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Abstract As an indicator of exchanges between watersheds, rivers and coastal seas, salin- 
ity may provide valuable information about the exposure, ecological health and robustness of 
marine ecosystems, including especially estuaries. The temporal variations of salinity are tra- 
ditionally approached with numerical models based on a physical description of hydrodynamic 
and hydrological processes. However, as these models require large computational resources, 
such an approach is, in practice, rarely considered for rapid turnaround predictions as re- 
quested by engineering and operational applications dealing with the ecological monitoring 
of estuaries. As an alternative efficient and rapid solution, we investigated here the poten- 
tial of machine learning algorithms to mimic the non-linear complex relationships between 
salinity and a series of input parameters (such as tide-induced free-surface elevation, river dis- 
charges and wind velocity). Beyond regression methods, the attention was dedicated to popular 
machine learning approaches including MultiLayer Perceptron, Support Vector Regression and 
Random Forest. These algorithms were applied to six-year observations of sea surface salinity 
at the mouth of the Elorn estuary (bay of Brest, western Brittany, France) and compared to 
predictions from an advanced ecological numerical model. In spite of simple input data, ma- 
chine learning algorithms reproduced the seasonal and semi-diurnal variations of sea surface 
salinity characterised by noticeable tide-induced modulations and low-salinity events during 
the winter period. Support Vector Regression provided the best estimations of surface salin- 
ity, improving especially predictions from the advanced numerical model during low-salinity 
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events. This promotes the exploitation of machine learning algorithms as a complementary 
tool to process-based physical models. 
© 2022 Institute of Oceanology of the Polish Academy of Sciences. Production and host- 
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

t the interface between watershed, rivers and marine 
cosystems, estuaries are important pathways for the ex- 
hange, transport and fate of materials (including sus- 
ended particles, dissolved nutriments, micro-plastics, or 
ollutants) between surrounding lands and coastal seas. As 
 marker of freshwater mixing, salinity is a valuable indi- 
ator of these exchanges, fluctuating under the combined 
nfluence of riverine inputs and run-offs, tidal intrusion and 
eteorological forcings. Thus, salinity is a key parameter 
or assessing the renewal capacity of an estuary by provid- 
ng further insights into water quality, the health of habi- 
ats and biota ( Choi and Lee, 2004 ; Dyer, 1973 ; Guo and
ordi, 2000 ). Given the sensitivity to meteorological and 
ydrodynamic conditions, salinity is also an indicator of the 
ariability of extreme weather events (in occurrence and in- 
ensity) liable to impact coastal ecosystems. Reliable mon- 
toring of this environmental parameter may therefore pro- 
ide valuable information about the exposure, ecological 
tate and robustness of an estuary. This includes especially 
n situ observations and real-time predictions. 

As extensive observations are difficult to achieve (due 
o technical failure and maintenance operations), salinity 
s, most of the time, derived from process-based physical 
omputer models liable to approach the interactions be- 
ween fresh riverine water discharge, density-induced cir- 
ulation, tide and surface wind forcings ( Cruz et al., 2021 ; 
obins et al., 2014 ; Zhang et al., 2021 ). However, the im- 
lementation of these numerical models requires important 
omputational resources for approaching, at high spatial 
esolutions, the complex hydrodynamic interactions, exac- 
rbated by increased bottom friction in shallow waters. 
hese models rely furthermore on complex calibrations and 
n extensive amount of input data including, among others, 
he spatio-temporal distribution of surface forcings (e.g., 
ind velocity, atmospheric pressure) or the refined defini- 
ion of water depth variations along the estuarine chan- 
el and bordering wetting-drying areas. For these reasons, 
hereas such advanced models enable a physical interpre- 
ation of processes, these numerical tools remain difficult 
o apply for rapid turnaround times predictions as requested 
n engineering and operational applications dealing with the 
cological monitoring of the estuary. 
However, with the development of Artificial Intelligence 

AI) analysis techniques and methods, new solutions may be 
xploited to approach water quality parameters by includ- 
ng a limited number of input data and computational re- 
ources ( Maier et al., 2010 ; Maier and Dandy, 1996 ). Thus, 
upervised learning approaches such as Artificial Neural Net- 
orks (ANN) are able to produce accurate predictions by 
earning and/or detecting the underlying patterns and com- 
lex relationships between a series of input data and a tar- 
319 
eted parameter. MultiLayer Perceptrons (MLPs) refers to 
ne of the most popular ANN models in water-engineering 
tudies ( Maier et al., 2010 ). The basic structure consists of 
 series of units, called neurons arranged in different hid- 
en layers between (i) an input layer (with input feature) 
nd (ii) an output layer (with the targeted variable). Each 
nit receives the input information with weight and trans- 
ers the output with non-linear activation functions. The 
ifferent weights are determined during a training phase by 
rror-minimization algorithms between ANN predictions of 
he targeted variables and the corresponding data. 
Adapted to highly non-linear problems, ANNs were there- 

ore exploited to approach the evolution of salinity in estu- 
ries. Motivated by significant economic, ecological and so- 
ial issues, numerous investigations were conducted in the 
an Francisco Bay and Sacramento-San Joaquin Delta estu- 
ry along the Pacific coast of California (USA) ( Chen et al., 
018 ; Chung and Seneviratne, 2009 ; He et al., 2020 ; 
ath et al., 2017 ). However, with the development of 
NN data-driven approaches, complementary investigations 
ere also conducted in broader estuarine environments 
nd coastal bays connected to rivers including, among oth- 
rs, the river Murray (in South Australia) ( Bowden et al., 
005 ), the Apalachicola River (Florida, USA) ( Huang and 
oo, 2002 ), the Danshui River estuarine system (north- 
rn Taiwan) ( Chen et al., 2017 ) or the Hilo Bay (Hawaii)
 Alizadeh et al., 2018 ). These different investigations ex- 
ibited the performance of ANN data-driven approaches for 
stimating salinity in these marine and estuarine environ- 
ents. 
Most investigations relied on MLP or similar ANN to ap- 

