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KEYWORDS Abstract  As an indicator of exchanges between watersheds, rivers and coastal seas, salin-
Multilayer ity may provide valuable information about the exposure, ecological health and robustness of
perceptron; marine ecosystems, including especially estuaries. The temporal variations of salinity are tra-
Support vector ditionally approached with numerical models based on a physical description of hydrodynamic
regression; and hydrological processes. However, as these models require large computational resources,
Random forest; such an approach is, in practice, rarely considered for rapid turnaround predictions as re-
River plume; quested by engineering and operational applications dealing with the ecological monitoring
Numerical model; of estuaries. As an alternative efficient and rapid solution, we investigated here the poten-
Bay of Brest tial of machine learning algorithms to mimic the non-linear complex relationships between

salinity and a series of input parameters (such as tide-induced free-surface elevation, river dis-
charges and wind velocity). Beyond regression methods, the attention was dedicated to popular
machine learning approaches including MultiLayer Perceptron, Support Vector Regression and
Random Forest. These algorithms were applied to six-year observations of sea surface salinity
at the mouth of the Elorn estuary (bay of Brest, western Brittany, France) and compared to
predictions from an advanced ecological numerical model. In spite of simple input data, ma-
chine learning algorithms reproduced the seasonal and semi-diurnal variations of sea surface
salinity characterised by noticeable tide-induced modulations and low-salinity events during
the winter period. Support Vector Regression provided the best estimations of surface salin-
ity, improving especially predictions from the advanced numerical model during low-salinity
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events. This promotes the exploitation of machine learning algorithms as a complementary
tool to process-based physical models.

© 2022 Institute of Oceanology of the Polish Academy of Sciences. Production and host-
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

At the interface between watershed, rivers and marine
ecosystems, estuaries are important pathways for the ex-
change, transport and fate of materials (including sus-
pended particles, dissolved nutriments, micro-plastics, or
pollutants) between surrounding lands and coastal seas. As
a marker of freshwater mixing, salinity is a valuable indi-
cator of these exchanges, fluctuating under the combined
influence of riverine inputs and run-offs, tidal intrusion and
meteorological forcings. Thus, salinity is a key parameter
for assessing the renewal capacity of an estuary by provid-
ing further insights into water quality, the health of habi-
tats and biota (Choi and Lee, 2004; Dyer, 1973; Guo and
Lordi, 2000). Given the sensitivity to meteorological and
hydrodynamic conditions, salinity is also an indicator of the
variability of extreme weather events (in occurrence and in-
tensity) liable to impact coastal ecosystems. Reliable mon-
itoring of this environmental parameter may therefore pro-
vide valuable information about the exposure, ecological
state and robustness of an estuary. This includes especially
in situ observations and real-time predictions.

As extensive observations are difficult to achieve (due
to technical failure and maintenance operations), salinity
is, most of the time, derived from process-based physical
computer models liable to approach the interactions be-
tween fresh riverine water discharge, density-induced cir-
culation, tide and surface wind forcings (Cruz et al., 2021;
Robins et al., 2014; Zhang et al., 2021). However, the im-
plementation of these numerical models requires important
computational resources for approaching, at high spatial
resolutions, the complex hydrodynamic interactions, exac-
erbated by increased bottom friction in shallow waters.
These models rely furthermore on complex calibrations and
an extensive amount of input data including, among others,
the spatio-temporal distribution of surface forcings (e.g.,
wind velocity, atmospheric pressure) or the refined defini-
tion of water depth variations along the estuarine chan-
nel and bordering wetting-drying areas. For these reasons,
whereas such advanced models enable a physical interpre-
tation of processes, these numerical tools remain difficult
to apply for rapid turnaround times predictions as requested
in engineering and operational applications dealing with the
ecological monitoring of the estuary.

However, with the development of Artificial Intelligence
(Al) analysis techniques and methods, new solutions may be
exploited to approach water quality parameters by includ-
ing a limited number of input data and computational re-
sources (Maier et al., 2010; Maier and Dandy, 1996). Thus,
supervised learning approaches such as Artificial Neural Net-
works (ANN) are able to produce accurate predictions by
learning and/or detecting the underlying patterns and com-
plex relationships between a series of input data and a tar-
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geted parameter. MultiLayer Perceptrons (MLPs) refers to
one of the most popular ANN models in water-engineering
studies (Maier et al., 2010). The basic structure consists of
a series of units, called neurons arranged in different hid-
den layers between (i) an input layer (with input feature)
and (ii) an output layer (with the targeted variable). Each
unit receives the input information with weight and trans-
fers the output with non-linear activation functions. The
different weights are determined during a training phase by
error-minimization algorithms between ANN predictions of
the targeted variables and the corresponding data.

Adapted to highly non-linear problems, ANNs were there-
fore exploited to approach the evolution of salinity in estu-
aries. Motivated by significant economic, ecological and so-
cial issues, numerous investigations were conducted in the
San Francisco Bay and Sacramento-San Joaquin Delta estu-
ary along the Pacific coast of California (USA) (Chen et al.,
2018; Chung and Seneviratne, 2009; He et al., 2020;
Rath et al., 2017). However, with the development of
ANN data-driven approaches, complementary investigations
were also conducted in broader estuarine environments
and coastal bays connected to rivers including, among oth-
ers, the river Murray (in South Australia) (Bowden et al.,
2005), the Apalachicola River (Florida, USA) (Huang and
Foo, 2002), the Danshui River estuarine system (north-
ern Taiwan) (Chen et al., 2017) or the Hilo Bay (Hawaii)
(Alizadeh et al., 2018). These different investigations ex-
hibited the performance of ANN data-driven approaches for
estimating salinity in these marine and estuarine environ-
ments.

