacle avoidance : (a) repairing with SPNW (blue line) (b) swap
to another solution (green) with RFA (closest point connection in blue)

optimization, since AVs are supposed to be self-adaptive, they
need to adapt themselves if they encounter any unexpected
obstacle, e.g. another ship.

During the offline phase, an evolutionary algorithm
(e.g. PAES [6]) generates an archive of feasible solutions to
initialize the mission. The solutions are represented on a graph
and defined by a series of waypoints that trace the path to be
taken. Each solution in the archive is non-dominated, i.e. no
other solution in the archive performs better for both objective
functions (Length and Cov). Then a multi-criteria decision
analysis method such as TOPSIS [3] selects one solution
in the archive to launch the mission. Once the mission is
launched, the other solutions in the archive are no longer used.

During the online phase, the path taken by the drone could
involve a risk of collision with obstacles that were not taken
into account by the solution generator. One solution that has
already been implemented [4] includes the computation of the
shortest path while taking into account the obstacle (Shortest
Path to Next Waypoint (SPNW) which uses Dijkstra algorithm
[1]). However, this solution only takes into account the route
between the two waypoints affected by the obstacle, and not
the drone’s overall mission. As a result, the obtained trajectory
may cause the drone to revisit areas that it has already visited
or will soon visit, resulting in useless travel.

II. APPROACH

In this study, we propose two approaches for obstacle
avoidance in drone missions.

The first approach is the implementation of SPNW, while
the second approach involves Recovering the mission From
the Archive (RFA) reusing the archive generated by the
offline phase to generate a new archive. This new archive
is composed from two parts. The first one from the already
travelled path, and a second one from the archive’s solution.
Both are illustrated in Fig. 2. We can see that the strategy
SPNW in 2(a) forces the AV to go backward to bypass the
obstacle, extending the travelled path. With the RFA algorithm
in 2(b), a new solution is proposed saving distance while
keeping a good covering area. We evaluate the performance
of these two approaches in terms of computation time and
quality of the obtained solution.

In a previous work [4], the shortest path algorithm (SPNW)
was implemented and applied on a graph representing the area
to be monitored degraded by obstacles. This enables the drone
to find new routes when it detects a potential collision. This
same version has been adapted to consider both objectives:
Length and Cov are two factors that should be minimized.
Length should be as short as possible, while Cov refers to the
surface area that is not covered and should also be minimized.

The approach presented in this paper aims to reuse solutions
present in the archive but not selected for the mission launch.
By combining segments of previously calculated solutions
with the already traversed part of the launched solution, new
solutions are obtained. These solutions propose paths to avoid
the obstacle which are alternatives to the SPNW solution.

It could then be possible to bypass the obstacle while
avoiding traversing backward in ever monitored areas and
thus keeping the mission as optimized as possible. This
strategy requires less computation than running the offline
process again with an embedded software. Incorporating
this would also eliminate the necessity of integrating the
generation of solutions offline.

This strategy can also be optimised, by limiting the work-
load. We propose to embed only a fragment of the archive to
limit the computation time.

A. Offline Solution generation
In our model, the autonomous vehicle carries out

monitoring missions in area illustrated by port maps, which
are represented as a connected graph over a grid where
cardinal neighbours are connected. The drone’s trajectory is
modeled as a chromosome (like in [2]), consisting of the
initial node and the various nodes (waypoints) that the drone
will traverse. The objective functions to be minimized are
calculated by following the chromosome’s path and using the
graph representation of the area (see Fig. 1).

The PAES algorithm manipulates these chromosomes
with mutations. A mutation occurs every generation and the
number of generations is set at the start of the algorithm.
The archive that stores the non-dominated solutions is of
a fixed size. PAES policy flavours diversity of solutions in
terms of objective values in the archive [6]. The different
mutations implemented in our model are the following :
gene addition, gene replacement, gene deletion and gene
swap. Each mutation has a probability to occur and only one
mutation is allowed during a generation.

At the end of this offline phase, the path that will be used for
the mission is then selected among the solutions in the archive
by a multi-objective decision algorithm (TOPSIS, [3]).