roach salinity variations in response to multiple environ- 
ental forcing including freshwater input, water level, tide 
r wind ( Maier et al., 2010 ). Thus, Huang and Foo (2002) im-
lemented a three-layer ANN — varying the number of neu- 
ons in the range (9, 16, 33) in the hidden layer — to ap-
roach observed salinity at the mouth of the Apalachicola 
iver system (Florida, USA) with a Root-Mean-Square er- 
or (RMSE) down to 1.6 ppt for a five days period. More 
ecently, Chen et al. (2017) compared the exploitation of 
 three-layer ANN with a three-dimensional (3D) hydrody- 
amic model for approaching the sea surface salinity in 
he Danshui River (northern Taiwan). In spite of a tendency 
o underestimate peak salinity during flood tide and over- 
redict minimal salinity during ebb tide, the artificial net- 
orks considered were able to reproduce tide-induced vari- 
tions while providing a better estimate than the hydro- 
ynamic model with RMSE below 3.81 ppt between pre- 
ictions and observations. In order to improve ANN pre- 
ictive and structural validity, Rath et al. (2017) proposed 
 hybrid empirical-Bayesian neural network model for ap- 
roaching salinity in the San-Francisco Bay-Delta estuary 
hile accounting for uncertainties in model parameters. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1 Mean water depth of the bay of Brest and the Elorn estuary. The red circle shows the location of the measurement 
station considered in the present investigation. 
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s MLPs and advanced ANNs can not treat the short- or 
ong-term temporal dependencies between input and out- 
ut time series, investigations were therefore extended 
o advanced Recurrent Neural Networks (RNNs). Thus, 
e et al. (2020) compared a series of neural network mod- 
ls, including MLPs and a widely-used RNN, the Long Short- 
erm Memory network (LSTM), for estimating the down- 
tream boundary salinity in the Sacramento-San Joaquin 
elta. 
The present investigation complements these different 

pplications of machine learning models for approaching the 
stuarine salinity under the combined influence of a tide, 
iver freshwater input, precipitation, atmospheric pressure 
nd surface wind. Thus, algorithms such as RNN or LSTM 

ased on temporal dependencies between input and out- 
ut data were disregarded. Extending the exploitation of 
NNs, particular attention was devoted to the performances 
f a series of popular advanced machine learning (ML) algo- 
ithms, including MLP, Support Vector Regression (SVR) and 
andom Forest (RF). These advanced ML techniques were 
omplemented by the simplest approaches including Mul- 
iple Linear Regression (MLR) and Multiple Polynomial Re- 
ression (MPR), this in order to assess the progress obtained 
ith advanced ML models. Performances of ML algorithms 
ere assessed against predictions of salinity derived from 

n ecological numerical model based on a 3D hydrodynamic 
pproach. The application was conducted at the mouth of 
he Elorn estuary, in the bay of Brest (western Brittany, 
rance), by exploiting a series of in-situ observations of sea 
urface salinity during a period of six years from 2015 to 
021 ( Figure 1 ). Beyond extending the application of ma- 
hine learning algorithms to salinity prediction in an estuary 
f north-western Europe, this study provided an extensive 
valuation (not restricted to classical MLPs) about the suit- 
bility and capability of ML algorithms to predict the highly 
320 
on-linear response of an environmental parameter to mul- 
iple coastal forcings. 
The paper is organised as follows. Section 2 describes 

he site of application and the environmental conditions. 
ection 3.1 presents the in-situ observations of surface 
alinity exploited to train and assess performances of ML 
lgorithms. Sections 3.2 and 3.3 successively describe the 
rocess-based physical model and deep-learning algorithms 
onsidered. Section 3.4 shows the dataset exploited for 
he extraction of input variables and the associated pre- 
rocessing. Section 4.1 assesses performances of the dif- 
erent ML algorithms. Section 4.2 compares results from ML 
ith predictions from the 3D ecological model implemented 
n the bay of Brest. Section 4.3 finally discusses the sensi- 
ivity of results obtained from ML algorithms with respect to 
nput data. 

. Study area 

he site of application is located at the mouth of the Elorn 
stuary in the bay of Brest, a semi-enclosed basin of north- 
estern Europe separated from the Atlantic Ocean by a 1.8 
m wide strait (entitled the “Goulet de Brest”) ( Figure 1 ). 
he bay is a rich ecosystem characterised by a diversity 
f marine species and macro-benthic communities which 
osters the development of shellfish farming and profes- 
ional fishing. Particular attention is therefore devoted to 
he ecological impact of surrounding agricultural, harbour 
nd leisure activities ( Chauvaud et al., 2000 ). Thus, as a 
esult of intensive agriculture, the bay of Brest is receiv- 
ng high nutrients load from freshwater inputs which in- 
reases eutrophic conditions ( Le Pape et al., 1996 ). The bay 
s also subjected to harbour usage bringing together indus- 
rial, yachting, fishing and military activities. One of the 
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ost recent major examples is the extension of the surface 
rea of the harbour to welcome emerging activities from 

he marine energy sector. 
More than 50% of the bay is shallower than 5 m and 

he maximum depth is around 50 m ( Auffret, 1983 ). This 
oastal environment is subjected to dominant semi-diurnal 
idal regimes with a spring tidal range exceeding 7 m that 
trongly influence the transport of water mass and sus- 
ended particles within the bay and exchanges with the 
tlantic Ocean ( Beudin et al., 2014 ; Frère et al., 2017 ; 
etton et al., 2020 ; Salomon and Breton, 1991 ). Whereas 
he bay is characterised by important dispersal capacity 
irectly influenced by strong tidal currents, reduced dis- 
ersal capacity is obtained over a long time scale. Thus, 
he averaged renewal capacity of water within the bay 
as estimated at three months ( Agence de l’eau Loire Bre- 
agne, 1997 ). This exhibited an increased sensitivity of the 
ay to substances remaining harmful after high dilution 
nd/or whose degradation rate is low (e.g., metal salts, 
hytosanitary products, etc.). 
Different rivers flow into the bay of Brest. However, the 

ydrology of the bay is mainly influenced by freshwater 
unoffs from the Aulne and Elorn rivers which account for 
round 63 and 15% of the total river input, respectively 
 Auffret, 1983 ). Whereas protected from north-western in- 
oming Atlantic waves, this coastal environment may be 
ubjected to local wind-generated surface gravity waves 
ith significant wave heights up to 0.8 m in the northern 
art of the bay and within the Daoulas cove ( Guillou, 2007 ; 
etton, 2010 ). 
Salinity in the Elorn estuary evolves mainly under the op- 

osing contribution of freshwater and tidal flows. Stratifi- 
ation is thus liable to occur during neap tide and for high 
iver discharges, fresh water dominating the upper part of 
he water column ( Quéméneur et al., 1984 ). Such stratifica- 
ion conditions are liable to result in low salinity events with 
educed values of surface salinity at the mouth of the Elorn 
stuary. But low salinity events may also occur under local 
nd regional weather conditions as a result of the additional 
ontribution of surface wind on salinity temporal variability 
 Poppeschi et al., 2021 ). 