Most investigations relied on MLP or similar ANN to ap-
proach salinity variations in response to multiple environ-
mental forcing including freshwater input, water level, tide
or wind (Maier et al., 2010). Thus, Huang and Foo (2002) im-
plemented a three-layer ANN — varying the number of neu-
rons in the range (9, 16, 33) in the hidden layer — to ap-
proach observed salinity at the mouth of the Apalachicola
River system (Florida, USA) with a Root-Mean-Square er-
ror (RMSE) down to 1.6 ppt for a five days period. More
recently, Chen et al. (2017) compared the exploitation of
a three-layer ANN with a three-dimensional (3D) hydrody-
namic model for approaching the sea surface salinity in
the Danshui River (northern Taiwan). In spite of a tendency
to underestimate peak salinity during flood tide and over-
predict minimal salinity during ebb tide, the artificial net-
works considered were able to reproduce tide-induced vari-
ations while providing a better estimate than the hydro-
dynamic model with RMSE below 3.81 ppt between pre-
dictions and observations. In order to improve ANN pre-
dictive and structural validity, Rath et al. (2017) proposed
a hybrid empirical-Bayesian neural network model for ap-
proaching salinity in the San-Francisco Bay-Delta estuary
while accounting for uncertainties in model parameters.
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Figure 1 Mean water depth of the bay of Brest and the Elorn estuary. The red circle shows the location of the measurement

station considered in the present investigation.

As MLPs and advanced ANNs can not treat the short- or
long-term temporal dependencies between input and out-
put time series, investigations were therefore extended
to advanced Recurrent Neural Networks (RNNs). Thus,
He et al. (2020) compared a series of neural network mod-
els, including MLPs and a widely-used RNN, the Long Short-
Term Memory network (LSTM), for estimating the down-
stream boundary salinity in the Sacramento-San Joaquin
Delta.

The present investigation complements these different
applications of machine learning models for approaching the
estuarine salinity under the combined influence of a tide,
river freshwater input, precipitation, atmospheric pressure
and surface wind. Thus, algorithms such as RNN or LSTM
based on temporal dependencies between input and out-
put data were disregarded. Extending the exploitation of
ANNs, particular attention was devoted to the performances
of a series of popular advanced machine learning (ML) algo-
rithms, including MLP, Support Vector Regression (SVR) and
Random Forest (RF). These advanced ML techniques were
complemented by the simplest approaches including Mul-
tiple Linear Regression (MLR) and Multiple Polynomial Re-
gression (MPR), this in order to assess the progress obtained
with advanced ML models. Performances of ML algorithms
were assessed against predictions of salinity derived from
an ecological numerical model based on a 3D hydrodynamic
approach. The application was conducted at the mouth of
the Elorn estuary, in the bay of Brest (western Brittany,
France), by exploiting a series of in-situ observations of sea
surface salinity during a period of six years from 2015 to
2021 (Figure 1). Beyond extending the application of ma-
chine learning algorithms to salinity prediction in an estuary
of north-western Europe, this study provided an extensive
evaluation (not restricted to classical MLPs) about the suit-
ability and capability of ML algorithms to predict the highly
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non-linear response of an environmental parameter to mul-
tiple coastal forcings.

The paper is organised as follows. Section 2 describes
the site of application and the environmental conditions.
Section 3.1 presents the in-situ observations of surface
salinity exploited to train and assess performances of ML
algorithms. Sections 3.2 and 3.3 successively describe the
process-based physical model and deep-learning algorithms
considered. Section 3.4 shows the dataset exploited for
the extraction of input variables and the associated pre-
processing. Section 4.1 assesses performances of the dif-
ferent ML algorithms. Section 4.2 compares results from ML
with predictions from the 3D ecological model implemented
in the bay of Brest. Section 4.3 finally discusses the sensi-
tivity of results obtained from ML algorithms with respect to
input data.

2. Study area

The site of application is located at the mouth of the Elorn
estuary in the bay of Brest, a semi-enclosed basin of north-
western Europe separated from the Atlantic Ocean by a 1.8
km wide strait (entitled the “Goulet de Brest”) (Figure 1).
The bay is a rich ecosystem characterised by a diversity
of marine species and macro-benthic communities which
fosters the development of shellfish farming and profes-
sional fishing. Particular attention is therefore devoted to
the ecological impact of surrounding agricultural, harbour
and leisure activities (Chauvaud et al., 2000). Thus, as a
result of intensive agriculture, the bay of Brest is receiv-
ing high nutrients load from freshwater inputs which in-
creases eutrophic conditions (Le Pape et al., 1996). The bay
is also subjected to harbour usage bringing together indus-
trial, yachting, fishing and military activities. One of the
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most recent major examples is the extension of the surface
area of the harbour to welcome emerging activities from
the marine energy sector.

More than 50% of the bay is shallower than 5 m and
the maximum depth is around 50 m (Auffret, 1983). This
coastal environment is subjected to dominant semi-diurnal
tidal regimes with a spring tidal range exceeding 7 m that
strongly influence the transport of water mass and sus-
pended particles within the bay and exchanges with the
Atlantic Ocean (Beudin et al., 2014; Frere et al., 2017;
Petton et al., 2020; Salomon and Breton, 1991). Whereas
the bay is characterised by important dispersal capacity
directly influenced by strong tidal currents, reduced dis-
persal capacity is obtained over a long time scale. Thus,
the averaged renewal capacity of water within the bay
was estimated at three months (Agence de ’eau Loire Bre-
tagne, 1997). This exhibited an increased sensitivity of the
bay to substances remaining harmful after high dilution
and/or whose degradation rate is low (e.g., metal salts,
phytosanitary products, etc.).

Different rivers flow into the bay of Brest. However, the
hydrology of the bay is mainly influenced by freshwater
runoffs from the Aulne and Elorn rivers which account for
around 63 and 15% of the total river input, respectively
(Auffret, 1983). Whereas protected from north-western in-
coming Atlantic waves, this coastal environment may be
subjected to local wind-generated surface gravity waves
with significant wave heights up to 0.8 m in the northern
part of the bay and within the Daoulas cove (Guillou, 2007;
Petton, 2010).