B. Online phase RFA
Once the mission is launched, obstacles can arise, such as a

ship passage. The obstacle is the representation of the semgent



of the map that will not be available during the mission.
The corresponding set of nodes in the graph of the area is
considered as the obstacle for the drone.

By comparing the nodes traveled between the different
waypoints of the path with the nodes composing the obstacle,
it is possible to determine if the mission’s trajectory hits an
obstacle. In this case, the RFA algorithm is triggered.

The RFA method naturally requires more computation since
it includes, for each produced solution, a second correction
thought SPNW of the trajectory in case this new solution also
crosses the obstacle. In addition to the production of solutions
and their selection by TOPSIS, the computation time varies
depending on the size of the archive produced by PAES.

1) Repairing: As illustrated in Fig. 2 (b), the repairing
proceeds as follows. Let p be the index of the waypoint
wp in the current solution C next to the obstacle. For each
solution S of the archive A, the algorithm searches for
waypoint wq in S the closest to wp. It then builds a solution
S′ = (w1, ..., wp, wq, ..., wn), with waypoints 1 to p from C,
and waypoints q to n from S.
S′ is evaluated added to the repaired archive A′, while
checking for non dominance. It is discarded if dominated by
a member of A′.

Similarly to the offline choice of the mission launched in A,
the selection of the new current solution is performed using
TOPSIS over A′.

2) Workload policy: Embedding a partial subset of solu-
tions allows to limit online computational effort. This work-
load is expressed as a percentage of the archive embedded
and used by RFA. The selection policy is as follows. The
whole archive is sorted according to one of the two objectives
(Length or Cov) and solutions are picked up at a frequency
corresponding to the desired workload. This policy aims to
preserve the diversity of the selected subset. Example: for 10%
of an archive of 100 solutions, embedding will be composed
of one solution every 10. This strategy is named RFA100:10
according to the archive size and the workload percentage.

III. EXPERIMENTS

We set up an experiment to measure the effectiveness
and compare our obstacle avoidance approaches. When an
obstacle arises, we apply both SPNW and RFA, and we check
whether the decision process maintains its current mission
with obstacle avoidance from SPWN or switches to a repaired
solution from RFA new produced archive. The strategies are
compared according to the objective functions values.

The experiments are realized with those parameters :
• PAES Genetic algorithm generations : 40 000
• Archive size : 100 solutions
• Workload percentage : 100%, 90%, 80%, 70%, 60%,

50%, 40%, 30%, 20%, 10%
We have run 1000 test cases over the area depicted in Fig.

1. Randomized offline phase produces an archive A, and a
mission is selected using TOPSIS. An obstacle crossing the
corresponding path is then randomly generated (made of 2
connected points).

Both strategies SPNW and RFA are then applied in order
to solve the obstacle avoidance problem. SPNW is one of the
solutions of RFA new archive A′. We consider that RFA is
useless for the test case if the solution chosen is the one
repaired by SPNW (which is included in the RFA archive
when a new solution is selected by TOPSIS). Conversely, if it
is a new solution from the repaired archive (A′), we consider
that RFA method is useful.

In order to explain TOPSIS choice, produced new solutions
are compared according to Length and Cov objectives. Here,
we want to know what percentage of RFA solutions are
dominant compared to SPNW solutions. In cases where
the chosen solution is from the repaired archive and is not
dominant, we need to check what are the difference between
the selected solution and the simple SPNW solution to
determine why TOPSIS has chosen this new solution. The
differences between the objective functions are expressed as
a percentage evolution from the initial solution repaired with
SPNW and the selected solution.