. Material and methods 

.1. Observations 

he investigation relied on in-situ observations of sea sur- 
ace salinity for a six-year period (between 02/2015 and 
2/2021) conducted at the mouth of the Elorn estuary 
long. = 4.39 °W, lat. = 48.39 °N) ( Figure 1 ). The instru-
entation system, entitled BOCA (for “Bouée d’Observation 
ôtière Automatique multiparamètres”) and implemented 
y the Cerema (“Centre d’études et d’expertise sur les 
isques, l’environnement, la mobilité et l’aménagement”) 
nd its Laboratory of Coastal Engineering and Environment, 
onsists of a multi-parameter YSI data probe attached to a 
uoy which automatically collects observations. Data, ac- 
uired with a time step of 1 s, were processed to ob- 
ain averaged values every 20 min. Salinity observations 
ere characterised by different blank periods in relation to 
aintenance operations and system malfunction ( Figure 2 ). 
321 
owever, over the six-year period (from 04/02/2015 to 
1/02/2021), we obtained a series of 20,289 targeted vari- 
bles, evenly distributed at an hourly time step. This cor- 
esponds nearly to more than two years of continuous ob- 
ervations of sea surface salinity at the mouth of the Elorn 
stuary. The recorded time series both captured (i) the sea- 
onal evolution of sea surface salinity characterised by in- 
ense low salinity events during the winter period (with val- 
es below 20 ppt) and (ii) the semi-diurnal variations result- 
ng from tidal advection and diffusion ( Petton et al., 2020 ; 
oppeschi et al., 2021 ). The considered dataset represented 
herefore a valuable source of information to investigate 
he temporal evolution of the salinity in the mouth of the 
lorn estuary. 

.2. Process-based physical model 

erformances of deep-learning algorithms were assessed 
gainst predictions from a high-resolution 3D hydrodynamic 
odel implemented in the bay of Brest ( Petton et al., 2020 ).
umerical simulations were conducted with the MARS model 
Model for Application at Regional Scale) developed at Ifre- 
er (“Institut Français de Recherche pour l’Exploitation de 

a Mer”) ( Lazure and Dumas, 2008 ). The model resolves (i) 
he continuity equation and the Reynolds-averaged momen- 
um equations derived using the Boussinesq’s approxima- 
ions and the vertical hydrostatic equilibrium and (ii) the 3D 

ransport equations of temperature and salinity. The hori- 
ontal turbulent viscosity was set constant equal to 0.5 m 

2 

 

−1 whereas the vertical turbulent viscosity derives from a 
wo-equation k-epsilon closure scheme. The computational 
omain covers the bay of Brest and extends in longitude 
rom 4.09 °W to 4.72 °W and in latitude from 48.20 °N to
8.44 °N ( Figure 3 ). This computational domain consists of 
 curvilinear grid with a horizontal spatial resolution of 50 
 and 20-sigma vertical-grid cells. The model was driven 
y sea-surface elevation derived from a large-scale depth- 
veraged embedded model covering the western extent of 
rittany ( Le Roy and Simon, 2003 ). Atmospheric forcings 
pressure, wind velocities, precipitation…) derived from the 
ROME model (Applications from Research to Operational 
Esoscale) implemented by Météo-France ( Ducrocq et al., 
005 ). Freshwater inputs from the different rivers of the 
ay were finally imposed by relying on hourly observations 
t upstream stations gathered in the database of Banque 
ydro (2021) . Further details about the model setup are 
vailable in Petton et al. (2020) . 
The model was assessed against a series of observations 

f hydrodynamic and environmental parameters including 
idal sea level, current velocities, temperature and salin- 
ty ( Petton et al., 2018 , 2016 ). Predictions of salinity were
ompared with observations at two stations located at the 
ntrance of the bay of Brest and in the south-eastern part 
f the bay ( Poppeschi et al., 2021 ). In spite of a tendency
o overestimate low salinity events, simulations reproduced 
he seasonal cycle of sea surface salinity. This model is 
herefore considered as a reference tool for assessing en- 
ironmental and ecological issues within the bay, with the 
bility to capture the complex interactions between river 
lumes and tide- and wind-induced circulations as exhibited 
y the spatial distribution of sea surface salinity predicted 
uring two contrasting events ( Figure 3 ). 
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Figure 2 Time series of observed sea surface salinity at the mouth of the Elorn estuary (top) over the six-year period considered 
(between 2015 and 2021) with (bottom) a detailed view in tide-dominated conditions (between 15 and 27/09/2019). 

Figure 3 Spatial distribution of predicted sea surface salinity in the bay of Brest (top) on 02/02/2016 (22h00) with a strong effect 
of western wind on salinity intrusion within the bay and (bottom) on 14/03/2017 (00h00) with a noticeable interaction of salinity 
flow from Elorn and Aulne rivers. Note that these synoptic views show also the computational domain that covers the bay of Brest. 

322 
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Table 1 Characteristics of machine learning algorithms retained. 

Machine learning algorithms Main characteristics 

MLR and MPR deg = 2 
MLP 1 hidden layer with 5 neurons, epochs = 100, batch_size = 10 
SVR RBF kernel, ε= 0.1, C = 100 and �= 0.001 
RF n_estimators = 1200, max_features = sqrt, max_depth = 80, min_samples_split = 3, 

min_samples_leaf = 4 and bootstrap considered 
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Over the period of salinity observations at the mouth 
f the Elorn estuary, data from this numerical model were 
vailable from 2015 to 2018 with a time step of 15 min. The 
omparison with machine learning algorithms was therefore 
dapted to this dataset. 