Salinity in the Elorn estuary evolves mainly under the op-
posing contribution of freshwater and tidal flows. Stratifi-
cation is thus liable to occur during neap tide and for high
river discharges, fresh water dominating the upper part of
the water column (Quéméneur et al., 1984). Such stratifica-
tion conditions are liable to result in low salinity events with
reduced values of surface salinity at the mouth of the Elorn
estuary. But low salinity events may also occur under local
and regional weather conditions as a result of the additional
contribution of surface wind on salinity temporal variability
(Poppeschi et al., 2021).

3. Material and methods
3.1. Observations

The investigation relied on in-situ observations of sea sur-
face salinity for a six-year period (between 02/2015 and
02/2021) conducted at the mouth of the Elorn estuary
(long. = 4.39°W, lat. = 48.39°N) (Figure 1). The instru-
mentation system, entitled BOCA (for “Bouée d’Observation
Cotiere Automatique multiparameétres”) and implemented
by the Cerema (“Centre d’études et d’expertise sur les
risques, ’environnement, la mobilité et I’aménagement”)
and its Laboratory of Coastal Engineering and Environment,
consists of a multi-parameter YSI data probe attached to a
buoy which automatically collects observations. Data, ac-
quired with a time step of 1 s, were processed to ob-
tain averaged values every 20 min. Salinity observations
were characterised by different blank periods in relation to
maintenance operations and system malfunction (Figure 2).
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However, over the six-year period (from 04/02/2015 to
01/02/2021), we obtained a series of 20,289 targeted vari-
ables, evenly distributed at an hourly time step. This cor-
responds nearly to more than two years of continuous ob-
servations of sea surface salinity at the mouth of the Elorn
estuary. The recorded time series both captured (i) the sea-
sonal evolution of sea surface salinity characterised by in-
tense low salinity events during the winter period (with val-
ues below 20 ppt) and (ii) the semi-diurnal variations result-
ing from tidal advection and diffusion (Petton et al., 2020;
Poppeschi et al., 2021). The considered dataset represented
therefore a valuable source of information to investigate
the temporal evolution of the salinity in the mouth of the
Elorn estuary.

3.2. Process-based physical model

Performances of deep-learning algorithms were assessed
against predictions from a high-resolution 3D hydrodynamic
model implemented in the bay of Brest (Petton et al., 2020).
Numerical simulations were conducted with the MARS model
(Model for Application at Regional Scale) developed at Ifre-
mer (“Institut Francais de Recherche pour UExploitation de
la Mer”) (Lazure and Dumas, 2008). The model resolves (i)
the continuity equation and the Reynolds-averaged momen-
tum equations derived using the Boussinesq’s approxima-
tions and the vertical hydrostatic equilibrium and (ii) the 3D
transport equations of temperature and salinity. The hori-
zontal turbulent viscosity was set constant equal to 0.5 m?
s~' whereas the vertical turbulent viscosity derives from a
two-equation k-epsilon closure scheme. The computational
domain covers the bay of Brest and extends in longitude
from 4.09°W to 4.72°W and in latitude from 48.20°N to
48.44°N (Figure 3). This computational domain consists of
a curvilinear grid with a horizontal spatial resolution of 50
m and 20-sigma vertical-grid cells. The model was driven
by sea-surface elevation derived from a large-scale depth-
averaged embedded model covering the western extent of
Brittany (Le Roy and Simon, 2003). Atmospheric forcings
(pressure, wind velocities, precipitation...) derived from the
AROME model (Applications from Research to Operational
MEsoscale) implemented by Météo-France (Ducrocq et al.,
2005). Freshwater inputs from the different rivers of the
bay were finally imposed by relying on hourly observations
at upstream stations gathered in the database of Banque
Hydro (2021). Further details about the model setup are
available in Petton et al. (2020).

The model was assessed against a series of observations
of hydrodynamic and environmental parameters including
tidal sea level, current velocities, temperature and salin-
ity (Petton et al., 2018, 2016). Predictions of salinity were
compared with observations at two stations located at the
entrance of the bay of Brest and in the south-eastern part
of the bay (Poppeschi et al., 2021). In spite of a tendency
to overestimate low salinity events, simulations reproduced
the seasonal cycle of sea surface salinity. This model is
therefore considered as a reference tool for assessing en-
vironmental and ecological issues within the bay, with the
ability to capture the complex interactions between river
plumes and tide- and wind-induced circulations as exhibited
by the spatial distribution of sea surface salinity predicted
during two contrasting events (Figure 3).
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1 hidden layer with 5 neurons, epochs=100, batch_size=10
RBF kernel, ¢e=0.1, C=100 and I'=0.001

Table 1 Characteristics of machine learning algorithms retained.
Machine learning algorithms Main characteristics

MLR and MPR deg=2

MLP

SVR

RF

n_estimators=1200, max_features=sqrt, max_depth=80, min_samples_split=3,

min_samples_leaf=4 and bootstrap considered

Over the period of salinity observations at the mouth
of the Elorn estuary, data from this numerical model were
available from 2015 to 2018 with a time step of 15 min. The
comparison with machine learning algorithms was therefore
adapted to this dataset.

3.3. Machine learning algorithms

We propose here a brief description of multiple regression
methods and machine learning algorithms considered in the
present investigation. This includes simple Multiple Linear
and Polynomial Regression methods (MLR and MPR), and
more advanced MultiLayer Perceptron (MLP), Support Vec-
tor Regression (SVR) and Random Forest (RF). Further de-
tails about the parametrisation of these algorithms are pro-
vided in Table 1.

The performances and reliability of these different mod-
els were evaluated by relying on three statistical and scor-
ing metrics including the Mean Absolute Error (MAE), the
Root-Mean Square Error (RMSE), the Normalised Root-Mean
Square Error (NRMSE) and the coefficient of determination
R?Z between observations and predictions. The algorithms
were implemented by relying on the Deep Learning Python
libraries Scikit-learn and Keras (Keras, 2021). The random
seed number was fixed to guarantee the reproductibility of
results obtained.