Figure 3. Solution choice between SPNW and RFA for 1000 test cases

The results in Fig. 3 show that the RFA archive repair
method is selected through TOPSIS over the simple SPNW
bypass method in 73.5% ( RFA dominant 10.00% + RFA
improves Length 29.60% + RFA improves Cov 33.90%) of
the test cases. The 10.00% RFA dominant over the SPNW
solution, are solutions with a shorter distance traveled for an
even smaller uncovered area. In the remaining 63.50% (RFA
improves Length and RFA improves Cov) of cases, TOPSIS
chooses a trade-off solution from the archive, which means that
either a decrease in distance was achieved at the expense of a
larger uncovered area, or a greater distance was traveled for a
smaller uncovered zone. When there is no dominant solution,
TOPSIS selects a solution based on its ratio between the two
objective functions, therefore there are solutions that prioritize
minimizing the distance traveled and others that prioritize
minimizing the uncovered surface. In situations where TOPSIS
chooses a solution from the RFA archive that is not dominant
(for a total of 29.60% + 33.90%, all non dominant solution
from RFA strategy, as shown in Fig. 3), the explanation can be
found in the value comparison between SPNW solution and
RFA selected solution.



When RFA improves Length (which occurs in 29.60% of
cases shown in 3), there is a reduction of 15.31% in Length and
an increase of 5.01% in Cov (i.e decrease of the monitored
area). Likewise, when RFA improves Cov (which occurs in
33.90% of cases in 3), there is a decrease of 3.76% in Cov
((i.e increase of the monitored area) and an increase of 11.13%
in Length.

As stated in Section II-B, a selection policy could be
required to manage the execution time. Thus, a study of the
impact of the workload on both TOPSIS choice and execution
time of RFA was carried out as shown in Fig. 4. The workload
corresponds to the percentage of the archive used during RFA.

Figure 4. For 1000 test cases, (left axis, blue curve) percentage of solutions
substituted to SPNW by RFA according to the workload (fraction of archive
of 100 solutions provided to RFA) ; (right axis, red curve) computation time
for RFA

Fig. 4 shows the use of RFA approach as compared to
SPNW and associated computational effort. The Table I
details the reasons of the choice of RFA solution for some
workload values.

Table I
COMPARISON OF SPNW RESULTS AND EXECUTION TIME WITH RFA

STRATEGIES FOR DIFFERENT RFA WORKLOADS FOR 1000 TEST CASES

SPNW RFA RFA RFA
100:100 100:50 100:10

Dominates SPNW - 10.00% 9.00% 4.30%
Improves Length - 29.60% 26.40% 6.10%
Improves Cov - 33.90% 31.70% 43.40%
Total substituted - 73.50% 68.00% 56.10%to SPNW
Execution time (ms) 2.12 401.55 207.57 48.51

On average for a 100% workload strategy, the method has
a 73.5% solution substitution from SPNW and a computation
time of 401.55 ms (see Table I RFA100:100). On average,
a 10% workload strategy has a substitution of 56.10% and
a completion time of 48.51 ms (see Fig. I RFA100:10). A
division of the workload by 10 also divides calculation time

by 10 but only decrease solution substitution from SPNW by
18.1%. However it also decrease the percentage of dominant
solution to SPNW from 10.00% to 4.30% (see row dominates
SPNW in Table I).

IV. CONCLUSION

In this paper, we proposed a new approach, RFA, for
avoiding an obstacle by reusing an archive of existing
solutions. We implemented this method and compared it to a
simpler approach of finding the shortest path to bypass the
obstacle. The obtained results gave a 73.5% of the tests in
favor of RFA for quality results. However, it’s calculation
time is way superior to SPWN. A solution in the form of
a partial workload is possible to decrease execution time to
the detriment of the solution quality. From 73.5% with a
100% workload to 56.10% efficiency with a 10% workload.
This type of trade-off offers good perspectives for an online
re-planning during the mission.

Our final goal is to embed the software onto a drone,
with real-time constraints on path computation times. It
is necessary to conduct a study to determine the amount
of time and memory required for this method, given that
it is supposed to avoid collisions in real-time. In case
the computation time is too long, we could explore the
possibility of using only a subset of the existing solutions
to reduce the time required for computation. To do this,
we would need to analyze the selected solutions used for
repair from the initial archive before transformation, in
order to establish a model that would enable us to take
only a portion of the archive and significantly reduce the
time required for circumventing the obstacle with this method.
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