.3. Machine learning algorithms 

e propose here a brief description of multiple regression 
ethods and machine learning algorithms considered in the 
resent investigation. This includes simple Multiple Linear 
nd Polynomial Regression methods (MLR and MPR), and 
ore advanced MultiLayer Perceptron (MLP), Support Vec- 
or Regression (SVR) and Random Forest (RF). Further de- 
ails about the parametrisation of these algorithms are pro- 
ided in Table 1 . 
The performances and reliability of these different mod- 

ls were evaluated by relying on three statistical and scor- 
ng metrics including the Mean Absolute Error (MAE), the 
oot-Mean Square Error (RMSE), the Normalised Root-Mean 
quare Error (NRMSE) and the coefficient of determination 
 

2 between observations and predictions. The algorithms 
ere implemented by relying on the Deep Learning Python 
ibraries Scikit-learn and Keras ( Keras, 2021 ). The random 

eed number was fixed to guarantee the reproductibility of 
esults obtained. 

.3.1. MLR and MPR 

LR (Multiple Linear Regression) is one of the simplest su- 
ervised learning techniques, applied basically to deter- 
ine the best linear trend lines between a series of input 
atasets and a targeted variable. The coefficients which 
eighted linearly the input values are determined by mini- 
izing the sum of squared residuals between the estimated 
utput and the targeted variable for all observations of 
he trained dataset. In comparison with MLR, MPR (Multi- 
le Polynomial Regression) relies on a polynomial regres- 
ion function. As the regression function includes non-linear 
erms, MPR are more adapted for approaching targeted ob- 
ervations subjected to non-linear response to input val- 
es (such as sea surface salinity). MPR depends naturally on 
he degrees of the polynomial regression function. However, 
reliminary estimations showed that increasing this degree 
iminished the performance of MPR. Thus, in the present 
nvestigation, we considered MPR with a polynomial regres- 
ion function of degree two ( Table 1 ). 

.3.2. MLP 

LP (Multilayer Perceptron) consists basically of three types 
f layers including (i) an input layer with a series of in- 
ut features, (ii) hidden layers with a series of neurons 
323 
also called perceptrons) that receive the input values with 
eight and transfer it with a non-linear activation function, 
nd (iii) the output layer with the final estimation of the 
argeted variable ( Figure 4 ). Considering its capability for 
ddressing the vanishing and exploding gradient problems 
n MLP, the Rectified Linear unit (ReLu) was retained for the 
ctivation function between hidden layers ( Nair and Hin- 
on, 2010 ). A linear function was considered for the output 
ayer. Weights were updated by back-propagating the error 
rom the output layer to the hidden and input layers with 
rror-minimization algorithms. We relied here on the Adam 

ptimization algorithm to optimize a mean squared error 
oss function between targeted variables and corresponding 
bservations ( Kingma and Ba, 2017 ). Further details about 
LP are available, among others, in Azencott (2019) . As in- 
reasing the depth of the network may increase the risk of 
ver-fitting (therefore reducing the generalisation potential 
f the trained algorithm), we retained MLP with a reduced 
umber of hidden layers and perceptrons per layer. Fol- 
owing the great part of salinity approaches based on MLP 
 Chen et al., 2017 ; Huang and Foo, 2002 ), we considered a
hree-layer ANN, thus restricting the algorithm to one hid- 
en layer. For the case with one hidden layer, preliminary 
stimations showed that a slightly better approach of the 
bserved salinity was obtained for five neurons in the hid- 
en layer. The learning algorithm was finally implemented 
ith a number of epochs (iteration of updated weights on 
atch samples) set to 100 and a batch size (number of sub- 
amples of the trained dataset) set to 10 ( Table 1 ). 

.3.3. SVR 

nitially introduced by Vapnik (1995) and Cortes and Vap- 
ik (1995) , Support Vector Machine (SVM) is a kernel-based 
pproach that provides a statistical model for distinguishing 
atterns of data. Thus, SVM relies on a hyperplane surface 
r a set of hyperplanes as a decision boundary to draw the 
ine between different datasets ( Figure 4 ). SVM was mainly 
onsidered for classification issues with Support Vector Clas- 
ification (SVC). However, it was also adapted for regression 
roblems ( Drucker et al., 1997 ; Vapnik et al., 1996 ), thus
esulting in Support Vector Regression (SVR). In SVR, the ob- 
ective is to find the optimal surface that fits the data within 
 threshold value that defines how much error is acceptable 
n the model. This threshold value represents the distance 
etween the hyperplane and the boundary line established 
y relying on data points closest to the hyperplane (data 
oints also called Support Vectors). This method relies on 
 kernel function that transforms the data to a higher di- 
ension and performs the separation. There are different 
ypes of kernel functions including linear, Gaussian, polyno- 
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Figure 4 Schematic representation of (left) MLP (for a three-layer ANN), (middle) SVR (for a linear regression with one feature 
and one outcome) and (right) a decision tree of a RF. 
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ial or Radial Basis Function (RBF). In the present inves- 
igation, we relied on the RBF, considered as one of the 
ost popular choices for a kernel type in SVRs ( Hsu et al., 
010 ; Keerthi and Lin, 2003 ). In comparison with simple lin- 
ar or multiple regression methods based on ordinary least 
quares, SVR offers therefore increased flexibility by defin- 
ng an acceptable range of values for the model error via 
 hyperplane to fit the data. This enhances the generalised 
egression efficiency of SVR models. 
However, three parameters have to be considered to es- 

ablish the SVR model: (i) the loss function ε, (ii) the penalty 
arameter C and (iii) the slack parameter �. ε determines 
he region of insensitivity around the hyperplane. This term 

mpacts tolerance for the error and the solution sparsity. 
owever, in order to account for larger errors and integrate 
n increased number of data in the algorithm (thus improv- 
ng its generalisation capability), slack variables C and � are 
lso introduced. The penalty parameter C accounts for in- 
reased acceptable data points in the model. Low values 
f C will increase the tolerance for data points outside of 
as a reduced penalty is applied to these points whereas 
igh values will heavily penalize these data points result- 
ng in increased intolerance of the algorithm and a deci- 
ion boundary more dependent on the individual data. In 
his latter situation, the trained algorithm may be overfit- 
ed. The slack parameter � defines finally the spread of the 
ernel considered (here the RBF kernel) and the decision 
egion. Thus, low values of � will result in reduced curva- 
ure of the decision boundary with a broad decision region 
hereas high values will increase the curve of the decision 
oundary reducing the spread of the kernel with better cov- 
rage of data. However, high values of � tend also to in- 
rease the dependency between decision boundary and indi- 
idual data points, resulting in overfitting of the algorithm. 
324 
urther details about the description and implementation 
f SVR for regression issues of environmental parameters 
re available, among others, in Nguyen et al. (2021) and 
u et al. (2015) . 
A tuning procedure was adopted to determine the three 

arameters which provided the best estimation of the tar- 
eted variable during the supervised learning. This evalua- 
ion was performed for a fixed ε of 0.1 with C in the range
0.001, 0.01, 0.1, 1, 10, 100] and � in the range [0.0001, 
.001, 0.01, 0.1] resulting, from preliminary computa- 
ions, in the optimised parameters of C = 100 and �= 0.001 
 Table 1 ). 