3.3.1. MLR and MPR

MLR (Multiple Linear Regression) is one of the simplest su-
pervised learning techniques, applied basically to deter-
mine the best linear trend lines between a series of input
datasets and a targeted variable. The coefficients which
weighted linearly the input values are determined by mini-
mizing the sum of squared residuals between the estimated
output and the targeted variable for all observations of
the trained dataset. In comparison with MLR, MPR (Multi-
ple Polynomial Regression) relies on a polynomial regres-
sion function. As the regression function includes non-linear
terms, MPR are more adapted for approaching targeted ob-
servations subjected to non-linear response to input val-
ues (such as sea surface salinity). MPR depends naturally on
the degrees of the polynomial regression function. However,
preliminary estimations showed that increasing this degree
diminished the performance of MPR. Thus, in the present
investigation, we considered MPR with a polynomial regres-
sion function of degree two (Table 1).

3.3.2. MLP

MLP (Multilayer Perceptron) consists basically of three types
of layers including (i) an input layer with a series of in-
put features, (ii) hidden layers with a series of neurons
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(also called perceptrons) that receive the input values with
weight and transfer it with a non-linear activation function,
and (iii) the output layer with the final estimation of the
targeted variable (Figure 4). Considering its capability for
addressing the vanishing and exploding gradient problems
in MLP, the Rectified Linear unit (ReLu) was retained for the
activation function between hidden layers (Nair and Hin-
ton, 2010). A linear function was considered for the output
layer. Weights were updated by back-propagating the error
from the output layer to the hidden and input layers with
error-minimization algorithms. We relied here on the Adam
optimization algorithm to optimize a mean squared error
loss function between targeted variables and corresponding
observations (Kingma and Ba, 2017). Further details about
MLP are available, among others, in Azencott (2019). As in-
creasing the depth of the network may increase the risk of
over-fitting (therefore reducing the generalisation potential
of the trained algorithm), we retained MLP with a reduced
number of hidden layers and perceptrons per layer. Fol-
lowing the great part of salinity approaches based on MLP
(Chen et al., 2017; Huang and Foo, 2002), we considered a
three-layer ANN, thus restricting the algorithm to one hid-
den layer. For the case with one hidden layer, preliminary
estimations showed that a slightly better approach of the
observed salinity was obtained for five neurons in the hid-
den layer. The learning algorithm was finally implemented
with a number of epochs (iteration of updated weights on
batch samples) set to 100 and a batch size (number of sub-
samples of the trained dataset) set to 10 (Table 1).

3.3.3. SVR

Initially introduced by Vapnik (1995) and Cortes and Vap-
nik (1995), Support Vector Machine (SVM) is a kernel-based
approach that provides a statistical model for distinguishing
patterns of data. Thus, SVM relies on a hyperplane surface
or a set of hyperplanes as a decision boundary to draw the
line between different datasets (Figure 4). SVM was mainly
considered for classification issues with Support Vector Clas-
sification (SVC). However, it was also adapted for regression
problems (Drucker et al., 1997; Vapnik et al., 1996), thus
resulting in Support Vector Regression (SVR). In SVR, the ob-
jective is to find the optimal surface that fits the data within
a threshold value that defines how much error is acceptable
in the model. This threshold value represents the distance
between the hyperplane and the boundary line established
by relying on data points closest to the hyperplane (data
points also called Support Vectors). This method relies on
a kernel function that transforms the data to a higher di-
mension and performs the separation. There are different
types of kernel functions including linear, Gaussian, polyno-
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and one outcome) and (right) a decision tree of a RF.

mial or Radial Basis Function (RBF). In the present inves-
tigation, we relied on the RBF, considered as one of the
most popular choices for a kernel type in SVRs (Hsu et al.,
2010; Keerthi and Lin, 2003). In comparison with simple lin-
ear or multiple regression methods based on ordinary least
squares, SVR offers therefore increased flexibility by defin-
ing an acceptable range of values for the model error via
a hyperplane to fit the data. This enhances the generalised
regression efficiency of SVR models.

However, three parameters have to be considered to es-
tablish the SVR model: (i) the loss function ¢, (ii) the penalty
parameter C and (iii) the slack parameter I'. ¢ determines
the region of insensitivity around the hyperplane. This term
impacts tolerance for the error and the solution sparsity.
However, in order to account for larger errors and integrate
an increased number of data in the algorithm (thus improv-
ing its generalisation capability), slack variables C and I" are
also introduced. The penalty parameter C accounts for in-
creased acceptable data points in the model. Low values
of C will increase the tolerance for data points outside of
€ as a reduced penalty is applied to these points whereas
high values will heavily penalize these data points result-
ing in increased intolerance of the algorithm and a deci-
sion boundary more dependent on the individual data. In
this latter situation, the trained algorithm may be overfit-
ted. The slack parameter I' defines finally the spread of the
kernel considered (here the RBF kernel) and the decision
region. Thus, low values of I" will result in reduced curva-
ture of the decision boundary with a broad decision region
whereas high values will increase the curve of the decision
boundary reducing the spread of the kernel with better cov-
erage of data. However, high values of T" tend also to in-
crease the dependency between decision boundary and indi-
vidual data points, resulting in overfitting of the algorithm.
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Schematic representation of (left) MLP (for a three-layer ANN), (middle) SVR (for a linear regression with one feature

Further details about the description and implementation
of SVR for regression issues of environmental parameters
are available, among others, in Nguyen et al. (2021) and
Su et al. (2015).

A tuning procedure was adopted to determine the three
parameters which provided the best estimation of the tar-
geted variable during the supervised learning. This evalua-
tion was performed for a fixed ¢ of 0.1 with C in the range
[0.001, 0.01, 0.1, 1, 10, 100] and T in the range [0.0001,
0.001, 0.01, 0.1] resulting, from preliminary computa-
tions, in the optimised parameters of C=100 and I"'=0.001
(Table 1).

3.3.4. RF

RF (Random Forest) is a popular machine learning algo-
rithm that can be applied to both classification and re-
gression. In comparison with other machine learning tech-
niques, RF offers numerous advantages including stability,
refined accuracy, applications to large datasets with het-
erogeneous feature types (e.g., categorical against numer-
ical types). However, RFs may show limitations for predic-
tions outside the range of training data. RF is an ensem-
ble method that relies on a large number of small deci-
sion trees, called estimators, resulting in specific predic-
tions of the targeted variables (Figure 4). Decision trees
are flowchart-like structures designed to reach a final de-
cision through a series of tests. Thus, decision trees are
made of (i) nodes that correspond to tests, (ii) branches
that account for outcomes of the tests, and (iii) leaf nodes
that represent final decisions. RF relies on a series of hy-
perparameters including, for the most important, (i) the
number of trees in the forest (n_estimators), (ii) the num-
ber of features considered for splitting at each leaf node
(max_features), (iii) the maximum number of levels in
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the Elorn river.

trees (max_depth), the minimum numbers of samples re-
quired to (iv) split a node (min_samples_split) and (v) at
each leaf node (min_samples_leaf) and (vi) the method
of selecting samples for training each tree (bootstrap or
not).

Given the number of hyperparameters, the tuning pro-
cedure may be time-consuming in terms of computational
resources. In the present investigation, we first relied on a
K-fold cross-validation on trained dataset for a rough evalu-
ation of the range of values of hyperparameters. This rough
evaluation was then refined by directly specifying the val-
ues of hyperparameters to consider and retaining the pa-
rameters which provided the best estimation of the tar-
geted variable (in a similar manner as for SVR — previ-
ous section). We obtained finally the following hyperpa-
rameters: n_estimators 1200, max_features = square
root of the number of features, max_depth 80,
min_samples_split = 3, min_samples_leaf = 4 and bootstrap
considered (Table 1).

3.4. Output and input data

As described in Section 3.1, the targeted data was the sea
surface salinity observed at the mouth of the Elorn estuary.
Input data of machine learning algorithms were therefore
selected in relation to their potential influence on salinity
variation at this location. Thus, in order to represent the
semi-diurnal variations associated with tide-induced river
plume advection and dispersion as observed at the mouth
of the Elorn estuary (Figures 2 and 3), we retained the vari-
ations of tide-induced free-surface elevation, FSiige, as the
first input parameter. Data were taken from tidal-gauge ob-
servations conducted by the French Navy SHOM (“Service
Hydrographique et Océanographique de la Marine”) in the
harbour of Brest and available at a time step of one hour
(SHOM, 2021). Given the close relationship with freshwa-
ter inputs exhibited in Figure 5, discharges from the river
Elorn, Rivergorm, were also considered. Upstream river flows
were extracted from hourly observations gathered in the
database of Banque Hydro (2021). However, discharges from
the Aulne river, which may also influence the salinity at the
mouth of the Elorn estuary (Figure 3), were not considered
as these data were highly correlated with discharges from
the Elorn river. The detailed analysis of salinity variation

2021-01-01
date
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Time series of sea surface salinity observed at the mouth of the Elorn estuary and river outflow observed upstream of

performed by Poppeschi et al. (2021) exhibited furthermore
the superimposed effect of meteorological conditions on ex-
treme low salinity events in the bay of Brest, including espe-
cially the influence of surface wind. Thus, reduced salinity
occurred not only after a peak in river discharge but also un-
der favourable surface wind conditions liable to advect the
river plume towards the centre of the bay. Meteorological
observations of wind velocity magnitude and direction were
therefore considered. However, the wind direction can not
be characterised like its magnitude. Indeed, the value of 0
is similar to the value of 2I1. Thus, we selected the projec-
tion of the wind velocity along the orientation of the Elorn
estuary, Wind,;, (estimated at around 20° with respect to
longitude) as an input parameter. Data were taken from in-
ternational surface observations messages of the World Me-
teorological Organization for the city of Brest (WMO, 2021).
The three input variables retained are listed in Table 2. The
different input and output data considered were finally in-
terpolated with a time step of one hour. Given the different
range values of these input variables, these features were
standardised by removing the mean and scaling to unit vari-
ance.

The application of machine learning algorithms was con-
ducted by dividing the input and output datasets into two
parts including (i) training for the supervised learning of
data-driven approaches considered and (ii) validation for
the comparison of these different models and their assess-
ment with respect to the process-based physical model.
Thus, the testing phase was ignored setting aside the evalu-
ation of the generalisation error from the optimized model.
Machine learning models were therefore trained and vali-
dated in the ratio 70:30% of the total observed dataset of
sea surface salinity at the mouth of the Elorn estuary. How-
ever, predictions from the process-based physical model
were available over the period 2015—2018, only. And the
period of available observations extends from 04/02/2015
to 01/02/2021 (Section 3.1). Thus, in order to conduct
the comparison of machine learning algorithms with predic-
tions from the process-based physical model, the trained
dataset was taken from the last 70% of input and output
data whereas the validated dataset was taken from the first
30%. Thus, the training period extended from 25/03/2016
to 01/02/2021 whereas the validation period extended from
04/02/2015 to 25/03/2016.
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Table 2 Description of input variables considered in machine learning algorithms.