.3.4. RF 

F (Random Forest) is a popular machine learning algo- 
ithm that can be applied to both classification and re- 
ression. In comparison with other machine learning tech- 
iques, RF offers numerous advantages including stability, 
efined accuracy, applications to large datasets with het- 
rogeneous feature types (e.g., categorical against numer- 
cal types). However, RFs may show limitations for predic- 
ions outside the range of training data. RF is an ensem- 
le method that relies on a large number of small deci- 
ion trees, called estimators, resulting in specific predic- 
ions of the targeted variables ( Figure 4 ). Decision trees 
re flowchart-like structures designed to reach a final de- 
ision through a series of tests. Thus, decision trees are 
ade of (i) nodes that correspond to tests, (ii) branches 
hat account for outcomes of the tests, and (iii) leaf nodes 
hat represent final decisions. RF relies on a series of hy- 
erparameters including, for the most important, (i) the 
umber of trees in the forest (n_estimators), (ii) the num- 
er of features considered for splitting at each leaf node 
max_features), (iii) the maximum number of levels in 
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Figure 5 Time series of sea surface salinity observed at the mouth of the Elorn estuary and river outflow observed upstream of 
the Elorn river. 
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04/02/2015 to 25/03/2016. 
rees (max_depth), the minimum numbers of samples re- 
uired to (iv) split a node (min_samples_split) and (v) at 
ach leaf node (min_samples_leaf) and (vi) the method 
f selecting samples for training each tree (bootstrap or 
ot). 
Given the number of hyperparameters, the tuning pro- 

edure may be time-consuming in terms of computational 
esources. In the present investigation, we first relied on a 
-fold cross-validation on trained dataset for a rough evalu- 
tion of the range of values of hyperparameters. This rough 
valuation was then refined by directly specifying the val- 
es of hyperparameters to consider and retaining the pa- 
ameters which provided the best estimation of the tar- 
eted variable (in a similar manner as for SVR — previ- 
us section). We obtained finally the following hyperpa- 
ameters: n_estimators = 1200, max_features = square 
oot of the number of features, max_depth = 80, 
in_samples_split = 3, min_samples_leaf = 4 and bootstrap 
onsidered ( Table 1 ). 

.4. Output and input data 

s described in Section 3.1 , the targeted data was the sea 
urface salinity observed at the mouth of the Elorn estuary. 
nput data of machine learning algorithms were therefore 
elected in relation to their potential influence on salinity 
ariation at this location. Thus, in order to represent the 
emi-diurnal variations associated with tide-induced river 
lume advection and dispersion as observed at the mouth 
f the Elorn estuary ( Figures 2 and 3 ), we retained the vari-
tions of tide-induced free-surface elevation, FS tide , as the 
rst input parameter. Data were taken from tidal-gauge ob- 
ervations conducted by the French Navy SHOM (“Service 
ydrographique et Océanographique de la Marine”) in the 
arbour of Brest and available at a time step of one hour 
 SHOM, 2021 ). Given the close relationship with freshwa- 
er inputs exhibited in Figure 5 , discharges from the river 
lorn, River Elorn , were also considered. Upstream river flows 
ere extracted from hourly observations gathered in the 
atabase of Banque Hydro (2021) . However, discharges from 

he Aulne river, which may also influence the salinity at the 
outh of the Elorn estuary ( Figure 3 ), were not considered 
s these data were highly correlated with discharges from 

he Elorn river. The detailed analysis of salinity variation 
325 
erformed by Poppeschi et al. (2021) exhibited furthermore 
he superimposed effect of meteorological conditions on ex- 
reme low salinity events in the bay of Brest, including espe- 
ially the influence of surface wind. Thus, reduced salinity 
ccurred not only after a peak in river discharge but also un- 
er favourable surface wind conditions liable to advect the 
iver plume towards the centre of the bay. Meteorological 
bservations of wind velocity magnitude and direction were 
herefore considered. However, the wind direction can not 
e characterised like its magnitude. Indeed, the value of 0 
s similar to the value of 2 �. Thus, we selected the projec-
ion of the wind velocity along the orientation of the Elorn 
stuary, Wind proj , (estimated at around 20 ° with respect to 
ongitude) as an input parameter. Data were taken from in- 
ernational surface observations messages of the World Me- 
eorological Organization for the city of Brest ( WMO, 2021 ). 
he three input variables retained are listed in Table 2 . The 
ifferent input and output data considered were finally in- 
erpolated with a time step of one hour. Given the different 
ange values of these input variables, these features were 
tandardised by removing the mean and scaling to unit vari- 
nce. 
The application of machine learning algorithms was con- 

ucted by dividing the input and output datasets into two 
arts including (i) training for the supervised learning of 
ata-driven approaches considered and (ii) validation for 
he comparison of these different models and their assess- 
ent with respect to the process-based physical model. 
hus, the testing phase was ignored setting aside the evalu- 
tion of the generalisation error from the optimized model. 
achine learning models were therefore trained and vali- 
ated in the ratio 70:30% of the total observed dataset of 
ea surface salinity at the mouth of the Elorn estuary. How- 
ver, predictions from the process-based physical model 
ere available over the period 2015—2018, only. And the 
eriod of available observations extends from 04/02/2015 
o 01/02/2021 ( Section 3.1 ). Thus, in order to conduct 
he comparison of machine learning algorithms with predic- 
ions from the process-based physical model, the trained 
ataset was taken from the last 70% of input and output 
ata whereas the validated dataset was taken from the first 
0%. Thus, the training period extended from 25/03/2016 
o 01/02/2021 whereas the validation period extended from 
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Table 2 Description of input variables considered in machine learning algorithms. 