Input variables Description

Reference

FStige Free-surface elevation at Brest harbour
Rivergiom River flow upstream of Elorn
Windpmj

Wind velocity projection along the orientation of the Elorn estuary

SHOM (2021)
Banque Hydro (2021)
WMO (2021)
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4. Results and discussion
4.1. Model selection

Results obtained from the five machine learning algorithms
were very close to each other. Thus, the different models
reproduced the seasonal cycle characterised by high salin-
ity values (over 34 ppt) in summer and extreme low salin-
ity events (with values below 20 ppt) in winter (Figures 6
and 7). Predictions obtained approached also the semi-
diurnal modulations of salinity particularly noticeable at the
mouth of the Elorn estuary where tidal currents predomi-
nantly influenced the mixing between salt water from the
bay of Brest and fresh water from the Elorn river. However,
despite very close results, the first classification of trained
algorithms was established by relying on a series of statisti-
cal and scoring metrics (Table 3). MLR and RF resulted in the
most important differences between predictions and in-situ
observations. In spite of its simplicity of implementation,
MPR provided slightly better predictions than more complex
MLP. Indeed, as exhibited in the introduction, the response
of sea surface salinity to external forcings (here tide, river
outflow and wind) required an algorithm adapted to non-
linear problems. Both MLP and MPR were able to capture
these non-linearities, the first through nonlinear activation
functions, the second with a multiple regression based on
a polynomial function. This comparison exhibited further-
more that a great part of the non-linearities associated with
the response of sea surface salinity was captured with a

2018

20|19 2 OIZO 20I2 1

date

Figure 6 Time series of sea surface salinity observed at the mouth of the Elorn estuary, predicted from the coastal numerical
model and obtained from optimised SVR during the training and validation periods from 04/02/2015 to 01/02/2021.
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polynomial regression function of degree two which may ex-
plain the slight differences obtained between the two ML al-
gorithms. Best performances were finally obtained with the
optimised SVR which resulted in reduced differences and
errors for MAE, RMSE and NRMSE between predictions and
observations, and improved determination for RZ.

4.2. Deep-learning vs. physical model

In spite of reduced computational times, the machine learn-
ing model selected provided an approach to the temporal
variations of sea surface salinity comparable to the numer-
ical process-based physical model (Table 3). Thus, the five
ML models considered resulted in lower RMSE (and NRMSE)
than the numerical model. But the SVR model was the only
one to provide slightly better MAE decreasing its values
from 2.29 ppt to 2.26 ppt. These two values are very sim-
ilar. However, most improvements were reached with the
coefficient of determination RZ. Indeed, for the numerical
model, this coefficient was negative exhibiting that pre-
dictions failed to fit observations whereas an estimation of
0.51 was obtained for the SVR model. These important dif-
ferences were mainly associated with the approach of low-
salinity events (Figures 6, 7 and 8). Indeed, as exhibited by
Poppeschi et al. (2021), at the entrance of the bay, the nu-
merical model overestimated surface salinity during these
events with predicted minimum values of 25.5 ppt against
observed minimum values of 23.5 ppt. These differences
were here exhibited as the location considered (at the en-
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Figure 7 Time series of sea surface salinity observed at the mouth of the Elorn estuary and predicted by the coastal nhumerical
model and the SVR algorithm (top) during the validation period (from 04/02/2015 to 25/03/2016) with (bottom) a detailed view in

tide-dominated conditions (between 16 and 24/04/2015).

Table 3 Scoring for the evaluation of observed salinity for the validation dataset based on regression models (MLR and MPR),
the three machine learning algorithms considered (MLP, SVR and RF) and the process-based physical model (MARS model).
Statistical and scoring metrics considered include the Mean Absolute Error (MAE), the Root-Mean-Square Error (RMSE), the
Normalised Root-Mean-Square Error (NRMSE) and the coefficient of determination R2.

Deep-learning algorithms /Process-based physical model MAE RMSE NRMSE R?
MLR 2.46 ppt 3.48 ppt 11.7% 0.29
MPR 2.33 ppt 3.14 ppt 10.5% 0.49
MLP 2.42 ppt 3.26 ppt 10.9% 0.48
SVR 2.26 ppt 3.16 ppt 10.6% 0.51
RF 2.44 ppt 3.32 ppt 11.1% 0.46
MARS model 2.29 ppt 3.73 ppt 12.5% -2.52

trance of the Elorn estuary) was subjected to a stronger in-
fluence of fresh river discharges. Thus, during the valida-
tion period, observed minimum values reached 5 ppt while
predictions from the coastal model remained over 22 ppt.
These differences may be explained by the difficulty of the
model to approach the transport of fresh waters from up-
stream river boundaries to the entrance of the estuary. A
refined spatial numerical model may be implemented to ap-
proach the exchanges of water (and salinity) along the estu-
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ary, but this requires also an improved spatial distribution of
the bathymetry (which is not currently available). In com-
parison, machine learning algorithms were able to capture
a part of these low-salinity events. Thus, during the valida-
tion period, predictions from SVR resulted in minimum salin-
ity of 5.4 ppt (against 5.3 ppt for observations). And these
results were obtained with a limited number of input data,
setting especially aside extensive measurement campaigns
of water-depths spatial distribution.
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Figure 8 Correlation between sea surface salinity observed at the mouth of the Elorn estuary and predicted from SVR and the
coastal numerical model during the validation period (from 04/02/2015 to 25/03/2016).

4.3. Sensitivity analysis

In the present investigation, the attention was dedicated to
efficient and practical algorithms liable to approach envi-
ronmental parameters such as sea surface salinity with lim-
ited computational resources and simple input data easily
accessible. Thus, the investigation was conducted by relying
on three input parameters: the tide-induced surface eleva-
tion in the nearest harbour, the upstream river flow and the
wind velocity observed in the nearest station (Section 3.4).
However, we may expect further improvements of ML algo-
rithms by including input data more representative of pro-
cesses driving the temporal variation of sea surface salinity
at the mouth of the Elorn estuary (whereas these data are
more difficult to access). Thus, tide-induced surface eleva-
tion may be replaced by tidal currents in the vicinity of the
measurement point as a more refined parameter driving the
tide-induced transport of salinity. We may also consider an
extensive number of input data including the precipitation
rate, Prate, and the air temperature Temp. Indeed, the pre-
cipitation rate may be interesting to include to represent
the impact of high rapid rainfall on surface salinity. Sea sur-
face temperature may furthermore be exploited as a refined
indicator of the seasonal variability between (i) the winter
period characterised by an increased number of flood events
and (ii) the summer period with reduced river outflow within
the bay. The investigation of the influence of input data
was conducted by relying on the SVR algorithm. The analysis
was conducted in two steps. First, the model was exploited
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to investigate the interest of using tidal current instead of
free surface elevation. Second, different estimations from
the SVR model were compared varying the number of in-
put data. These different applications were conducted by
adopting the tuning procedure retained in Section 3.3.3,
thus varying the values of hyperparameters with respect to
the input dataset and parameters considered.