Input variables Description Reference 

FS tide Free-surface elevation at Brest harbour SHOM (2021) 
River Elorn River flow upstream of Elorn Banque Hydro (2021) 
Wind proj Wind velocity projection along the orientation of the Elorn estuary WMO (2021) 

Figure 6 Time series of sea surface salinity observed at the mouth of the Elorn estuary, predicted from the coastal numerical 
model and obtained from optimised SVR during the training and validation periods from 04/02/2015 to 01/02/2021. 
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. Results and discussion 

.1. Model selection 

esults obtained from the five machine learning algorithms 
ere very close to each other. Thus, the different models 
eproduced the seasonal cycle characterised by high salin- 
ty values (over 34 ppt) in summer and extreme low salin- 
ty events (with values below 20 ppt) in winter ( Figures 6 
nd 7 ). Predictions obtained approached also the semi- 
iurnal modulations of salinity particularly noticeable at the 
outh of the Elorn estuary where tidal currents predomi- 
antly influenced the mixing between salt water from the 
ay of Brest and fresh water from the Elorn river. However, 
espite very close results, the first classification of trained 
lgorithms was established by relying on a series of statisti- 
al and scoring metrics ( Table 3 ). MLR and RF resulted in the
ost important differences between predictions and in-situ 
bservations. In spite of its simplicity of implementation, 
PR provided slightly better predictions than more complex 
LP. Indeed, as exhibited in the introduction, the response 
f sea surface salinity to external forcings (here tide, river 
utflow and wind) required an algorithm adapted to non- 
inear problems. Both MLP and MPR were able to capture 
hese non-linearities, the first through nonlinear activation 
unctions, the second with a multiple regression based on 
 polynomial function. This comparison exhibited further- 
ore that a great part of the non-linearities associated with 
he response of sea surface salinity was captured with a 
326 
olynomial regression function of degree two which may ex- 
lain the slight differences obtained between the two ML al- 
orithms. Best performances were finally obtained with the 
ptimised SVR which resulted in reduced differences and 
rrors for MAE, RMSE and NRMSE between predictions and 
bservations, and improved determination for R 2 . 

.2. Deep-learning vs. physical model 

n spite of reduced computational times, the machine learn- 
ng model selected provided an approach to the temporal 
ariations of sea surface salinity comparable to the numer- 
cal process-based physical model ( Table 3 ). Thus, the five 
L models considered resulted in lower RMSE (and NRMSE) 
han the numerical model. But the SVR model was the only 
ne to provide slightly better MAE decreasing its values 
rom 2.29 ppt to 2.26 ppt. These two values are very sim- 
lar. However, most improvements were reached with the 
oefficient of determination R 2 . Indeed, for the numerical 
odel, this coefficient was negative exhibiting that pre- 
ictions failed to fit observations whereas an estimation of 
.51 was obtained for the SVR model. These important dif- 
erences were mainly associated with the approach of low- 
alinity events ( Figures 6 , 7 and 8 ). Indeed, as exhibited by
oppeschi et al. (2021) , at the entrance of the bay, the nu-
erical model overestimated surface salinity during these 
vents with predicted minimum values of 25.5 ppt against 
bserved minimum values of 23.5 ppt. These differences 
ere here exhibited as the location considered (at the en- 
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Figure 7 Time series of sea surface salinity observed at the mouth of the Elorn estuary and predicted by the coastal numerical 
model and the SVR algorithm (top) during the validation period (from 04/02/2015 to 25/03/2016) with (bottom) a detailed view in 
tide-dominated conditions (between 16 and 24/04/2015). 

Table 3 Scoring for the evaluation of observed salinity for the validation dataset based on regression models (MLR and MPR), 
the three machine learning algorithms considered (MLP, SVR and RF) and the process-based physical model (MARS model). 
Statistical and scoring metrics considered include the Mean Absolute Error (MAE), the Root-Mean-Square Error (RMSE), the 
Normalised Root-Mean-Square Error (NRMSE) and the coefficient of determination R 2 . 

Deep-learning algorithms /Process-based physical model MAE RMSE NRMSE R 2 

MLR 2.46 ppt 3.48 ppt 11.7% 0.29 
MPR 2.33 ppt 3.14 ppt 10.5% 0.49 
MLP 2.42 ppt 3.26 ppt 10.9% 0.48 
SVR 2.26 ppt 3.16 ppt 10.6% 0.51 

RF 2.44 ppt 3.32 ppt 11.1% 0.46 
MARS model 2.29 ppt 3.73 ppt 12.5% -2.52 
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rance of the Elorn estuary) was subjected to a stronger in- 
uence of fresh river discharges. Thus, during the valida- 
ion period, observed minimum values reached 5 ppt while 
redictions from the coastal model remained over 22 ppt. 
hese differences may be explained by the difficulty of the 
odel to approach the transport of fresh waters from up- 
tream river boundaries to the entrance of the estuary. A 
efined spatial numerical model may be implemented to ap- 
roach the exchanges of water (and salinity) along the estu- 
327 
ry, but this requires also an improved spatial distribution of 
he bathymetry (which is not currently available). In com- 
arison, machine learning algorithms were able to capture 
 part of these low-salinity events. Thus, during the valida- 
ion period, predictions from SVR resulted in minimum salin- 
ty of 5.4 ppt (against 5.3 ppt for observations). And these 
esults were obtained with a limited number of input data, 
etting especially aside extensive measurement campaigns 
f water-depths spatial distribution. 
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Figure 8 Correlation between sea surface salinity observed at the mouth of the Elorn estuary and predicted from SVR and the 
coastal numerical model during the validation period (from 04/02/2015 to 25/03/2016). 
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.3. Sensitivity analysis 

n the present investigation, the attention was dedicated to 
fficient and practical algorithms liable to approach envi- 
onmental parameters such as sea surface salinity with lim- 
ted computational resources and simple input data easily 
ccessible. Thus, the investigation was conducted by relying 
n three input parameters: the tide-induced surface eleva- 
ion in the nearest harbour, the upstream river flow and the 
ind velocity observed in the nearest station ( Section 3.4 ). 
owever, we may expect further improvements of ML algo- 
ithms by including input data more representative of pro- 
esses driving the temporal variation of sea surface salinity 
t the mouth of the Elorn estuary (whereas these data are 
ore difficult to access). Thus, tide-induced surface eleva- 
ion may be replaced by tidal currents in the vicinity of the 
easurement point as a more refined parameter driving the 
ide-induced transport of salinity. We may also consider an 
xtensive number of input data including the precipitation 
ate, P rate , and the air temperature Temp. Indeed, the pre- 
ipitation rate may be interesting to include to represent 
he impact of high rapid rainfall on surface salinity. Sea sur- 
ace temperature may furthermore be exploited as a refined 
ndicator of the seasonal variability between (i) the winter 
eriod characterised by an increased number of flood events 
nd (ii) the summer period with reduced river outflow within 
he bay. The investigation of the influence of input data 
as conducted by relying on the SVR algorithm. The analysis 
as conducted in two steps. First, the model was exploited 
328 
o investigate the interest of using tidal current instead of 
ree surface elevation. Second, different estimations from 

he SVR model were compared varying the number of in- 
ut data. These different applications were conducted by 
dopting the tuning procedure retained in Section 3.3.3 , 
hus varying the values of hyperparameters with respect to 
he input dataset and parameters considered. 
An estimation of sea surface salinity based on optimised 