An estimation of sea surface salinity based on optimised
SVR was conducted by replacing the free-surface elevation
with the tidal current in the vicinity of the measurement lo-
cation. Predictions from the process-based physical model
were thus exploited to extract the horizontal components
of the depth-averaged current velocities at the measure-
ment point. As for wind velocity, we retained the projection
of the current velocity along the orientation of the Elorn
estuary as both horizontal components were highly corre-
lated, and as the inclusion of the current direction required
considering its orientation with respect to the estuary. The
tuning procedure provided the optimised parameters of
C =100 and T' = 0.1 (Table 4). The resulting optimised
SVR, entitled SVR#2, resulted in statistical metrics compa-
rable to values obtained with the five ML algorithms consid-
ered in Section 4.1 (Table 3). However, whereas the model
approached the seasonal variability of sea surface salinity
characterised by low-salinity events during the winter pe-
riod, increased differences were obtained at the diurnal
scales. Thus, SVR#2 resulted in lower tide-induced modula-
tions of salinity than SVR#1, and this increased differences
with observations. Indeed, the tidal current is a location-
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Table 4 Scoring for the evaluation of observed salinity for the validation dataset based on optimised SVR with different input

data.

Optimised SVR Input variables MAE RMSE NRMSE R?
SVR#1 (RBF kernel, ¢e=0.1, C=100 and I'=0.001) FSgige, Rivergiom, Windproj 2.26 ppt 3.16 ppt 10.6% 0.51
SVR#2 (RBF kernel, ¢e=0.1, C=100 and '=0.1) Uproj, Rivergiom, Windproj 2.44ppt 3.41ppt 11.4% 0.42
SVR#3 (RBF kernel, ¢=0.1, C=10 and I'=0.001) FStide 3.26 ppt 4.83 ppt 16.2% -38.1
SVR#4 (RBF kernel, ¢e=0.1, C=100 and I'=0.001) FStige, RiVergiom 2.28 ppt 3.20 ppt 10.7% 0.50
SVR#5 (RBF kernel, ¢e=0.1, C=100 and I'=0.001) FStide, RiVergiom, Prate 2.26 ppt 3.14ppt 10.5% 0.51
SVR#6 (RBF kernel, ¢=0.1, C=100 and '=0.001) FStige, Rivergiom, Temp 2.31 ppt 3.21 ppt 10.8% 0.50
SVR#7 (RBF kernel, ¢e=0.1, C=100 and I'=0.001) FStide, Rivergom, Windproj, Prate 2.25 ppt 3.13ppt 10.5% 0.52
SVR#8 (RBF kernel, ¢e=0.1, C=100 and I'=0.001) FStide, Rivergom, Windproj, Prate, Temp 2.26 ppt  3.13 ppt  10.5% 0.52

specific characteristic of the hydrodynamic whereas the
tide-induced free-surface elevation is more adapted to the
global variation of the tidal cycle within the bay. Thus, free-
surface elevation offers greater freedom than local tidal
current to adapt the ML algorithm to targeted data. As an
example, if the input current is highly rectilinear with two
opposite directions between peak flood and ebb, we may
expect rapid and frank variations of the predicted salin-
ity while neglecting potential remote influences of salinity
transport by rotary currents.

Taking into account the previous estimation, the sensi-
tivity study to the number of input data was conducted by
retaining the free-surface elevation to characterise the ef-
fect of the tide. As the wind velocity, meteorological data
added (Prate and Temp) were taken from observations mes-
sages of the World Meteorological Organization for Brest
(WMO, 2021). Differences between SVR#3 (with FSq4e) and
SVR#4 (with FSige and Riverg,m) confirmed the importance
of both considering the tide-induced free-surface elevation
and upstream river outflow to approach salinity variations
at the mouth of the Elorn estuary (Table 4). However, re-
duced improvement was reached by including the third vari-
able among the wind velocity, the precipitation rate and
the air temperature. The inclusion of Py with FSige and
Rivergom (SVR#5) appeared to provide slightly better esti-
mations of sea surface salinity. But the three estimations
from SVR#1, #5 and #6 were very close. An explanation is
that meteorological conditions have an impact on sea salin-
ity during localised events with a short period of time in
comparison to the continuous and/or more frequent effect
of tide and river discharges. For the precipitation rate, we
may also refer to the nature and properties of watersheds of
the bay of Brest. Thus, watersheds of the bay consist mainly
of impermeable rocks and soils which increases the influ-
ence of precipitation on river discharges (Tréguer et al.,
2014). The consequence is that floods and river discharges
tend to mirror precipitation, especially during the win-
ter period when soils are water-saturated. Reduced im-
provement was thus reached by including the precipitation
rate.

However, whereas the coastal numerical model took into
account past changes of hydrological conditions to predict
salinity, ML algorithms (considered in the present investi-
gation) neglected the previous evolution of dataset, set-
ting especially aside the time delay between input data and
the targeted parameter. And this time delay may be more
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important for the different input variables, including espe-
cially the river discharge and the precipitation rate. Thus,
in the bay of Brest, sea salinity may be impacted by a peak
in river discharges after a time lag of 10 days (Petton et al.,
2020; Poppeschi et al., 2021). By analysing salinity observa-
tions at the entrance of the bay, Poppeschi et al. (2021) also
noticed that low salinity events were always associated with
a peak in precipitation between two and three days before
these events. A detailed investigation of predictions from
the numerical model confirmed furthermore the additional
effects of surface wind, inputs from rivers (Aulne and Elorn)
and tide-induced advection and diffusion on the duration
and intensity of these low-salinity events. The inclusion of
input parameters with a more refined definition may help to
remove these uncertainties, but it may also be interesting
to test algorithms liable to take into account previous states
in the input parameters such as the LSTM.