VR was conducted by replacing the free-surface elevation 
ith the tidal current in the vicinity of the measurement lo- 
ation. Predictions from the process-based physical model 
ere thus exploited to extract the horizontal components 
f the depth-averaged current velocities at the measure- 
ent point. As for wind velocity, we retained the projection 
f the current velocity along the orientation of the Elorn 
stuary as both horizontal components were highly corre- 
ated, and as the inclusion of the current direction required 
onsidering its orientation with respect to the estuary. The 
uning procedure provided the optimised parameters of 
 = 100 and � = 0.1 ( Table 4 ). The resulting optimised
VR, entitled SVR#2, resulted in statistical metrics compa- 
able to values obtained with the five ML algorithms consid- 
red in Section 4.1 ( Table 3 ). However, whereas the model 
pproached the seasonal variability of sea surface salinity 
haracterised by low-salinity events during the winter pe- 
iod, increased differences were obtained at the diurnal 
cales. Thus, SVR#2 resulted in lower tide-induced modula- 
ions of salinity than SVR#1, and this increased differences 
ith observations. Indeed, the tidal current is a location- 
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Table 4 Scoring for the evaluation of observed salinity for the validation dataset based on optimised SVR with different input 
data. 

Optimised SVR Input variables MAE RMSE NRMSE R 2 

SVR#1 (RBF kernel, ε= 0.1, C = 100 and �= 0.001) FS tide , River Elorn , Wind proj 2.26 ppt 3.16 ppt 10.6% 0.51 

SVR#2 (RBF kernel, ε= 0.1, C = 100 and �= 0.1) U proj , River Elorn , Wind proj 2.44 ppt 3.41 ppt 11.4% 0.42 
SVR#3 (RBF kernel, ε= 0.1, C = 10 and �= 0.001) FS tide 3.26 ppt 4.83 ppt 16.2% -38.1 
SVR#4 (RBF kernel, ε= 0.1, C = 100 and �= 0.001) FS tide , River Elorn 2.28 ppt 3.20 ppt 10.7% 0.50 
SVR#5 (RBF kernel, ε= 0.1, C = 100 and �= 0.001) FS tide , River Elorn , P rate 2.26 ppt 3.14 ppt 10.5% 0.51 
SVR#6 (RBF kernel, ε= 0.1, C = 100 and �= 0.001) FS tide , River Elorn , Temp 2.31 ppt 3.21 ppt 10.8% 0.50 
SVR#7 (RBF kernel, ε= 0.1, C = 100 and �= 0.001) FS tide , River Elorn , Wind proj , P rate 2.25 ppt 3.13 ppt 10.5% 0.52 
SVR#8 (RBF kernel, ε= 0.1, C = 100 and �= 0.001) FS tide , River Elorn , Wind proj , P rate , Temp 2.26 ppt 3.13 ppt 10.5% 0.52 
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pecific characteristic of the hydrodynamic whereas the 
ide-induced free-surface elevation is more adapted to the 
lobal variation of the tidal cycle within the bay. Thus, free- 
urface elevation offers greater freedom than local tidal 
urrent to adapt the ML algorithm to targeted data. As an 
xample, if the input current is highly rectilinear with two 
pposite directions between peak flood and ebb, we may 
xpect rapid and frank variations of the predicted salin- 
ty while neglecting potential remote influences of salinity 
ransport by rotary currents. 
Taking into account the previous estimation, the sensi- 

ivity study to the number of input data was conducted by 
etaining the free-surface elevation to characterise the ef- 
ect of the tide. As the wind velocity, meteorological data 
dded (P rate and Temp) were taken from observations mes- 
ages of the World Meteorological Organization for Brest 
 WMO, 2021 ). Differences between SVR#3 (with FS tide ) and 
VR#4 (with FS tide and River Elorn ) confirmed the importance 
f both considering the tide-induced free-surface elevation 
nd upstream river outflow to approach salinity variations 
t the mouth of the Elorn estuary ( Table 4 ). However, re- 
uced improvement was reached by including the third vari- 
ble among the wind velocity, the precipitation rate and 
he air temperature. The inclusion of P rate with FS tide and 
iver Elorn (SVR#5) appeared to provide slightly better esti- 
ations of sea surface salinity. But the three estimations 
rom SVR#1, #5 and #6 were very close. An explanation is 
hat meteorological conditions have an impact on sea salin- 
ty during localised events with a short period of time in 
omparison to the continuous and/or more frequent effect 
f tide and river discharges. For the precipitation rate, we 
ay also refer to the nature and properties of watersheds of 
he bay of Brest. Thus, watersheds of the bay consist mainly 
f impermeable rocks and soils which increases the influ- 
nce of precipitation on river discharges ( Tréguer et al., 
014 ). The consequence is that floods and river discharges 
end to mirror precipitation, especially during the win- 
er period when soils are water-saturated. Reduced im- 
rovement was thus reached by including the precipitation 
ate. 
However, whereas the coastal numerical model took into 

ccount past changes of hydrological conditions to predict 
alinity, ML algorithms (considered in the present investi- 
ation) neglected the previous evolution of dataset, set- 
ing especially aside the time delay between input data and 
he targeted parameter. And this time delay may be more 
329 
mportant for the different input variables, including espe- 
ially the river discharge and the precipitation rate. Thus, 
n the bay of Brest, sea salinity may be impacted by a peak
n river discharges after a time lag of 10 days ( Petton et al.,
020 ; Poppeschi et al., 2021 ). By analysing salinity observa- 
ions at the entrance of the bay, Poppeschi et al. (2021) also 
oticed that low salinity events were always associated with 
 peak in precipitation between two and three days before 
hese events. A detailed investigation of predictions from 

he numerical model confirmed furthermore the additional 
ffects of surface wind, inputs from rivers (Aulne and Elorn) 
nd tide-induced advection and diffusion on the duration 
nd intensity of these low-salinity events. The inclusion of 
nput parameters with a more refined definition may help to 
emove these uncertainties, but it may also be interesting 
o test algorithms liable to take into account previous states 
n the input parameters such as the LSTM. 