5. Conclusion

A series of machine learning (ML) models were exploited
to approach the temporal variations of sea surface salinity
at the entrance of the Elorn estuary (bay of Brest, western
Brittany, France). The attention was dedicated to regression
models such as Multiple Linear Regression (MLR) and Multi-
ple Polynomial Regression (MPR), and popular ML algorithms
including MultiLayer Perceptron (MLP), Support Vector Re-
gression (SVR) and Random Forest (RF). In order to assess
the practical implementation of these algorithms in com-
parison to the more complex process-based physical model,
we considered simple input data, easily accessible, in rela-
tion to their potential influence on sea surface salinity at
the mouth of the Elorn estuary. This includes the observed
free-surface elevation at the nearest harbour, the upstream
river discharges and the wind velocity. A sensitivity study
to input data considered additional parameters such as the
tidal current, the precipitation rate and the air tempera-
ture. Performances of ML algorithms were evaluated with
respect to observations gathered during a six-year period at
the mouth of the estuary. Specific calibration studies were
furthermore conducted for the different ML algorithms to
establish optimised values of associated hyperparameters.
The present investigation exhibited (i) methodological
conclusions associated with the implementation and inter-
comparison of ML algorithms and (ii) results associated with
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the evolution of sea surface salinity at the mouth of the es-
tuary.

From a methodological point of view, ML algorithms were
found to provide estimations of observed sea surface salin-
ity comparable to predictions from a process-based physical
model, thus capturing the temporal variations from diur-
nal to seasonal time scales. However, whereas the process-
based physical model reproduced the semi-diurnal varia-
tions of sea surface salinity, more important differences
were obtained during low-salinity events with predicted
minimum values over 22 ppt against observed minimum val-
ues of 5 ppt. This overestimation may be associated with
the difficulty of the model to represent salinity transport
from upstream river boundaries to the mouth of the estu-
ary in relation to a coarse computational-grid resolution
and definition of water-depths variations in this shallow-
water environment. Instead, with a limited number of in-
put data and reduced computational time compared to the
3D model, machine learning algorithms reproduced these
low-salinity events. Both MLP and MPR were able to capture
the non-linear nature of salinity variations to external forc-
ings. Results obtained from MPR showed that a great part of
these non-linearities was captured by a polynomial regres-
sion function of degree two. However, the best estimations
were obtained for the Support Vector Regression. Whereas
this algorithm required a tuning procedure of hyperparame-
ters with additional computational time, this remained neg-
ligible in comparison to 3D numerical simulations of salin-
ity transport in the bay of Brest. It is therefore suggested
to rely on optimised SVR for approaching the evolution of
salinity at the mouth of the Elorn estuary. Regarding input
parameters, the inclusion of tidal currents may appear more
relevant than free-surface elevation to account for salinity
transport in the estuary. However, tidal currents were also
highly variable at the scale of the bay and the selection of
a rectilinear alternative component resulted in frank vari-
ations of salinity neglecting potential remote influences.
Tide-induced free-surface elevation offered, in comparison,
greater freedom to adapt the ML algorithms.

In an in-depth analysis of salinity variation, particular at-
tention may be dedicated to the temporal variations and re-
lation to input data. Thus, whereas semi-diurnal variations
of sea surface salinity resulted from tide-induced advection
and diffusion, low-salinity events at the mouth of the Elorn
estuary appeared to be influenced by the intrusion of fresh
waters from riverine inputs and an increased impact may
be expected after a peak in precipitation. Thus, trained
ML algorithms, treating river discharges as input variables,
were able to capture these low-salinity events. The sensitiv-
ity study to input data confirmed furthermore the key role
played by tide and river discharges on salinity variations in
the estuary. And these major influences largely outweighed,
in ML algorithms considered, the influence of other forc-
ings such as surface wind shear stress, precipitation rate or
air temperature whose impact may be mainly expected dur-
ing isolated events of short duration. A refined definition
of these input data over an extensive targeted dataset may
help to remove these uncertainties, and refine the approach
to salinity variations.

Trained ML algorithms may therefore be exploited to pro-
vide, with reduced computational time, a global evaluation
of the temporal variation of a hydrological parameter such
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as sea surface salinity in an estuary under the combined
complex influences of tide-induced transport and fresh river
discharges. Results were, however, obtained by exploiting
a six-year period of observations with a limited number of
data in relation to blank periods due to maintenance op-
erations and system malfunction. Thus, we may improve
predictions with an extensive amount of data continuously
acquired at the mouth of the Elorn estuary. Whereas the
process-based physical model exhibited increased differ-
ences for approaching low-salinity events, it remains fun-
damental to encompass the physical mechanisms involved
in the evolution of sea salinity. Thus, numerical modelling
may be exploited as a complementary tool to ML algorithms
(i) to provide further insights about parameters controlling
the evolution of sea surface salinity and/or (ii) to produce
new input data to train algorithms (hybrid approach). As the
investigation was conducted in a single location in the bay
of Brest, the potential of the ML algorithms may finally be
evaluated by including broader observations, such as mea-
surement points (i) at the entrance of the bay characterised
by increasing mixing between fresh and marine waters and
(ii) in the south-eastern part of the bay mainly influenced
by freshwater inputs from the Aulne and Mignonne rivers.
These extended observations may help to investigate the
potential of ML algorithms to model salinity in locations im-
pacted by contrasting remote effects of rivers discharges.
Moreover, such an approach may serve broader applications
in estuaries impacted by strong salinity variations to encom-
pass, on an extended time scale, the potential effect of ex-
treme weather events, especially storm surges and floods.
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