. Conclusion 

 series of machine learning (ML) models were exploited 
o approach the temporal variations of sea surface salinity 
t the entrance of the Elorn estuary (bay of Brest, western 
rittany, France). The attention was dedicated to regression 
odels such as Multiple Linear Regression (MLR) and Multi- 
le Polynomial Regression (MPR), and popular ML algorithms 
ncluding MultiLayer Perceptron (MLP), Support Vector Re- 
ression (SVR) and Random Forest (RF). In order to assess 
he practical implementation of these algorithms in com- 
arison to the more complex process-based physical model, 
e considered simple input data, easily accessible, in rela- 
ion to their potential influence on sea surface salinity at 
he mouth of the Elorn estuary. This includes the observed 
ree-surface elevation at the nearest harbour, the upstream 

iver discharges and the wind velocity. A sensitivity study 
o input data considered additional parameters such as the 
idal current, the precipitation rate and the air tempera- 
ure. Performances of ML algorithms were evaluated with 
espect to observations gathered during a six-year period at 
he mouth of the estuary. Specific calibration studies were 
urthermore conducted for the different ML algorithms to 
stablish optimised values of associated hyperparameters. 
The present investigation exhibited (i) methodological 

onclusions associated with the implementation and inter- 
omparison of ML algorithms and (ii) results associated with 
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he evolution of sea surface salinity at the mouth of the es- 
uary. 
From a methodological point of view, ML algorithms were 

ound to provide estimations of observed sea surface salin- 
ty comparable to predictions from a process-based physical 
odel, thus capturing the temporal variations from diur- 
al to seasonal time scales. However, whereas the process- 
ased physical model reproduced the semi-diurnal varia- 
ions of sea surface salinity, more important differences 
ere obtained during low-salinity events with predicted 
inimum values over 22 ppt against observed minimum val- 
es of 5 ppt. This overestimation may be associated with 
he difficulty of the model to represent salinity transport 
rom upstream river boundaries to the mouth of the estu- 
ry in relation to a coarse computational-grid resolution 
nd definition of water-depths variations in this shallow- 
ater environment. Instead, with a limited number of in- 
ut data and reduced computational time compared to the 
D model, machine learning algorithms reproduced these 
ow-salinity events. Both MLP and MPR were able to capture 
he non-linear nature of salinity variations to external forc- 
ngs. Results obtained from MPR showed that a great part of 
hese non-linearities was captured by a polynomial regres- 
ion function of degree two. However, the best estimations 
ere obtained for the Support Vector Regression. Whereas 
his algorithm required a tuning procedure of hyperparame- 
ers with additional computational time, this remained neg- 
igible in comparison to 3D numerical simulations of salin- 
ty transport in the bay of Brest. It is therefore suggested 
o rely on optimised SVR for approaching the evolution of 
alinity at the mouth of the Elorn estuary. Regarding input 
arameters, the inclusion of tidal currents may appear more 
elevant than free-surface elevation to account for salinity 
ransport in the estuary. However, tidal currents were also 
ighly variable at the scale of the bay and the selection of 
 rectilinear alternative component resulted in frank vari- 
tions of salinity neglecting potential remote influences. 
ide-induced free-surface elevation offered, in comparison, 
reater freedom to adapt the ML algorithms. 
In an in-depth analysis of salinity variation, particular at- 

ention may be dedicated to the temporal variations and re- 
ation to input data. Thus, whereas semi-diurnal variations 
f sea surface salinity resulted from tide-induced advection 
nd diffusion, low-salinity events at the mouth of the Elorn 
stuary appeared to be influenced by the intrusion of fresh 
aters from riverine inputs and an increased impact may 
e expected after a peak in precipitation. Thus, trained 
L algorithms, treating river discharges as input variables, 
ere able to capture these low-salinity events. The sensitiv- 
ty study to input data confirmed furthermore the key role 
layed by tide and river discharges on salinity variations in 
he estuary. And these major influences largely outweighed, 
n ML algorithms considered, the influence of other forc- 
ngs such as surface wind shear stress, precipitation rate or 
ir temperature whose impact may be mainly expected dur- 
ng isolated events of short duration. A refined definition 
f these input data over an extensive targeted dataset may 
elp to remove these uncertainties, and refine the approach 
o salinity variations. 
Trained ML algorithms may therefore be exploited to pro- 

ide, with reduced computational time, a global evaluation 
f the temporal variation of a hydrological parameter such 
330 
s sea surface salinity in an estuary under the combined 
omplex influences of tide-induced transport and fresh river 
ischarges. Results were, however, obtained by exploiting 
 six-year period of observations with a limited number of 
ata in relation to blank periods due to maintenance op- 
rations and system malfunction. Thus, we may improve 
redictions with an extensive amount of data continuously 
cquired at the mouth of the Elorn estuary. Whereas the 
rocess-based physical model exhibited increased differ- 
nces for approaching low-salinity events, it remains fun- 
amental to encompass the physical mechanisms involved 
n the evolution of sea salinity. Thus, numerical modelling 
ay be exploited as a complementary tool to ML algorithms 
i) to provide further insights about parameters controlling 
he evolution of sea surface salinity and/or (ii) to produce 
ew input data to train algorithms (hybrid approach). As the 
nvestigation was conducted in a single location in the bay 
f Brest, the potential of the ML algorithms may finally be 
valuated by including broader observations, such as mea- 
urement points (i) at the entrance of the bay characterised 
y increasing mixing between fresh and marine waters and 
ii) in the south-eastern part of the bay mainly influenced 
y freshwater inputs from the Aulne and Mignonne rivers. 
hese extended observations may help to investigate the 
otential of ML algorithms to model salinity in locations im- 
acted by contrasting remote effects of rivers discharges. 
oreover, such an approach may serve broader applications 
n estuaries impacted by strong salinity variations to encom- 
ass, on an extended time scale, the potential effect of ex- 
reme weather events, especially storm surges and floods. 
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